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Abstract: Flood has an important effect on plant growth by affecting their physiologic and biochemical
properties. Soybean is one of the main cultivated crops in the world and the United States is one of
the largest soybean producers. However, soybean plant is sensitive to flood stress that may cause
slow growth, low yield, small crop production and result in significant economic loss. Therefore,
it is critical to develop soybean cultivars that are tolerant to flood. One of the current bottlenecks in
developing new crop cultivars is slow and inaccurate plant phenotyping that limits the genetic gain.
This study aimed to develop a low-cost 3D imaging system to quantify the variation in the growth
and biomass of soybean due to flood at its early growth stages. Two cultivars of soybeans, i.e. flood
tolerant and flood sensitive, were planted in plant pots in a controlled greenhouse. A low-cost 3D
imaging system was developed to take measurements of plant architecture including plant height,
plant canopy width, petiole length, and petiole angle. It was found that the measurement error
of the 3D imaging system was 5.8% in length and 5.0% in angle, which was sufficiently accurate
and useful in plant phenotyping. Collected data were used to monitor the development of soybean
after flood treatment. Dry biomass of soybean plant was measured at the end of the vegetative
stage (two months after emergence). Results show that four groups had a significant difference in
plant height, plant canopy width, petiole length, and petiole angle. Flood stress at early stages of
soybean accelerated the growth of the flood-resistant plants in height and the petiole angle, however,
restrained the development in plant canopy width and the petiole length of flood-sensitive plants.
The dry biomass of flood-sensitive plants was near two to three times lower than that of resistant
plants at the end of the vegetative stage. The results indicate that the developed low-cost 3D imaging
system has the potential for accurate measurements in plant architecture and dry biomass that may
be used to improve the accuracy of plant phenotyping.

Keywords: 3D imaging system; soybean; flood stress; vegetative growth

1. Introduction

Soybean [1] is the second largest crop grown in the United States with 36.4 million ha planted,
yielding US$ 40.0 billion in 2017 (USDA-ERS, 2018). However, soybean cultivars are generally sensitive
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to flood stress [2], which affects the physiologic and biochemical processes of soybeans, resulting
in the reduction of the accumulation of dry matter (biomass) and seed yield. It was reported that
approximately 16% of soybean production has been reduced due to flood stress worldwide [3]. There is
a pressing need to develop high-yielding soybean cultivars with flood-tolerant trait at the current
situation of rapid climate change, shortage of arable land and the increase of food demand [2].

Many researchers have studied the morphological responses of crops under flood stress. The formation
of adventitious roots is highlighted as a common response of flood-tolerant species [4]. Flood tolerant
crop cultivars often grow taller under flood conditions than they are in controlled environments, however,
the biomass accumulation is lower than those under control [5,6]. After suffering flood stress, the increase in
the petiole angle is the first visible symptom of the tolerant cultivars, followed by the increase in petiole
length [5] in order to maximize the leaf area above the water [7]. Yield reduction was reported in soybean
breeding or genetic studies when soybean suffers flood stress at different growth stages, for example, a 17–40%
reduction was due to flood during vegetative stages and a 40–57% reduction during reproductive stages [8].

In modern soybean breeding programs, the stress tolerant cultivars are selected by planting
diverse germplasms in stress environments using the criterion of the minimum yield reduction [9,10],
which is extremely time-consuming (five to eight years for both cases). C. Wu et al. [10] proposed two
morphological traits, namely foliar damage score and plant survival rate as the indicators of flood
tolerance and they were highly correlated with grain yield (r = 0.95 and 0.95, respectively, p < 0.0001).
However, the visual rating is labor-intensive and subjective due to human vision.

Currently, the state of art plant-phenotyping technologies allows measuring crop morphological
traits in an efficient and effective manner. An et al. [11] developed a high-throughput imaging system
that is able to measure leaf length and area of rosette plants in two-dimensional (2D) nadir-view images.
However, this platform is not able to measure plant height that is a critical trait in differentiating
flood-tolerant cultivars. Jianfeng Zhou et al. [12] developed a low-cost phenotyping platform to
estimate plant height of soybeans under salt-stress, and the results showed a good agreement (R2 = 92%
and root mean square error = 9.4 mm) between the manual and automated method. However, it is
difficult to measure the leaf (petiole) angle of single soybean plant because the overlapping effects
were observed between adjacent plants at the 14th day after emergence and stems were hard to be
generated in three-dimensional (3D) point cloud data [13] when soybean were at early vegetation
stages. Therefore, a low-cost 3D imaging system with high precision (millimeter) is necessary to
measure multiple morphological traits of soybean plant under flood stress.

