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Abstract

Continuous blood pressure (BP) monitoring is essential for diagnosis and management of 

cardiovascular disorders. Currently, BP is measured using cuff-based methods, which are obtrusive 

and not suitable for continuous monitoring. Estimation of BP using pulse transit time (PTT) is a 

prominent method that eliminates the need for a cuff. In this paper, we present a new method to 

estimate BP based on PTT measurements from an array of 2×2 bio-impedance sensors placed on 

the wrist, which can be integrated into a small wearable device such as a smart watch for 

continuous BP monitoring. Diastolic and systolic BP were estimated using AdaBoost regression 

model based on PTT features extracted from the wrist bio-impedance signals. Data was collected 

from three participants using our custom bio-impedance sensors. Our method can estimate BP 

accurately with correlation coefficient, mean absolute error (MAE) and standard deviation (STD) 

of 0.92, 1.71 and 2.46 mmHg for the diastolic BP and 0.94, 2.57 and 4.35 mmHg for the systolic 

BP.
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I. INTRODUCTION

Blood pressure (BP) monitoring is important for diagnosis, monitoring, and management of 

cardiovascular disorders. There are about 30 million people who suffer from cardiovascular 

diseases in the United States, and this yielded in an estimated $555 billion in health care 

costs and lost productivity in 2016. By 2035, the cost will skyrocket to $1.1 trillion 

according to the predictions of the American Heart Association [1]. BP is an essential 

marker for the diagnosis of cardiovascular diseases. Currently, the most common method for 

BP monitoring uses sphygmomanometer with its inflatable cuff, which is bulky, obtrusive 

and allows only one-off measurements. Many studies have now confirmed that BP 
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continuously measured over a 24-hour period during daily activities including sleep is 

superior to traditional office-based BP measurement in predicting future cardiovascular 

events [2]. Continuous, convenient and easy to use without requiring the user intervention. 

BP estimation through the measurement of the pulse transit time (PTT) is a prominent 

method for continuous BP monitoring without using a cuff [3]. This method relies on 

modeling the correlation between BP and PTT. PTT is the time taken by pressure pulse to 

travel through the arteries between two fixed points during each cardiac cycle. In this paper, 

we estimate BP using PTT method through an array of sensors placed on the wrist as shown 

in Fig.1, which can be integrated into a werable device such as smart watch and can provide 

a suitable solution for continuous BP monitoring.

Through prior investigations, PTT was measured by the time delay between the R-peak of 

the ECG signal and a characteristic point on the photoplethysmography (PPG) or bio-

impedance (Bio-Z) from the finger or the wrist [4–6]. These PTT measurements methods 

rely on ECG, which has two main issues. First, ECG is measured from the potential between 

two electrodes across the two sides of the heart, which cannot be realized in a small form 

factor device and is not conveniently wearable. Second, the time delay measured through 

ECG includes the pre-ejection period (PEP), which is the time from the onset of the R-peak 

to the start of the actual pumping of blood out of the heart. The PEP is not correlated to BP, 

which results in errors in BP estimation. In another prior investigation, the BP was measured 

from a wrist device using PTT, but to get a measurement, the user has to press a finger on an 

electrode on the device to be able to measure ECG [7]. BP was also measured from a watch 

based on seismocardiogram (SCG) and PPG sensors only when the user holds his arm with 

the watch towards his chest for a certain time [8]. In a more recent investigation, BP was 

measured using a smartphone via oscillometric finger-pressing method, which requires the 

user to press his finger towards a PPG sensor with gradual pressure increase [9]. These 

methods, although all of them provide interesting and important insights into BP monitoring, 

are not suitable for continuous BP monitoring because they require the intervention of the 

user or cannot be incorporated into a smart watch form factor for a true wearable experience, 

which prevents BP monitoring during daily activities.

Our proposed method for continuous BP monitoring during the daily activities is based on 

measuring PTT from an array of 2×2 bio-impedance sensors placed on the wrist, which can 

be integrated into a wearable device such as a smart watch. This method eliminates the need 

for ECG and the intervention from the user for more accurate and comfortable continuous 

BP monitoring. A pair of sensors is placed on each artery of the wrist, which are the radial, 

and the ulnar arteries to consider the different vascular properties of both arteries, which 

improves the accuracy of BP estimation. The measurement accuracy can be additionally 

enhanced by extending this concept through using a larger array of sensors based on a wrist 

strap with an array of dry electrodes as shown in [10]. Bio-impedance sensing is suitable 

because of its low power requirements, low cost and that it can be easily integrated into a 

small device. More importantly, the sensing coverage through the tissue for bio-impedance 

can be adapted from a few millimeters to centimeters, unlike optical modalities.

The contributions of this paper are summarized as follows:
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• We measure BP from an array of 2×2 bio-impedance sensors using wet 

electrodes placed on the wrist.

• We present circuits and hardware for high-resolution bio-impedance 

measurements that lead to an accurate characterization of PTT.

