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Abstract: Rubber materials are extensively utilized for vibration mitigation. Creep is one of the most
important physical properties in rubber engineering applications, which may induce failure issues.
The purpose of this paper is to provide an engineering approach to evaluate creep performance of
rubber systems. Using a combination of hyper-elastic strain energy potential and time-dependent
creep damage function, new creep constitutive models were developed. Three different time-decay
creep functions were provided and compared. The developed constitutive model was incorporated
with finite element analysis by user subroutine and its engineering potential for predicting the
creep response of rubber vibration devices was validated. Quasi-static and creep experiments
were conducted to verify numerical solutions. The time-dependent, temperature-related, and
loading-induced creep behaviors (e.g., stress distribution, creep rate, and creep degree) were explored.
Additionally, the time–temperature superposition principle was shown. The present work may
enlighten the understanding of the creep mechanism of rubbers and provide a theoretical basis for
engineering applications.

Keywords: finite element analysis; creep behavior; rubber; vibration system; hyper-elasticity;
creep damage

1. Introduction

Vibration mitigation is an essential design requirement in several industries, such as aerospace,
rocket-engine, and automotive [1]. Passive damping technology often utilizes viscoelastic materials
to decrease the vibratory level transmitted and the vibration field generated. Traditional viscoelastic
materials are rubbers, which are widely utilized for years of service [2]. In practice, when a constant
load is applied to a rubber material, its deformation is not a constant; it gradually increases with
time, which is known as creep. The creep presents a time-dependent characteristic, which induces
the dimensional instability of rubber products over their expected lifetime and may finally lead to
early failure and deteriorate the vibration mitigation performance. Hence, it is important to accurately
predict the creep behaviors of rubbers so that the fracture failure due to the creep effect can be prevented.

Creep is typically classified in three stages, as shown in Figure 1 [3]. The first one is primary
creep or transient creep, which is related to the physical rearrangement of polymer chains (e.g., bond
stretching/bending and crosslinking between chains of rubber materials) [4]. In the primary creep stage,
the strain rate is initially high and reduces with time. When the strain rate diminishes to a minimum
value, the secondary stage begins and an obvious time-dependent behavior is presented, that is, the
stain increases remarkably after an important length of elapsing time. The third stage is termed as
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the creep failure stage, in which the creep resistance is weakened and fracture inside the rubber is
presented. In engineering applications, creep analysis practically considers the first two creep stages.
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The reliability of creep predictions is dependent on the application of computational models.
Hyper-elastic models are commonly utilized to describe the nonlinear properties of rubber materials
and rubber-based devices. In mathematical expression, the hyper-elasticity of rubber is issued from
the strain energy density, which is a function of principal invariants related to the Cauchy–Green
deformation tensors and the Jacobian matrix of the deformation gradient [5]. Widely applied
hyper-elastic models include the Mooney–Rivlin model [6,7], the Biderman model [8], the Ogden
model [9], the Yeoh model [10], the Neo–Hookean model [5], and polynomial series [11]. The parameters
in these phenomenological models are identified according to the experimental data. Additionally,
some hyper-elastic models are based on microscopic responses of polymer chains in the network
of rubber materials, e.g., six or eight constrained-chain models [12,13]. Hyper-elastic models focus
on portraying nonlinear force–deflection responses of rubbers; however, they cannot describe the
time-dependent creep responses due to the models without referring to the elapsed loading time [14].

Creep behavior is attributed to the time-related viscoelasticity of rubber materials. The description
of viscoelastic behavior can be achieved by taking into account the appropriate amounts of elastic
and damping elements into viscoelastic models. Typical computational models, such as the Maxwell
element and the Kelvin–Voight model, are suitable for depicting linearly viscoelastic properties;
however, long-term nonlinear creep responses are not accurately predicted. Subsequently, some
complex viscoelastic models were proposed. Skrzypek [15] proposed a creep model by modifying
Boltzmann’s superposition principle to describe nonlinear creep laws, in which time-dependent creep
strain was studied. Lee [16] established a modified viscoelastic model in prony series to study creep
characteristics of compressed rubber products and a finite element analysis was presented. Majda [3]
developed a modified Burger model with tunable damping and stiffness coefficients for calculating
creep deformation, which was validated by experimental results. Although these complex viscoelastic
models can forecast creep nonlinearity, their complexity results in time-consuming calculations
and substantial creep experimental results must be inputted to determine large numbers of model
parameters, which limits the practical application.