To quantify crop geometric traits, O’Neal et al. [14] developed a 3D desktop scanner with
open-source software to estimate leaf height and width, however, only can these two traits be measured
after manually separating all the leaves from plant stems. Paulus et al. [15] developed a 3D laser scanning
system to measure leaf area, stem height and plant volume of a barley plant in sub-millimeter precision.
Multiple morphological plant parameters were simultaneously derived from one scanning process, and
measurements were found highly correlated (R2 = 0.85 − 0.97) to manually measurements, however,
the laser device is not cost-efficient compared to visible imaging systems. Lou et al. [16] developed
an accurate Multi-View stereo 3D reconstruction system, but it needs an expensive Canon digital camera
(Canon 600D) and the reconstruction time of their method was 10–30 min depending on the number of
images. Liu, Acosta-Gamboa, Huang, & Lorence [17] tested an image-based 3D plant reconstruction
system for single plants. Images of plants from different views were taken using a digital camera
and a turntable platform that was rotated manually. The 3D model of a single plant was successfully
built using the structure from motion (SfM) method with a set of 1000 images, which is a challenge
for manual image acquisition. Xiong et al. [18] established a high-throughput stereo-imaging system
for the 3D reconstruction of the canopy structure of rape seedlings. The automatic measurements of
leaf area and plant height agreed with the manual measurements (R2 = 98.4% and 84.5% with a mean
absolute percentage error of 3.7% and 6.2%, respectively). However, the binocular stereo is usually
used in reconstructing canopy structures, and it will be hard to recover soybean stems where most of
them are covered by canopy leaves from the top view.
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The overall goal of this study was to develop a low-cost 3D imaging system to measure
morphological traits of interest for quantification of the plant variations in soybean due to flood
stress at early growth stages. The specific objectives were (1) to develop a low-cost imaging system
for the 3D model reconstruction of soybean plants; (2) to evaluate the accuracy of the developed
3D imaging system in measuring the plant height, plant canopy width, petiole length and petiole
angle of soybean plants; and (3) to evaluate the potential in estimating biomass using the extracted
image features.

2. Material and Methods

2.1. Preparation of Plants

A flood experiment was conducted at a greenhouse of the University of Missouri, Columbia, MO,
USA, from May through July in 2018. Two types of soybean cultivars with known flood tolerance
ability, i.e. NIL211 as the flood resistant and NIL147 as flood sensitive cultivar [19], were planted as test
materials. Soybean seeds were sown in plant pots filled with pro-mix soil (PRO-MIX All Purpose Mix,
Lowes, Columbia, MO, USA). After emergence, 24 plants (seedlings) with similar height and health
status based on visual observation were selected from each of the two cultivars, and transplanted to
1-gal plastic plant pots (diameter = 17 cm and height = 16 cm). Plants of each cultivar were divided into
two groups with 12 plants in each group, i.e. treated group (Group I and Group III for resistant and
sensitive cultivars, respectively) and control group (Group II and Group IV for resistant and sensitive
cultivars, respectively). At vegetative stage (V1), pots with soybean plants of Group I and Group III
were put into a 3-gal plastic pots (diameter = 25 cm and height = 28 cm) and filled with water till all
soil was flooded to generate submergence stress. The submergence treatment corresponds to the full
saturation of the soil pores with water, and with a very thin—or even without—a layer of water above
the soil surface, and only the root system of plant is under the anaerobic conditions imposed by the lack
of oxygen, while the shoot is under atmospheric normal conditions [20]. The submergence treatment
was conducted continuously for 10 days. Meanwhile, plants in Group II and IV were maintained under
appropriate soil moisture conditions (watering three times per week) based on the daily management
protocol in the greenhouse during the growing season.

