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Abstract: Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the
fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2O3 nanoparticles and nanographene
oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3O4 and characterized
by XRD measurements, was combined with NGO sheets prepared via a modified Hummer’s
method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2O3

nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at
room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g
and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high
affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible
toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity
upon loading into the carrier was observed, together with the possibility to spatially control the drug
delivery at a target site.

Keywords: magnetic targeting; graphene oxide; maghemite; glioblastoma; cisplatin

1. Introduction

Malignant glioma is one of the most aggressive brain tumors, and the major cause of death from
central nervous system cancers (median survival times less than 15 months from diagnosis) [1–5]. Glioma
treatment is still one of the most difficult challenges for oncologists [6], and current therapies involve
surgical intervention to achieve tumor debulking followed by adjuvant radio- and chemo-therapy [7].
Chemotherapy approaches are of paramount importance in the case of the most devastating and lethal
grade IV glioma (Glioblastoma Multiforme, GBM), because the extensive tumor infiltration into the
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surrounding brain parenchyma makes surgery un-effective [8]. However, the therapeutic efficiency
of chemotherapy is remains unsatisfactory for two main reasons: (i) the rare brain penetration of the
anticancer agents systemically administered through the blood brain barrier (BBB) [9], and (ii) the poor
glioma targeting of employed chemotherapeutics [10]. The latter issue is the main obstacle in the clinical
treatment of Glioma with cis-diamminedichloroplatinum(II) (CisPt) [11], one of the most effective
anticancer agents. CisPt suffers from a nonselective distribution between normal and tumor tissues,
with the insurgence of severe adverse side effects, including acute nephrotoxicity, myelosuppression,
and chronic neurotoxicity in adults [12–14], and lifelong health issues when the therapy was given in
children [15,16]. Therefore, it is patently clear that, for an effective Glioma treatment, there is an urgent
need for powerful and targeted CisPt delivery systems in order to promote preferential accumulation
in cancer cells and thereby reduce the side effects [17]. Taking advantage of the peculiar features of
tumor tissues such as the leaky neovasculature and the lack of functional lymphatic drainage, a wide
range of nanoparticle drug carriers have been explored for this purpose [18].

Among others, graphene nanomaterials, mainly in the form of nanographene oxide (NGO),
possess superior physicochemical, thermal, optical, mechanical, and biological properties [19–21].
NGO is widely explored for drug delivery applications by virtue of the large surface area (four times
higher than that of any other nanomaterials) and the high stability of its water dispersion due to the
richness of oxygen containing functional groups (e.g., carboxyl, epoxide, and hydroxyl groups) [22–24].
The suitability of NGO for the preparation of CisPt delivery vehicles with high loading efficiency is
related to the presence of either the sp2-aromatic structure or the abundant oxidized sp3-portion on the
edge, top, and bottom surfaces of each sheet [25–27], allowing the drug interaction through diverse
mechanisms, including π-π stacking and hydrogen bonding [28–35].

More interestingly, functionalized NGO was found to highly accumulate in U87 human
glioblastoma subcutaneous tumor xenografts [36,37], confirming that such nanocarriers can be
considered a valuable tool for delivering CisPt to brain cancers. The efficiency of NGO delivery
vehicles can be maximized by the incorporation of magnetic materials allowing the nanocarrier to be
selectively driven into tumor tissues by the application of an external magnetic field [38]. In particular,
magnetic nanoparticles based on iron oxide (maghemite γ-Fe2O3 or magnetite Fe3O4) were widely
used for this purpose due to their biocompatibility and superparamagnetic properties [39,40]. The
resulting NGO hybrid nanodevices were proposed as effective tools for glioblastoma treatment using
Doxorubicin [41] and Irinotecan [42] as cytotoxic agents. Although possessing favorable properties for
magnetic drug vectorization, the different chemical stabilities of Fe3O4 and γ-Fe2O3 may affect the
toxicity of the delivery vehicle [43]. The lower chemical stability of Fe3O4 resulted in the release of Fe2+

ions from the nanoparticle cores, which can catalyze the formation of reactive oxygen species (ROS)
damaging cell membrane and organelles, with the insurgence of adverse long-term side effects [44].
On the other hand, γ-Fe2O3 was found to be a better material owing to either the magnetic features or
the high chemical stability [45].

In the present study we explored the possibility to employ NGO–Iron oxide nanohybrids
(γ-Fe2O3@NGO) as a CisPt carrier for glioblastoma treatment by intercalating γ-Fe2O3 nanoparticles
into NGO sheets. After characterizing the physical, chemical, and morphological properties, CisPt
was loaded onto the nanocarrier for several drug-to-carrier ratios and their cytotoxicity was tested on
human U87 cell lines.