It is noteworthy that a mechanical model for creep analysis with high efficiency and reasonable
accuracy is particularly attractive. Recently, Luo proposed an easily implemented creep damage model
for predicting long-term creep characteristics of polyisoprene rubbers [17]. However, his work focused
on the creep analysis under a fixed loading level and temperature and the validation for various
conditions was not considered. In practice, rubber materials are commonly used in various conditions
(loading level, temperature, humidity, oxygen aging) and some studies revealed that the loading level
and ambient temperatures are major factors which largely affect the creep characteristics [3]. It is also
emphasized that creep performances of rubbers under different loading conditions and temperatures
are significant for engineering designers [18]. Some related work has been conducted, e.g., Rivin [18]
carried out creep tests of compressed rubber components under different levels of static loading and
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the correspondence characteristics were discussed. Oman [19] observed the influence of test programs
and loading conditions on the creep responses of rubbers and different creep performances were
compared. Wang [20] performed a laboratory evaluation on the creep viscosity and stiffness of tire
rubber under low and high temperatures and the temperature-related creep stability was analyzed.
These studies are mainly experimental works, in which creep deformation is qualitatively discussed
from the test results. Nevertheless, due to observation difficulties, the stress variation, creep rate, and
creep degree are not fully addressed, but such information is beneficial to explore creep mechanism for
the engineering design of rubber systems.

As mentioned above, although creep behaviors of rubbers have been theoretically studied for
decades, it has been solved by the viscoelastic mechanical models. However, the viscoelastic model
is not an optimal solution for engineering applications. Different from the previous work, the
present study investigates creep performance with a modified hyper-elastic mechanical model with a
time-dependent creep damage function. The integration of the proposed model in the commercial
finite element software Abaqus is provided by utilizing user subroutines. Its validation is presented by
experimental work. By utilizing the proposed model for predicting creep behaviors of rubber vibration
systems, the engineering potential of the proposed model is validated. The detailed arrangement of
the present work is as follows. The experimental testing of rubber materials is shown in Section 2. The
constitutive equation and its numerical implementation in the finite element software are provided
in Section 3. The identified parameters of the proposed model are determined by the experimental
data. Section 4 validates the developed approach and discusses the creep performances of rubber
materials under multi-level loadings and temperatures. For further evaluating engineering potential,
the proposed approach is utilized for predicting creep performances of rubber vibration systems. The
main conclusions are drawn in Section 5.

2. Experimental Testing

2.1. Quasi-Static Compression Tests

A quasi-static compression test was performed before the creep experiment to analyze nonlinear
hyper-elasticity of the rubber materials. Acrylonitrile-butadiene rubbers (Yi-Ke Rubber Manufacturing
Corporation, Qingdao, China) were utilized for preparing the rubber samples. The measurements of
the studied cylinder-shaped samples were 29.0 mm in diameter and 12.5 mm in thickness, as shown in
Figure 2. The loading was applied along the axial direction of the sample. All the tests were performed
using a servo-hydraulic testing system (type: WDW-50) in which the load cells with ±1% accuracy and
the displacement sensor with ±0.01 mm accuracy were equipped. The frequency range of this machine
was 0–20 Hz. The rubber sample was constrained between two plates in the experimental system. The
experimental setup is shown in Figure 3.
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Figure 3. Experimental setup: (a) Quasi-static compression of rubber sample, (b) creep compression of
rubber sample, and (c) creep compression of rubber device.

In the load-deflection compression tests, the specimens were compressed at 25 mm/min according
to the standard test method [21]. The compression was applied without interruption up to 39% relative
deflection for axial compression. Four loading–unloading cycles were performed in tested specimens.
The temperatures for the two tests were maintained at 23 ± 1 ◦C and 55 ± 1 ◦C, respectively and dry air
with relative humidity was less than 30%. The load-deflection responses of the rubber samples in the
multiple loading and unloading cycles are shown in Figure 4.
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Figure 4 shows a representation of the Mullins effect [22], and a permanent set is presented upon
unloading which denotes viscoelastic effects such as hysteresis. Due to the Mullins effect, the “loading
softening” of rubber samples is clearly indicated, especially in the first and second loops, i.e., the
force value from the second loading is lower than that from the first loading at a given deformation,
approximately 16.7%. The stable force-deformation loop is presented in the third cycle. Hence, in
the following creep tests, before experimental data was recorded, several loading–unloading cycles
were conducted to diminish the Mullins effect. Additionally, compared with Figure 4a,b, with the
temperature increasing, the slope of the loading curve of the rubber sample reduces, which indicates
that the equivalent stiffness of rubber is weakened.



Polymers 2019, 11, 988 5 of 19

2.2. Creep Compression Tests

Creep tests of rubber materials under multiple levels of loading and temperature were conducted.
The sample had a diameter of 12.5 mm and a height of 29.0 mm and three levels of applied loading
(e.g., 1.5 kN, 2.0 kN, and 2.5 kN) and two levels of temperature (e.g., 23 ± 1 ◦C and 55 ± 1 ◦C) were
assumed along the vertical direction. All the creep tests lasted 48 h. The measurement of deformation
was performed using a non-contact laser extensor displacement sensor operated at the measurement
accuracy of 0.1%. The creep experimental setup is shown in Figure 3b.