2.2. Development of a Low-Cost 3D Imaging System

A 3D imaging acquisition system was developed to collect images of plants from different
viewpoints to reconstruct 3D models of plant. The architecture of the imaging system is shown in
Figure 1. The imaging system consisted of aluminum extrusion (50 mm × 50 mm) as the vertical
support to support an adjustable aluminum beam that was used to mount a stepper motor (23HS30,
www.omc-stepperonline.com), a motor driver, a micro-controller (Arduino Uno), and a bearing pair.
The angle between the beam and the support is adjustable, and so as the height from the ground.
A camera arm made of an aluminum stick in a diameter of 5 mm was connected to the stepper
motor through the bearing pair and a shaft coupling. The arm was bent using a bending machine to
a predefined angle of 145◦ to the center line of the motor shaft. The camera arm allowed the camera
moving at a defined trajectory of a circle in a plane determined by three vertexes of C, F and H of a cube,
as shown in Figure 2a. A digital camera (360HS, Canon U.S.A., Melville, NY) was mounted at the end
of the camera arm using a camera house that fixed the viewpoint of the camera to the center of rotation
trajectory. A control system consisted of a microcontroller (Arduino Uno R3, Sparkfun Electronics,
Boulder, CO, USA) and a stepper motor driver (TB6600, SMAKN, www.dfrobot.com) was used to
control the camera to move and take the images of plants from different viewpoints. The materials used
for developing the imaging system were from local hardware store or low-cost off-the-shelf products.
The total cost of the imaging platform, including the digital camera, aluminum stand and support,
the stepper motor and control, was less than $400, the detail can be found in Supplementary Materials.

www.omc-stepperonline.com
www.dfrobot.com
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Figure 1. The schematic illustration of the developed three-dimensional (3D) imaging system (a). The 
components are 1-Support frame, 2-Adjustable beam, 3-Microcontroller, 4-Stepper motor, 5-Shaft 
coupling, 6-Bearing, 7-Camera arm at different positions, 8-Camera holder, 9-Slide rail, 10-Ball screw 
and 11-Transport plate. Two images on the right show the two different views of the camera. 
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Figure 2. The basic principle of 3D model construction. 

The camera was mounted at the end of the camera arm that was driven by the stepper motor to 
rotate in the determined plane. The camera trajectory of the 3D imaging system is shown in Figure 2a, 
where the dash circle through vertex points of C, F and H determined the camera motion plane. When 
an object (a soybean plant in this case) was placed at the corner (point G in Figure 2a) that was 
diagonally opposed to the corner of the bearing (point A in Figure 2a), the camera was able to take 
images of the object facing to the object (see the arrows of camera) with the same distance to point G. 
This mechanism ensured that the target object (plant) was imaged from different viewpoints and 
acquire uniform data points from each side of the object. The dimensions (side length, LCG) of the 
cube determined the imaging distances from the camera to plants, and it was found that a minimal 
length of 40 cm was required to cover the whole plants. The dimensions of the cube LCG was 
determined by the motion trajectory of the camera, which was a function of the length of the camera 
arm LAC (diagonal length, Figure 2a) shown in Equation (1):  𝐿 ൌ √2𝐿ீ  (1) 

In this study, we selected the length of the camera arm as LAC = 60.0 cm, resulting in the LCG = 
42.4 cm. Meanwhile, the angle of the camera arm was determined using Equation (2): 𝜃 ൌ ∠CAG ൌ tanିଵሺ𝐿ீ𝐿ሻ ൌ tanିଵሺ√22 ሻ ൌ 145° (2) 

The 3D models of soybean plants were reconstructed based on the method of structure from 
motion (SfM) that is a low-cost photogrammetric method for 3D reconstruction using a series of 

Figure 1. The schematic illustration of the developed three-dimensional (3D) imaging system (a).
The components are 1-Support frame, 2-Adjustable beam, 3-Microcontroller, 4-Stepper motor, 5-Shaft
coupling, 6-Bearing, 7-Camera arm at different positions, 8-Camera holder, 9-Slide rail, 10-Ball screw
and 11-Transport plate. Two images on the right show the two different views of the camera.
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Figure 2. The basic principle of 3D model construction.