• We offer estimation algorithms for systolic BP (SBP) and diastolic BP (DBP) 

using AdaBoost regression model based on 90 features extracted from PTT, time 

duration and amplitude of the Bio-Z signals. The experimental results are shown 

for 80 minutes of BP & Bio-Z data, which were collected from three subjects.

• We demonstrate the improvements in BP estimation accuracy using our array of 

four Bio-Z sensors compared to using one or two sensors.

II METHODS

A. Bio-impedance Sensing Hardware

Bio-impedance is an electrical non-invasive signal measured by injecting AC current in the 

human body and sensing voltage using separate pairs of electrodes. The changes in bio-

impedance over time (∆Z) corresponds to the blood volume changes at the sensing location, 

which is used to measure the arrival time of the pressure pulse. Our bio-impedance sensing 

hardware depends on the ARM Cortex M4 MCU, which sends a digital waveform to a 16-bit 

DAC to drive the voltage-to-current converter for generating an AC current signal with 

programmable frequency and amplitude as shown in Fig 2. The impedance sensing path 

depends on a low noise instrumentation amplifier (IA) followed by low pass filter to obtain 

RMS error less than 1mΩ, which is much lower than the target Bio-Z variations. The current 

injection circuit is shared between the four bio-impedance sensors, while there is separate 

sensing circuit for each sensor. The ADC samples the four Bio-Z channels simultaneously at 

78.125 kSPS with 24-bit resolution to enable accurate measurement of PTT with a time error 

less than 12.8 μs, which is much smaller than the target average PTT. In addition, ECG and 

PPG signals are also measured to verify the PTT measurements. All the six channels of the 

ADC were sent to the MCU, then transferred to the PC through USB for post-processing. 

Then, the Bio-Z signals were demodulated in the digital domain by multiplying it by the 

carrier signal generated from the MCU followed by a low-pass filter with a cut-off frequency 

of 4.4 Hz.

B. Blood Pressure Estimation Algorithms

The BP estimation algorithms start by detecting some characteristic points on each Bio-Z 

signal followed by motion artifact rejection, feature extraction, and the regression models.

1) Points Detection—For each Bio-Z signal, six characteristic points are detected for 

every beat. Every heart beat, the Bio-Z signal decreases from its peak to the foot, which 

indicates a sudden increase in the blood volume due to the arrival of the pressure pulse. The 

Bio-Z peak represents the diastolic phase while the foot represents the systolic phase of the 

heart beat. Therefore, this decreasing slope section is abstracted by five points as shown in 

Fig. 3. The peak (PK) and the foot (FT) are detected by the intersection of the tangent to the 

slope with the horizontal line from the maximum and the minimum of the signal, 

Ibrahim and Jafari Page 3

IEEE Biomed Circuits Syst Conf. Author manuscript; available in PMC 2019 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively [11]. In addition, the points of maximum change in the slope at the peak (PK2) 

and the foot (FT2) of the signal are detected. The maximum slope (MS) point is also an 

important point in the middle of the decreasing slope section. The sixth point is detected 

from the inflection point (IP), which results from the reflection of the pressure pulse. All 

these points are identified using the zero crossing, peak and foot points of the first and the 

second derivative of the Bio-Z signal.

2) Motion Artifact Rejection—Measuring four Bio-Z signals over a small area on the 

wrist provides information redundancy that helps in the detection of motion artifact induced 

signals. The Bio-Z characteristics points of the four sensors detected in each heart beat 

should have small variance in values when motion artifacts are not present because the 

sensors are close to each other. We can identify and reject motion artifact induced points by 

detecting the increase in the variances through generalized extreme studentized deviate 

(GESD) algorithms [12].

3) Features Extraction—The four Bio-Z signals are used to generate 90 features for 

each heart beat that can accurately model the PTT on the two arteries of the wrist. In 

addition, the mean features are also generated by taking the average of the beat-by-beat 

features over every 12 beats with 50% overlap. The mean features provide better results 

because it removes the high-frequency variations within around 10 seconds while the BP can 

be assumed constant. The proposed features are as follow:

• PTT features: The PTT features are the time delay between each pair of Bio-Z 

signals measured at the points PK, PK2, MS, FT2, and FT. (30 features)

• HR features: The HR features are the time interval between two successive beats 

for each Bio-Z signal measured at the points PK, PK2, MS, FT2, and FT. (20 

features)

• Time features: These features are the time interval from the PK to the MS, FT 

and IP points, which are T1, T2, and T3 respectively as shown in Fig. 3. (12 

features)

• Amplitude features: These are the difference in amplitude from PK to MS points 

(A1) and from PK to FT points (A2) in addition to the ratio of the amplitude of 

the MS point (A1) to the amplitude of the IP point (A3). (12 features)

• Area ratio features: These features are the areas under the Bio-Z curve between 

the PK, MS, FT and IP points which represent the total peripheral resistance [13] 

(16 features)

4) Regression Model—We selected AdaBoost model consisting of 100 decision trees 

because it has better BP accuracy compared to other models such as linear, decision tree, 

support vector, random forest, and gradient boosting. Separate models were trained for SBP 

and DBP using reference BP data with 10-fold cross-validation of shuffled samples to divide 

the data into training and testing datasets. We adjusted the model parameters for each 

participant based on their data to capture the individual variations in the vascular properties 

of the wrist arteries.
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III. EXPERIMENTAL RESULTS