The time-deformation curves of rubbers during the creep tests are shown in Figure 5.
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In Figure 5, it is shown that, in the initial creep stage, the deformation largely increases, which is
assumed to be accelerated creep. In the long-term creep stage, the deformation gently increases with
elapsed time, which is termed as stable creep. Compared with Figure 5a,b, the creep deformation
increases with the increase in temperature and at a fixed temperature, the slope in the long-term creep
stage approximately keeps a constant in different levels of applied loadings, which demonstrates that
the creep characterization is less sensitive to loading levels than temperature.

Additionally, creep tests of the rubber vibration system were conducted. At room temperature
(e.g., 23 ± 1 ◦C), 2.0 kN loading was applied along the normal direction for 48 h. The test setup was
shown in Figure 3c. The time-deformation curve in creep test at 23 ◦C is presented in Figure 6.
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3. Numerical Simulation

3.1. Constitutive Model

In the analysis of experimental data, the rubber materials in creep tests showed nonlinear elasticity
in the initial load/deflection characteristics and time-dependent creep behaviors in the long-term
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deformation. Accordingly, the material properties of the rubber showed hyper-elastic behavior for
capturing nonlinearity elasticity in the initial deflection range and a time-related damage function for
representing nonlinear displacement–time relationships in the long-term creep range. Therefore, the
constitutive equation of rubber materials is denoted as [17]

W = Whyper + Wcreep, (1)

where Whyper and Wcreep are the hyper-elastic model and the time-decay creep model, respectively.
In general form, Whyper is denoted by,

Whyper = W
(
I
)
+ W(J), (2)

where W(I) is the deviatoric part of the strain energy density of the primary material response and
W(J) is the volumetric part of the strain energy density. For isotropic rubber, W(I) depends on strain
invariants, I1, I2, and I3. Strain invariants can be expressed in terms of three principle stretch ratios, λ1,
λ2, and λ3, and it is noted that, for incompressible rubbers, λ3 is 1.

I1 = λ2
1 + λ2

2 + λ2
3 (3)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 (4)

I3 = λ2
1λ

2
2λ

2
3 (5)

In W(J), J is Jacobian of the deformation gradient and it is a measure of the volume change caused
by a deformation

J =
√

det(B) = det(F), (6)

where F is the deformation gradient tensor.

F =


1+ ∂u1

∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

1+ ∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

1 + ∂u3
∂x3

, (7)

where u1, u2, and u3 are three-dimensional deformation and x1, x2, and x3 are three-dimensional
coordinate axis. For stress calculation of hyper-elasticity, the strain energy potential in polynomial
series is expressed as

Whyper =
N∑

i+ j=1

Ci j
(
I1 − 3

)i(
I2 − 3

) j
+

N∑
i=1

1
Di j

(Jel − 1)2i, (8)

where Ci j and Di are temperature-dependent material parameters and Jel is elastic volume strain.
Using Equation (8), some typical hyper-elastic models are derived. For example, if N = 0, the

polynomial formulation represents the Neo–Hookean model, which is written as

Whyper−NH = C10
(
I1 − 3

)
. (9)

If N = 1, the Mooney–Rivlin hyper-elastic model is obtained as

Whyper−MN = C10
(
I1 − 3

)
+ C01

(
I2 − 3

)
+

1
D1

(Jel − 1)2. (10)
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Also, using the modified Equation (10), the Yeoh hyper-elastic model can be obtained:

Whyper−Yeoh = C10
(
I1 − 3

)
+ C20

(
I1 − 3

)2
+ C30

(
I2 − 3

)3
. (11)

The hyper-elastic constitutive equation of rubber can be also expressed in high-order polynomial
form. For easy implementation and reasonable accuracy, the strain energy potential in terms of
Mooney–Rivlin was adopted in the present work. Hyper-elastic material parameters (C01 and C10)
at different temperatures were evaluated by the quasi-static experimental results. The detailed
identification is: Using the experimental force-deformation curve as shown in Figure 4, nominal
strain (change in length per unit of original length) and nominal stress (force per unit of original
cross-sectional area) are derived. Given experimental nominal stress–strain results, the parameters
of the hyper-elastic model are determined by utilizing the least squares fitting algorithm [23]. The
identified objective is to minimize the relative error, Ee.

Ee =
n∑

i=1

1−
Tth

i

Ttest
i

2

, (12)

where Ttest
i is the stress from the test results and Tth

i is the nominal stress.
Hyper-elastic models as shown in Equation (2–11) are suitable to depict loading portion in a

mechanical process; however, the unloading process cannot be predicted. Using a rebound energy
approach [24], a modified hyper-elastic model for describing the complete loading–unloading process
is developed:

Whyper = [1− (1− θ0)β]W
(
I
)
+ W(J), (13)

where θ0 is rebound resilience parameter of rubbers and β is a state variable. In the loading process, β
is 0. In the unloading process, at the beginning of unloading, β is 0 and at the end of unloading, β is 1.
In the present work, θ0 is 0.55.