The camera was mounted at the end of the camera arm that was driven by the stepper motor to
rotate in the determined plane. The camera trajectory of the 3D imaging system is shown in Figure 2a,
where the dash circle through vertex points of C, F and H determined the camera motion plane.
When an object (a soybean plant in this case) was placed at the corner (point G in Figure 2a) that was
diagonally opposed to the corner of the bearing (point A in Figure 2a), the camera was able to take
images of the object facing to the object (see the arrows of camera) with the same distance to point
G. This mechanism ensured that the target object (plant) was imaged from different viewpoints and
acquire uniform data points from each side of the object. The dimensions (side length, LCG) of the cube
determined the imaging distances from the camera to plants, and it was found that a minimal length of
40 cm was required to cover the whole plants. The dimensions of the cube LCG was determined by the
motion trajectory of the camera, which was a function of the length of the camera arm LAC (diagonal
length, Figure 2a) shown in Equation (1):

LAC =
√

2LCG (1)

In this study, we selected the length of the camera arm as LAC = 60.0 cm, resulting in the
LCG = 42.4 cm. Meanwhile, the angle of the camera arm was determined using Equation (2):

θ = ∠CAG = tan−1
(

LGC
LCA

)
= tan−1

( √
2

2

)
= 145◦ (2)
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The 3D models of soybean plants were reconstructed based on the method of structure from
motion (SfM) that is a low-cost photogrammetric method for 3D reconstruction using a series of
overlapping images. It applies a highly redundant, iterative bundle adjustment procedure, based on
a database of features automatically extracted from the set of multiple overlapping images to resolve
the target’s structure [21]. The arrangement of images taken from one plant as shown in Figure 3a
made by Fang et al. [22]. The number of images was determined by the minimum image overlap
to achieve the desired accuracy of 3D dense point and the frame rate of the snapshot of the camera.
It was found that 20 images were sufficient to meet the requirement of minimal image overlap for
a high-quantity 3D model in this study, which was the same as that used by Fang et al. [22]. Collected
images were processed using the software Agisoft PhotoScan Pro (v1.3.4, St. Petersburg, Russia)
installed on a workstation (Dell OPTIPLEX 780, CPU i7-2600, Memory 16G, solid state hard drive) to
develop dense point cloud and 3D model of each plant. Figure 3b shows an example of the developed
plant 3D models using the Agisoft software. In this study, it took around 20 s for completing the
computing process of the 20 images and developing the 3D model of each plant. The camera was
controlled to rotate at the speed of 18◦ per second on the defined plane (CFH in Figure 2a) to take
images of a plant. The developed 3D imaging system was used to collect data for all 48 plants five
times during the vegetative stages, i.e. Day 1 to Day 5 on April 2, April 4, April 6, April 8 and April 10,
2018, to acquire the temporal development information of plant under submergence stress.
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2.3. Extraction of Image Features

The change in the morphological parameters of plants under different treatments was quantified
using the image features of the plant height, plant canopy width, petiole length, and petiole angle,
which were extracted from the 3D models of each plant on different days. The dense point cloud data
were exported from Agisoft to an open source software CloudCompare (v2.9, www.cloudcompare.org)
for further processing, including calibrating the dimension, removing the background (soil and
plant pots) and taking measurements. The geometric calibration was conducted by comparing the
measurements of the diameter of the plant pots using both the imaging system and a tape measure.
The measurement of the four traits was conducted in CloudCompare manually because of the complicity
of automated processing. In this study, we focused on system development and validation of usefulness
of the developed system in plant phenotyping. The system will be optimized and automated processing
algorithms will be developed in the future study. The measurement procedure is shown in Figure 4.
Plant height was measured from the bottom of the shoot (the lowest points of the shoot) to the top of
the main stem (the highest point) at the front view (Figure 4a). The plant canopy width was measured
as the maximum plant canopy width from the projection of the front view (Figure 4b). The petiole
length was measured as the length of the longest petiole at the front view (Figure 4c). And the petiole
angle was measured as the angle between a petiole and stem (Figure 4d). Meanwhile, plant height
and petiole angle were measured using a tape measure and a protractor in the 48 plants manually on
April 2, 2018, which were used as ground truth to calculate the measurement accuracy in both length
and angle using the 3D imaging system.

www.cloudcompare.org
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2.4. Soybean Biomass

To evaluate the potential in estimating biomass using the extracted image traits, soybean biomass
was manually measured at the end of the vegetative stage V5 on May 18, 2018. All plant shoots were
cut from the soil and were dried in an oven at the temperature of 60 ◦C for 120 h until completely dry.
The biomass of each plant was measured using a digital weight scale with a precision of 1.0 mg.