Covidien gel ECG patches were used for the Bio-Z and ECG electrodes. Two pairs of the 

Bio-Z sensors were placed along the radial and the ulnar arteries within 8 cm distance along 

the wrist of the left arm as shown in Fig. 4. The location of the wrist arteries was detected 

using the Huntleigh Dopplex MD2 Bi-Directional Doppler. Based on experimental testing of 

the Bio-Z signal at different frequencies from 2 to 9.75 kHz, the highest frequency of 9.75 

kHz was the best frequency to detect the variations of Bio-Z due to blood flow. The current 

amplitude was adjusted to 800μA for compliance with safety standards [14]. The ECG 

electrodes were placed on the chest and the PPG finger clip on the index finger. Continuous 

BP was acquired from the reference device Finapres NOVA system, which is well cited in 

several previous research papers as a clinical grade tool for BP measurement [15]. 

Continuous BP was measured from a finger cuff placed on the middle finger, which was 

calibrated by the standard brachial cuff. Another PPG signal was measured from the 

Finapres device using a second finger clip placed on the ring finger to enable 

synchronization with the Bio-Z signals.

The data was collected from three human subjects under IRB approved by Texas A&M 

University (IRB2017–0086D) on seven trials from each participant while seated on a bike 

and their arm was extended on the bench. Each trial started by exercising for 5 minutes 

through cycling on the bike to raise the BP followed by 4 minutes of data collection to 

capture the recovery of BP to its normal value. Fig. 5 shows an example of the physiological 

signals as measured by our circuits and Finapress after filtering. Fig. 6 shows the beat-by-

beat SBP and DBP during the recovering phase after the exercise while the pulse arrival time 

(PAT) of the Bio-Z and the PPG signals relative to ECG increases as expected. The figure 

displays the raw PTT features extracted from the mean of MS points. The AdaBoost 

regression model provided Pearson’s correlation coefficient (R), mean absolute error (MAE) 

and the standard deviation (STD) of 0.92, 1.71 and 2.46 mmHg for the DBP and 0.94, 2.57 

and 4.35 mmHg for the SBP, respectively, using the mean features as illustrated in Fig. 7 and 

TABLE I. The mean features showed significant improvement compared to the beat features. 

In the comparison with other prior investigations using PTT from ECG and PPG signals, our 

method offers better performance in all metrics compared to [4] and higher correlation 

compared to [5].

TABLE II shows the comparison between BP error obtained from our 4 sensors with the 

average of all combinations of one or two sensors. There is a consistent decrease in the error 

for both DBP and SBP as the number of sensors increases. These results show that DBP and 

SBP can be accurately estimated using an array of Bio-Z sensors placed only on the wrist, 

which helps in achieving wearable and continuous BP monitoring.

IV. CONCLUSION

In this paper, we provided a system and a method that can measure DBP and SBP using an 

AdaBoost regression model based on PTT features extracted from an array of Bio-Z sensors. 

The experimental results showed high correlation coefficient and low error of 2–4 mmHg. 

Leveraging an array of sensors provided a smaller error compared to using one or two 
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sensors only. Using the proposed method, we can continuously and accurately measure BP 

in a comfortable form factor such as smart watches, ultimately leading to more effective 

monitoring and management of cardiovascular disorders.
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Fig. 1. 
The block diagram of the BP estimation algorithms from wrist-worn bio-impedance sensors 

array.
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Fig. 2. 
The block diagram of the wrist bio-impedance sensing hardware.
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Fig. 3. 
The Bio-Z signal annotated with the points, time intervals and amplitudes used for feature 

extraction.
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Fig. 4. 
Pictures showing the placement of electrodes and sensors on the wrist and fingers (left) and 

the experimental setup for BP monitoring (right).
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Fig. 5. 
BP, Bio-Z, ECG and PPG signals as measured by our hardware and the Finapres device after 

synchronization.
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Fig. 6. 
The beat-by-beat and mean BP and Bio-Z features after exercise.
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Fig. 7. 
The estimated DBP and SBP for all the subjects using AdaBoost regression model and mean 

features.
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TABLE I.

DBP and SBP estimation performance compared with other work.

Work

DBP SBP

R MAE
(mmHg)

STD
(mmHg) R MAE

(mmHg)
STD

(mmHg)

Mean Features 0.92 1.71 2.46 0.94 2.57 4.35

Beat Features 0.85 2.69 3.65 0.89 3.6 5.17

[4] 0.57 4.31 3.52 0.54 8.21 5.45

[5] 0.79 - 2.20 0.85 - 3.10
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TABLE II.

The comparison of the BP error for a different number of sensors.

Number of
Bio-Z Sensors

DBP SBP

MAE
(mmHg)

STD
(mmHg)

MAE
(mmHg)

STD
(mmHg)

4 1.71 2.46 2.57 4.35

2 1.96 2.80 2.88 4.73

1 2.19 3.12 3.33 5.61
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