As shown in Equation (1), a time-decay function with a damage concept, Wcreep, is incorporated
into a constitutive equation of rubbers, which describes the nonlinear creep behaviors considering
material constitutive structure change and the elapsed time. The creep damage model should be
assumed as the creep effect from the deviatoric strain invariants during loading, I1 and I2, and also the
elapsed loading time, t. For characterizing nonlinear creep responses, a phenomenological mathematic
model of Wcreep is developed. In this work, three kinds of widely nonlinear decay functions are
utilized for developing creep damage constitutive models and compared in terms of accuracy, which is
in the form of power-law functions, logarithmic functions, and exponential functions. As shown in
experimental results, creep parameters should be varied with the temperature.

(1) Power-law creep constitutive model is expressed:

Wcreep = k1(T)tr1(T)(I1 + I2). (14)

(2) Logarithmic-based creep constitutive model is shown:

Wcreep =
[
k2(T) logr2(T) t

]
(I1 + I2). (15)

(3) Exponential-based creep constitutive model is expressed:

Wcreep = k3(T)er3(T)t(I1 + I2), (16)

where ki and ri (i = 1, 2, 3) are creep parameters. A trial and error procedure was arranged so that the
best adjustment of creep responses could be achieved between numerical and experimental results,
and hence creep parameters were identified.
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3.2. Implementation of Finite Element Method

The numerical analysis was conducted by the finite element method using Abaqus software. In
material libraries, only standard hyper-elastic models are available, such as Neo–Hooke, Mooney–Rivlin,
Ogden, Yeoh, polynomial-term, van der Waals, and Arruda–Boyce. In the present work, the proposed
model is not a standard model and hence needs to be incorporated via user subroutine. As the UHYPER
user subroutine defines the increments of hyper-elastic strain and time-dependent inelastic strain,
which is the function of the solution-dependent variables, e.g., deviatoric stress, loading, time-step
increment, and temperature [25]. Abaqus provides both explicit and implicit time integration of creep
and the choice of the time integration scheme depends on the procedure type, the procedure definition,
and a geometric non-linearity [1]. The flow chart of implementation of constitutive model by UHYPER
is illustrated in Figure 7.
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The finite element model of rubber with mesh and boundary conditions according to the
experimental arrangement was established. Due to the symmetry of the rubber sample’s geometry
and the loading condition, an axial symmetric model was established. CAX4HT, which is a 4-node
thermally-time coupled plan element with 3 degrees of freedom, was utilized to mesh the rubber
isolator. In the finite element model, the total number of nodes and elements were 1907 and 838,
respectively. For the rubber vibration system, its finite element model was developed by C3D8HT
element with the total number of nodes and element being 63949 and 24153. The symmetric boundary
condition was applied in the symmetric plan and the bottom of the rubber was constrained. The
loading force was applied on a rigid body along the vertical direction and the degrees of freedom of
the rigid body and the rubber system were coupled. The numerical models are shown in Figure 8. In
addition, the rigid body and rubber materials were applied using surface-to-surface contact conditions
to prevent interpenetration and the friction coefficient value was 0.2.
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4. Results and Discussions

4.1. Quasi-Static Analysis

Since the proposed constitutive model in this study is based on strain energy potential, the
validation of the hyper-elastic model is fundamental for creep analysis. Load-deflection histories of
the simulation and experiment resulting in quasi-static compression are compared in Figure 9.
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As shown in Figure 9, the curves of the numerical and the experimental results are
consistent, which implies the model could accurately predict the deformation process in the static
loading–unloading compression.

Figure 10 shows the stress profile of the rubber in the identical deformation (ε = 0.16) at
two temperatures.

In Figure 10, it is shown that the stress distribution presents symmetrically, which is due to the
loading and boundary conditions. In the loading process, as shown in Figure 10a,c, rubber showed
swelling in the radial boundary under compression and in the unloading process in Figure 10b,d, the
rubber was elongated under rebound deformation. The maximum Mises stress points at different
temperatures were mainly located on the contact edges. Such stress concentration was induced by
the non-flat surface of the rubber in the contact area, which was the result of uncontrolled slippage at
the rubber–rigid interface [18]. Additionally, at the strain of 16%, the maximum stress values in the
loading process are 1.44 MPa and 1.19 MPa at 23 ◦C and 55 ◦C, respectively, which can be explained by
the stiffness analysis as compared in Figure 4. Compared with Figure 10a,b at 23 ◦C under the same
strain, the maximum stress in loading (1.44 MPa) is larger than that (1.00 MPa) in unloading; similar
behaviors are also shown at 55 ◦C, hence the numerical model could evaluate the Mullins effect.
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Figure 10. Stress distribution profile at strain of 16%.

4.2. Creep Analysis

The creep numerical simulation was performed in accordance with the experimental test, in which
three levels of loading of 1.5 kN, 2.0 kN, and 2.5 kN at two temperatures (23 ◦C and 55 ◦C) were held
for 48 h, respectively.