2.5. Data Analysis

All data were analyzed using the statistical toolbox of Minitab 18.0 (Minitab, LLC. State College,
PA, USA), including linear regression analysis, analysis of variance (ANOVA). The measurement
accuracy of plant height and petiole angle from the imaging system was calculated by comparing the
data collected manually, and a linear regression analysis was conducted.

In this study, imaging data were collected on five days during stage V1, i.e., 2nd, 4th, 6th, 8th
and 10th of April, 2018, which were divided into four growth periods, i.e., 2–4, 4–6, 6–8 and 8–10.
To quantify the amount of plant growth in the four growth periods, change rate (CR) in each growth
period of each plant was calculated using Equation (3) for each image feature.

CR =
Data(i + 1) −Data(i)

Data(i)
(3)

where Data are the plant height, plant canopy width, petiole length, and petiole angle on the i = 1, 2, 3,
4 or 5 time of data collection. Then the average change rate of the plant height, plant canopy width,
petiole length, and petiole angle in four groups was calculated using all plants in each group. At the
end of the vegetative stage V5, dry biomass of 48 plants was collected, and a one-way ANOVA was
conducted to evaluate the significance in the difference between four groups. The average change rates
of the plant height, canopy width, petiole length, petiole angle and dry biomass were used to explore
the variation of growth and accumulation of biomass at the early vegetative stage (V1).
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3. Results

3.1. Evaluation of Sensor Measurement

The agreement between the image measurements and the manual measurements was shown
in Figure 5. There are strong correlations (R2 = 0.88 and 0.96) for plant height and the petiole
angle at a 0.05 significance level, indicating that the 3D imaging system has potential in measuring
morphological traits of interest for soybean plants at early stages.
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3.2. Variation in Plant Development

The average change rates of the four traits (i.e., plant height, plant canopy width, petiole length,
and petiole angle) at four growth stages of all groups were shown in Figure 6, and the results of statistical
analysis are shown in Table 1. It can be seen from Figure 6a that the plants of the flood-tolerance
cultivar (Group I) under flood stress was significantly taller (p-value < 0.05) than that under controlled
environment and the flood-sensitive cultivar under both conditions, which is consistent with the
observations of Cox et al. (2003).

The average change rates in plant height of the other three groups were similar in each growth
period. On the other hand, the same flood treatment did not affect the growth of the sensitive cultivar
(Group III) and no significant difference was observed in the plant height between the two cultivars in
the controlled groups (Group II and IV).

Table 1. Results of ANOVA regarding average change rate in the plant height, canopy width, petiole
length and petiole angle. The comparison was conducted among the means of different groups in each
period. The different lower-case letters indicate a significant difference (p-value = 0.05) among the
means of the average change rate in different groups in each growth period.

Average Change Rate Period
Group I Group II Group III Group IV

Mean std Mean std Mean std Mean std

Plant height

1 0.125a 0.042 0.101ab 0.027 0.064 b 0.051 0.087 ab 0.039
2 0.240 a 0.047 0.170 b 0.046 0.151 b 0.067 0.179 b 0.044
3 0.318 a 0.078 0.205 b 0.049 0.201 b 0.079 0.223 b 0.057
4 0.435 a 0.107 0.281 b 0.050 0.297 b 0.079 0.272 b 0.056

Canopy width

1 0.192 a 0.136 0.175 a 0.079 0.091 a 0.128 0.170 a 0.089
2 0.230 ab 0.192 0.312 a 0.092 0.155 b 0.130 0.279 a 0.093
3 0.269 ab 0.200 0.298 ab 0.249 0.109 b 0.163 0.331 ab 0.123
4 0.041 b 0.225 0.462 a 0.128 −0.156 b 0.198 0.366 a 0.179

Petiole length

1 0.226 a 0.099 0.257 a 0.167 0.237 a 0.070 0.211 a 0.096
2 0.275 a 0.114 0.429 a 0.205 0.280 a 0.118 0.339 a 0.189
3 0.292 b 0.132 0.476 a 0.189 0.280 b 0.118 0.383 ab 0.188
4 0.328 b 0.16 0.576 a 0.250 0.294 b 0.112 0.455 ab 0.253

Petiole angle

1 0.131 a 0.133 0.046 a 0.110 0.168 a 0.106 0.069 a 0.184
2 0.629 a 0.182 -0.008 b 0.126 0.636 a 0.342 0.017 b 0.259
3 0.819 a 0.238 -0.004 b 0.134 0.852 a 0.339 0.028 b 0.217
4 0.898 a 0.256 0.066 b 0.200 0.936 a 0.311 0.084 b 0.204
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Figure 6b shows that the average change rate of the canopy width of the four groups in the four growth
periods. It can be seen from the figure that the average change rates of the plant canopy width in Group
I and Group III were lower than the other two control groups in most of the growth periods, especially
the treated-sensitive cultivar (Group III) that was the bottom curve in all growth periods. The average
change rates of the plant canopy width in Group III were significantly lower than that in the control in
growth, which may be caused by the limited extension of leave span, smaller petiole length or petiole angle,
indicating that the sensitive cultivar suffered more flood stress than the tolerance one.

Figure 6c shows the impact of flood stress on the growth of the petiole length. Starting from
the 2nd growth period, the average change rates in petiole length of the plants in the treated groups
(Group I and III) were lower than that in the controlled groups. Statistical analysis in Table 1 shows
that the means of average change rates in Group I and III were significantly lower than those of plants
in Group II and IV in growth period 3 and 4. However, no significant difference was found between
two cultivars in both treated and control groups.

Figure 6d illustrates the variation of average change rate in the petiole angle of plants in all groups
in the four growth periods. It can be seen that the means of average change rates were clustered
by cultivars, but not by treatment. The figure also shows that the petiole angle of plants in flood
sensitive cultivar kept very similar due to the average change rate, which was close to zero. However,
the petiole angle of plants in the flood-resistant cultivar kept increasing, which was consistent with the
observations by Cox et al. [5] and Heydarian et al. [6] that the increase in the petiole angle is observed
in flood-tolerant cultivars. The results also provide another quantitative measurement to distinguish
the response of resistant and sensitive plants to flood stress.

In summary, flood on soybean plants at vegetative stage V1 had a significant effect on their growth
speed of plant height and petiole angle for the cultivar resistant to flood, but limited on the plant
canopy width, the petiole length. Therefore, the extracted image features are able to quantify the
response in soybeans in different cultivars to flood at vegetative stage V1.

3.3. Estimation of Biomass

The biomass of each plant and the mean of each group are listed in Table 2. The table shows that
the average dry biomass of plants in the control groups (Group II and IV) was around twice or three
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times greater than that in the treated groups (Group I and III), respectively. A one-way ANOVA analysis
shows a significant difference in biomass between treated groups and control groups (p-value < 0.05),
however, no significant difference was found between two cultivars in the same treatment (treated or
control), as shown in Table 2. The results indicate that flood stress at vegetative stage V1 had a significant
impact on the accumulation of biomass, which may affect the crop development and cause yield loss.

Table 2. Biomass (g) of all the test plants. The different lower-case letters indicate a significant difference
in the means of dry biomass (g) between the groups.

Plant Number Group 1 Group 2 Group 3 Group 4

1 8.17 12.61 5.57 11.69
2 6.06 14.46 5.89 14.26
3 9.73 11.48 8.80 13.77
4 6.85 12.01 4.97 16.76
5 7.15 13.56 4.79 13.02
6 6.06 12.38 4.49 15.66
7 5.73 14.17 3.21 12.82
8 6.23 13.99 7.05 13.39
9 5.74 19.81 4.90 13.83

10 7.13 15.50 5.24 14.27
11 6.10 16.57 7.26 9.74
12 9.95 12.78 6.79 11.96

Mean 7.05 b 14.11 a 5.75 b 13.43 a

The data of the plant height, canopy width, petiole length, and petiole angle of all 48 plants collected
using the 3D imaging system on the five selected days were used to analyze the correlation between image
features and the biomass. A linear regression analysis was conducted to find the regression functions of the
five days. Equation (4) shows the regression function for the data of the last day.