To validate the reliability of the numerical simulation and compare the accuracy of the three creep
damage functions, the creep deformations obtained from the simulation are presented and compared
with experimental results in Figure 11.
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In Figure 11, it is seen that the proposed creep damage functions generally could predict
the time-dependent increasing deformation in creep tests under different levels of loadings and
temperatures. Compared with power-law and the logarithmic-based creep constitutive model, the
exponential-based creep constitutive model showed steep deformation in the initial creep deformation,
which indicates that this model is not suitable for predicting the primary creep stage. As for the
logarithmic-based model, the long-term behavior is reasonably evaluated but it shows a relatively
large error in the amplitude of initial creep deformation.

For clarification, the error analysis of these creep constitutive models is presented in Table 1.
Several error indexes are selected, such as the squared correlation coefficient (SCC), the mean absolute
percentage error (MAPE) and the mean square error (MSE). The expressions of error indexes are
provided in Table 2.

Table 1. Error analysis of different creep damage functions (T = 23 ◦C).

Creep Models Loading Error Indexes

SCC MAPE MSE

Power-low function
1.5 kN 0.9991 2.9821 0.0113

2.0 kN 0.9996 1.7582 0.0093

2.5 kN 0.9998 1.6917 0.0087

Logarithmic function
1.5 kN 0.9995 4.9595 0.0303

2.0 kN 0.9990 3.4315 0.0224

2.5 kN 0.9988 3.7001 0.0337

Exponential function
1.5 kN 0.9959 5.3389 0.0497

2.0 kN 0.9976 4.7459 0.0661

2.5 kN 0.9986 4.3447 0.0633

Table 2. Expression of error evaluation indexes.

Error Index Formula Analysis

SCC


n∑

i=1
[Fsim(i)·Fexp(i)]√

n∑
i=1

Fsim(i)
2
·

√
n∑

i=1
Fexp(i)

2


2

Larger is better

MAPE
(

100
n

)
·

n∑
i=1

∣∣∣∣ Fsim(i)−Fexp(i)
Fexp(i)

∣∣∣∣ Smaller is better

MSE 1
n ·

n∑
i=1

∣∣∣Fsim(i) − Fexp(i)
∣∣∣2 Smaller is better

As shown in Table 1, the SCC of these three models were all larger than 0.99, which verifies
the validation of these adopted time-dependent nonlinear creep models. For the other two indexes,
compared with logarithmic-based and exponential-based models, the average value of MAPE of the
power-law creep model decreased by 46.8% and 55.4%, respectively. In the case of 2.0 kN applied
loading, the MSE of the power-law creep model decreased by 58.5% and 85.9% respectively than that of
logarithmic-based and exponential-based models. Therefore, the power-law creep constitutive model
was chosen for the subsequent creep analysis because of the high accuracy.

To further study the effect of creep parameters on responses in the power-law creep model,
sensitivity analysis was conducted. The detailed process of parameter sensitivity analysis is as follows:
(1) A set of creep parameters as the reference values was selected. In the present work, the reference
parameters were adopted in testing conditions of 2.0 kN loading at 23 ◦C, denoted as k0 and r0. (2)
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One parameter’s value was varied and another was unchanged; the changed proportion range of each
parameter was approximately –20% to +20%. The effects of varying parameters are shown in Figure 12.
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As shown in Figure 12, when k was equal to 0.8 k0 and 1.2 k0, the maximum deformations in
creep were 0.93 δ0 and 1.07 δ0, respectively, in which δ0 was the maximum deformation of k0 and r0.
For varying r, the difference in maximum deformations was 0.96δ0 and 1.04δ0 for +20% r0 and −20%
r0, respectively. In the phenomenal aspect, k controlled the amplitude of creep deformation, which
describes the strength of the creep damage, and r determines the inclination degree of creep deformation.

Creep compliance, J(t), is a representative index for evaluating creep performances. Using the
power-law creep model, J(t) under different levels of loading and temperature is presented in Figure 13.Polymers 2018, 10, x FOR PEER REVIEW  13 of 20 
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As shown in Figure 13, it was concluded that when the loading levels increased, the creep
compliance reduced. This phenomenon is presented at different temperatures; additionally, at the
same loading level, the increment of temperature leads to the enhancement of creep compliance.

During creep, the stress distribution of rubber changes with time. However, these results cannot
be observed by experimental testing. In the present work, the maximum principle stress profiles of
rubbers are studied by finite element simulation, as shown in Figure 14.
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In Figure 14, it is shown that the tensile stress distributes around the free surfaces and the
maximum tensile principle stress is observed at the center of the free surface, while the maximum
compressive stress occurs at the contact edge. Compared with Figure 14a,b, the maximum tensile stress
was 0.99 MPa in the initial creep and 1.48 MPa in the final creep, which indicates that the maximum
principle stress was enhanced during creep process. For detailed comparison, the time-dependent
maximum principle stress of a reference point where the maximum tensile principle stress was located
is plotted in Figure 15.
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In Figure 15, it is clearly seen that, at a fixed loading level, the maximum principle stress of the
reference point increased over time. This phenomenon is called “stress hardening”, which can be
explained by the engineering principle, in that the extra geometric deformation during creep adds
to the mechanical deformation [17]. It is also shown that, with the increase in loading levels, the
maximum principle stress and its hardening degree (the slope of the time varied maximum principle
stress) increased.