Biomass = 6.68− 0.002·PH + 0.054·CW + 0.005·BL− 0.077·PA (4)

where PH is the plant height, CW is the canopy width, BL is the petiole length and PA is the petiole
angle. Figure 7 shows the correlation of the biomass measured manually and estimated with image
features using Equation (4). It can be seen that there was a high correlation of the estimated values
with the true values from Day 3 with the significant level at 0.001, indicating the 3D imaging system
had the potential to estimate the biomass.
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The statistical analysis results of the multiple linear regression analysis for Day 5 that had the
highest correlation, are shown in Table 3, which indicates the model (regression) is significant, and same
as the width of plant and the petiole angle. Meanwhile, the VIF shows that the collinearity of the four
image features was not very high to be concerned.

Table 3. The results of the statistical analysis of the multiple linear regression model using data collected
on the last day.

Source DF * Adj SS * Adj MS * F-Value p-Value VIF *

Regression 4 591.0 147.7 29.20 0.000 –
Plant height 1 0.0 0.0 0.00 0.947 1.77

Canopy width 1 74.6 74.6 14.75 0.000 2.59
Petiole length 1 0.0 0.0 0.00 0.951 2.10
Petiole angle 1 62.1 69.2 13.68 0.001 2.22

Error 43 217.6 5.1
Total 47 808.5

* Abbreviations: DF: Degrees of freedom, Adj SS: Adjusted sums of squares, Adj MS: Adjusted mean squares,
VIF: Variance inflation factor.

4. Discussion

This study developed a cost-effective 3D imaging system to quantify the variation in soybean
growth and biomass due to submergence stress at the early growth stage. The developed system
collected plant architecture information of soybean plants, including plant height, canopy width,
petiole length, and petiole angle, five times at early growth stages. Meanwhile, the biomass of each
plant was measured using the oven dying method by cutting the above-ground plant shoots after
the last data collection. The multiple linear regression was conducted to estimate the potential of
estimate plant biomass using the developed image features. Compared with the 2D imaging system,
the developed 3D imaging system is more accurate in measuring architectural information of plants
and may quantify the variation of plant development due to biotic and abiotic stresses. The developed
method is simple and low-cost for data acquisition compared with other 3D imaging systems. However,
it also has some limitations that are needed to be further investigated, for example, inefficiency in
data acquisition and image process. The developed 3D imaging system may be not suitable for
a high-throughput platform [23].

The plant growth and yield of soybeans can be significantly affected by flood stress [24].
When soybean was treated with flood stress at the vegetative or the reproductive stages, grain
yield and quality were reduced compared to those in control groups [25]. In soybean, cell death
was detected under flood stress [26]. These findings suggest that flood causes damage to soybean at
early growth stages. In this study, the effect of flood in the vegetative stage V1 showed a significant
impact on the plant height and the petiole angle for the flood-resistant cultivar. However, the other
architecture parameters, including the canopy width and the petiole length did not show significant
differences in the growth change rate imposed by the flood stress. For the yield of soybean, it has
even been suggested by Rhine et al. [27] that the influence of flood during the early vegetative period
is negligible, mainly because the slower development due to flood stress at the early stages might
recover during the late growth stages. Meanwhile, the flood reduced biomass by two to three times
compared to the control groups in this study, which is different from the findings in Rhine et al. [27].
The potential reason might be that the soybeans were treated at different growth stages, where the
treatment stage was at flowering stage for Rhine et al. [27] while plants were treated in vegetative stage
V1 in this study. The results in this study are similar to the results reported by Sugimoto et al. [28],
Oosterhuis et al. [25] and Scott et al. [29].
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5. Conclusions

A cost-effective 3D imaging system was developed to take measurements of plant architecture of
soybeans at the early growth stage. The developed system was evaluated in quantifying four plant
traits, including plant height, plant canopy width, petiole length and petiole angle, in a flood study.
The results show that flood-stress (submergence stress) during the vegetative stage V1 had significantly
affected the development of soybean plant in the plant height and canopy width, which led to two times
to three times reduction in the dry biomass at the end of vegetative stage V5 compared to the plants
under control. The low-cost 3D imaging system was able to measure the linear length with an error
of 5.78%, and angle of 4.99%, which considered accurate and useful to quantify the plant variation.
On the other hand, linear regression analysis indicates that the extracted image features were able to
estimate the dry biomass, especially using the data collected on the last day. This study shows that the
developed 3D imaging system has the potential for the accurate measurement of plant architecture
and estimation in dry biomass, and it may be useful to acquire plant traits for breeding programs.
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