To study the effect of temperature and loading levels on the stress hardening effect, the maximum
tensile principle stresses under different conditions are compared in Table 3. The hardening degree, λ,
is calculated as

λ(%) =

(
σmax− f − σmax−i

σmax−i

)
× 100%, (17)

where σmax− f and σmax−i are the maximum tensile principle stresses in the final and initial creep times,
respectively.

As shown in Table 3, at room and high temperatures, σmax−i and σmax− f increased with increasing
loading level. It was also seen that λ at room temperature was in the range of 40–50%, while at high
temperatures, λwas less than 10%. Hence, a slower development of maximum principle stress increase
occurs at high temperature.
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Table 3. Maximum tensile principle stress under different conditions.

Temperature Loading σmax−i (MPa) σmax−f (MPa) λ (%)

23 ◦C
1.5 kN 0.0413 0.0598 44.95%

2.0 kN 0.0669 1.0025 53.21%

2.5 kN 0.0997 1.0485 48.95%

55 ◦C
1.5 kN 0.0403 0.0439 8.93%

2.0 kN 0.0645 0.0691 7.13%

2.5 kN 0.0913 0.0923 1.10%

Additionally, the axial creep deformation profiles at different times are shown in Figure 16.
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As shown in Figure 16, the axial deformation profiles presented a layer phenomenon: At the
bottom, it was the minimum (approximately zero) due to the boundary condition, at the top, it
was the maximum because of the loading condition, and in other areas it gradually varied. This
layer characteristic stayed unchanged over different creep times. Additionally, the maximum creep
deformation increased over time and bulging of the free surfaces enhanced with increasing time.

To evaluate the creep degree, the creep deformation percentage, Creep (%), under different loading
levels and temperatures, is compared in Table 4.

Creep(%) =

(
Dt −D0

De −D0

)
× 100%, (18)

where Dt is the creep deformation after t, De is the final creep deformation, and D0 is the creep
deformation at the end of applied loading.

Table 4. Creep (%) of rubber materials during the creep test at different times.

Loading 1.5 kN 2.0 kN 2.5 kN

Temperature 23 ◦C 55 ◦C 23 ◦C 55 ◦C 23 ◦C 55 ◦C

Time

1 min 27.17% 26.78% 31.90% 29.50% 30.71% 25.81%

30 min 72.50% 58.88% 74.31% 60.50% 74.28% 57.00%

1 h 77.50% 66.70% 78.62% 68.14% 78.50% 61.55%

6 h 89.33% 83.27% 88.97% 80.65% 88.48% 81.86%

12 h 92.67% 89.07% 93.97% 89.23% 92.32% 85.94%

24 h 96.00% 95.42% 97.24% 94.69% 96.16% 91.37%

48 h 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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As shown in Table 4, at a fixed loading level, the creep deformation percentage in room temperature
was higher than that in high temperature; this temperature-related phenomenon is increasingly obvious
with increasing loading. For example, at the time interval of 1 min, the difference in creep deformation
percentage between 23 ◦C and 55 ◦C, δ, is 0.39% at a loading of 1.5 kN and 4.9 % at a loading of 2.5 kN,
a 12.6 times increase. In addition, δ changes in different creep stages. For instance, when the applied
loading was 2.5 kN, δ was 17.28% at 30 min and 4.79% at 24 h. Hence, at a fixed applied loading, δ in
initial creep was greater than that in stable creep, which indicates that high temperature leads to a
faster development of creep deformation in stable creep.

Relative creep rate (RC) is another significant index for depicting creep behaviors, which is defined
as [16]

RC =
(Dt −D0

H

)
, (19)

where Dt is the creep deformation after t and H is the original thickness.
Figure 17 shows the relative creep rate versus time plot.
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As shown in Figure 17, under different loading levels and temperatures the relative creep rate is
approximately proportional to the logarithm of time in the stable creep stage, which characteristic of
physical creep [26]. Physical creep is due to the viscoelasticity of rubber materials and the slippages in
cross links of rubbers molecules under loading. In general, physical creep is primarily dominated in
short-time creep tests (less than 103 min). It was also seen that, at room temperature, RC at loading levels
of 1.5 kN, 2.0 kN, and 2.5 kN were 4.37%, 3.95%, and 3.61%, respectively, while in high temperatures,
RC at the final creep time at loading levels of 1.5 kN, 2.0 kN, and 2.5 kN were 2.90%, 2.71%, and 2.69%,
respectively. These results demonstrate that the high temperature mode shows more creep resistance
than room temperature at a fixed loading. This can be explained by a slower increase of maximum
principle stress due to “stress hardening” and a more uniform stress distribution in the case of high
temperature, as shown in Table 3.

To further evaluate the engineering potential of the proposed constitutive model, the creep
behavior of the rubber vibration system was predicted and compared with experimental results,
as shown in Figure 18. It is seen that the proposed model in which the materials’ parameters are
identified by rubber-material testing could depict the different creep stages of the rubber system and
the numerical solutions match the experimental results.
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The axial creep deformation profiles at different times are shown in Figure 19.
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Figure 19. Creep profiles of the rubber system at different times (T = 23 ◦C; F = 2.0 kN).

In Figure 19, it is seen that the deformation distribution at different creep times was similar;
however, the maximum creep deformation increased with time elapsing. It is noticed that at the initial
creep time (20 s), self-contact had occurred inside the top of the rubber system, which lasted during the
creep deformation. Different from rubber materials, the axial creep deformation presented an irregular
layer phenomenon due to the structural geometry effect.

During creep, the Mises stress distribution of the rubber system at different creep times is shown
in Figure 20.Polymers 2018, 10, x FOR PEER REVIEW  17 of 20 

 

  
(a) Time = 20 s (b) Time = 48 h 

Figure 20. Mises stress distribution of the rubber system at different creep times (T = 23 °C; F = 2.0 

kN). 

As seen in Figure 20, the patterns of the two stress profiles look similar; the maximum Mises 

stress was located in the region where the stiffness is weakest (e.g., the central region). Using the 

analysis of the rubber system mentioned above, the proposed model and its numerical approach 

could provide a good prediction for creep evaluation of rubber-based engineering cases. 

5. Time–Temperature Equivalent Analysis 

It is evident that creep responses measured by long-term loading creep tests are expensive and 

time-consuming. To reduce the experimental cost, time–temperature equivalent analysis should be 

conducted. Some accelerated methods have been developed to predict long-term creep performances 

of rubber materials based on short-time experiments [27,28]. The principle of these accelerated 

methods lies in the fact that, in the creep test, the effect of longer time is similar to the effect of higher 

temperature [29]. Among them, the well-known equation for describing the temperature–time 

equivalent principle is Williams–Landel–Ferry (WLF) equation [30]; its time-dependent shift factor, 

T , is expressed as 

 1

2

( )
( )

r

T

r

C T T
Log

C T T


 


 
, (20) 

where C1 and C2 are two constants which are related to the reference temperature Tr and the type of 

rubber materials. According to ISO4664-1, when the glass transition temperature (Tg) is regarded as 

the reference temperature (Tr), then C1 and C2 are 17.44 K and 51.6 K, respectively [31]. Then, the time–

temperature equivalent shift factor calculated in the term of glass transformation temperature is 

 g17.44
( )

51.6 ( )
T

g

T T
Log

T T


 


 
. (21) 

One of the key issues of applying the WLF equation is the determination of the glass transition 

temperature of rubber materials. In the present work, the glass transformation temperature was 

tested utilizing the dynamic differential scanning calorimetry (DSC) method [31]. Measurements 

were conducted on a Mettler–Toledo DSC instrument (Type: QJ-X03) in a fluid nitrogen atmosphere. 

Rubber samples were prepared weighing 5.80 mg of the compound in aluminum crucibles. The 

weight was measured by the Mettler–Toledo scale (type: XP105) with a resolution of 0.01mg. Before 

testing, the rubbers were heated from −100 °C to 100 °C for erasing in-balance thermal effects, then 

this was repeated using constant heating and cooling rates of 10 °C/min. During DSC measurement, 

liquid nitrogen was released at 10 mL/min. 

The thermal flow curve of rubber samples is shown in Figure 21. The inflection point of this 

figure represents the glass transition temperature of rubber samples, hence the glass transition 

temperature was –25.70 °C as shown by data processing. Additionally, according to GB/T 29611-2013, 

titled as “Determination of the rubber’s glass transition temperature by differential scanning 

calorimetry (DSC) method”, the labels of exo and endo are added in Figure 21. 

Figure 20. Mises stress distribution of the rubber system at different creep times (T = 23 ◦C; F = 2.0 kN).

As seen in Figure 20, the patterns of the two stress profiles look similar; the maximum Mises stress
was located in the region where the stiffness is weakest (e.g., the central region). Using the analysis of
the rubber system mentioned above, the proposed model and its numerical approach could provide a
good prediction for creep evaluation of rubber-based engineering cases.
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5. Time–Temperature Equivalent Analysis

It is evident that creep responses measured by long-term loading creep tests are expensive and
time-consuming. To reduce the experimental cost, time–temperature equivalent analysis should be
conducted. Some accelerated methods have been developed to predict long-term creep performances
of rubber materials based on short-time experiments [27,28]. The principle of these accelerated
methods lies in the fact that, in the creep test, the effect of longer time is similar to the effect of
higher temperature [29]. Among them, the well-known equation for describing the temperature–time
equivalent principle is Williams–Landel–Ferry (WLF) equation [30]; its time-dependent shift factor, αT,
is expressed as

Log(αT) =
−C1(T − Tr)

C2 + (T − Tr)
, (20)

where C1 and C2 are two constants which are related to the reference temperature Tr and the type of
rubber materials. According to ISO4664-1, when the glass transition temperature (Tg) is regarded as
the reference temperature (Tr), then C1 and C2 are 17.44 K and 51.6 K, respectively [31]. Then, the
time–temperature equivalent shift factor calculated in the term of glass transformation temperature is

Log(αT) =
−17.44

(
T − Tg

)
51.6 + (T − Tg)

. (21)

One of the key issues of applying the WLF equation is the determination of the glass transition
temperature of rubber materials. In the present work, the glass transformation temperature was
tested utilizing the dynamic differential scanning calorimetry (DSC) method [31]. Measurements were
conducted on a Mettler–Toledo DSC instrument (Type: QJ-X03) in a fluid nitrogen atmosphere. Rubber
samples were prepared weighing 5.80 mg of the compound in aluminum crucibles. The weight was
measured by the Mettler–Toledo scale (type: XP105) with a resolution of 0.01 mg. Before testing,
the rubbers were heated from −100 ◦C to 100 ◦C for erasing in-balance thermal effects, then this was
repeated using constant heating and cooling rates of 10 ◦C/min. During DSC measurement, liquid
nitrogen was released at 10 mL/min.

The thermal flow curve of rubber samples is shown in Figure 21. The inflection point of this figure
represents the glass transition temperature of rubber samples, hence the glass transition temperature
was –25.70 ◦C as shown by data processing. Additionally, according to GB/T 29611-2013, titled as
“Determination of the rubber’s glass transition temperature by differential scanning calorimetry (DSC)
method”, the labels of exo and endo are added in Figure 21.Polymers 2018, 10, x FOR PEER REVIEW  18 of 20 

 

E
xo

E
n

d
o

Tg

 

Figure 21. Determination of Tg by differential scanning calorimetry (DCS) method. 

By integrating glass transition temperature into Equation (21), the master curve of the equivalent 

shift factor, 
T , is illustrated in Figure 22. 

 

Figure 22. Temperature dependence of instantaneous modulus of rubber materials. 

Based on the equivalent shift factor master curve, the creep compliance, J(T1) at temperature T1, 

can be converted to the creep compliance, J(T2) at temperature T2 [31], which is expressed as 

  1

2

1 2log
T

T

J T J T




  
   

    

. (22) 

6. Conclusions 

This paper provides a hyper-elastic creep constitutive model to evaluate creep characteristics of 

rubber materials under different conditions. The numerical implementation of the proposed 

phenomenological model is presented and validated. The time-dependent, loading-related, and 

temperature-induced creep behaviors of rubber materials are studied. The proposed method is 

further utilized to predict creep performances of a rubber vibration system for validating its 

engineering potential. A time-temperature equivalent analysis by WLF equation in glass transition 

temperature is also introduced. By comparing numerical and experimental results, the proposed 

creep models could depict nonlinear creep behaviors of rubber materials and rubber vibration 

systems, which provides an option for rubber system design and its creep prediction. 

Author Contributions: conceptualization, D. L. and G.L.; methodology, D.L. and K.X.; software, K.X.; validation, 

Y.M. and L.Q.; formal analysis, Y.M.; investigation, G.L.; resources, L.Q.; data curation, L.Q.; writing—original 

draft preparation, D.L.; writing—review and editing, G.L.; visualization, L.Q.; supervision, G.L.; project 

administration, D.L.; funding acquisition, D. L. and Y.M. 

Figure 21. Determination of Tg by differential scanning calorimetry (DCS) method.

By integrating glass transition temperature into Equation (21), the master curve of the equivalent
shift factor, αT, is illustrated in Figure 22.
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Based on the equivalent shift factor master curve, the creep compliance, J(T1) at temperature T1,
can be converted to the creep compliance, J(T2) at temperature T2 [31], which is expressed as
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6. Conclusions

This paper provides a hyper-elastic creep constitutive model to evaluate creep characteristics
of rubber materials under different conditions. The numerical implementation of the proposed
phenomenological model is presented and validated. The time-dependent, loading-related, and
temperature-induced creep behaviors of rubber materials are studied. The proposed method is further
utilized to predict creep performances of a rubber vibration system for validating its engineering
potential. A time-temperature equivalent analysis by WLF equation in glass transition temperature is
also introduced. By comparing numerical and experimental results, the proposed creep models could
depict nonlinear creep behaviors of rubber materials and rubber vibration systems, which provides an
option for rubber system design and its creep prediction.
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