2. Results and Discussion

2.1. Properties of γ-Fe2O3@NGO Nanohybrid

As previously reported, the size of NGO is a parameter that strongly affects the drug delivery
effectiveness of NGO-based systems in vitro and in vivo [46,47]. Specifically, low-sized NGOs (lateral
dimension ≈100 nm) have been reported to have the best performance [46].
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The average size of our graphite oxide (GO) particles, as assessed by scanning electron microscopy
(SEM), revealed an average size (lateral width) of 350–400 nm. These particles were therefore
subsequently sonicated until NGO with lateral width of 80–100 nm and a thickness of 6.3 nm was
attained (10 NGO sheets, assuming an interlayer distance of 0.7 nm) [48] (Figure 1a–c).
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Figure 1. SEM images of (a) GO; and (b) NGO showing an average lateral width of 350–400 and
80–100 nm, respectively. (c) AFM image of NGO. TEM images of (d) γ-Fe2O3; and (e) γ-Fe2O3@NGO
nanoparticles. (f) Size distribution of γ-Fe2O3 nanoparticles (approximately 10 nm).

The obtained NGO 100 nm were employed for the preparation of the magnetic hybrid device
(γ-Fe2O3@NGO) as sketched in Figure 2.
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Figure 2. Schematic representation of the preparation of γ-Fe2O3@NGO.

Maghemite (γ-Fe2O3) nanoparticles were chosen to provide magnetic properties to the nanohybrids
because of their high chemical stability, biocompatibility, and large magnetic moment at room
temperature in its bulk form [40]. Superparamagnetism is crucial for application in biomedicine,
because, despite the strong response to an external magnetic field, the absence of residual magnetic
properties upon removal of the external field prevents nanoparticles from aggregation in biological
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environment [49–52]. γ-Fe2O3 nanoparticles (average size of 10 nm, see Figure 1d,f) were synthesized
by annealing of magnetite Fe3O4 prepared by a chemical co-precipitation technique of FeCl3 and
FeCl2 solutions [53,54], and then coated with oleic acid/sodium oleate to enhance their dispersion in
water media and thus the biocompatibility features [55]. Since previously reported data proved the
presence of transport systems importing fatty acids into the brain with high affinity and efficiency, it is
reasonable to hypothesize that this coating strategy could be appropriate for targeting the blood brain
barrier [56].

Despite the evidence of Fe3O4 to γ-Fe2O3 oxidation from the change of color of the sample (from
black to reddish-brown color, see Figure 3), we investigated this phase change by XRD measurements.
Figure 3 showed the XRD patterns of both compounds, and the d-spacing values emulated well the
data deduced from the Joint Committee on Powder Diffraction Standards (JCPDS) cards 19-629 (Fe3O4)
and 39-1346 (γ-Fe2O3).
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Figure 3. XRD patterns for Fe3O4 and γ-Fe2O3.

The result indicated no major differences between the two patterns, in each set of XRD patterns,
the crystalline structure of magnetite and/or maghemite with indexes (hkl) ascribed to (220), (311),
(400), (422), (511), and (440) were observable at the diffraction angels 2θ = 35.1◦, 41.4.6◦, 50.4◦, 63.1◦,
67.4◦ and 74.3◦ crystal planes, respectively. This result indicated that the thermal treatment of as
prepared Fe3O4 produced γ-Fe2O3 (maghemite) crystal form [57].

The magnetization vs. field M(H) curves for the annealed γ-Fe2O3 nanoparticles showed nearly
closed hysteresis loops, with zero coercivity (Figure 4).



Pharmaceuticals 2019, 12, 76 5 of 15Pharmaceuticals 2019, 12, x FOR PEER REVIEW 5 of 15 

 

 

Figure 4. Hysteresis loops M(H) for Fe3O4 (black) and γ-Fe2O3 (red) and γ-Fe2O3@NGO (blue) 
nanoparticles. The insets show the Zero-field cooled (black) and field-cooled (orange) magnetization 
curves for Fe3O4, γ-Fe2O3, and γ-Fe2O3@NGO, taken with HFC = 100 Oe. 

The magnetization did not fully saturate within our experimentally available fields (H = 70 
kOe), attaining a value of MS = 59.36 emu/g and MS = 49.25 emu/g at H = 70 kOe for Fe3O4 and 
γ-Fe2O3, respectively. After assembling γ -Fe2O3 into NGO the Ms value was 15.02 emu/g, consistent 
with a ≈30.5% wt. of magnetic material into NGO matrix, confirming the dispersion on magnetic 
nanoparticle into the hybrid platform. The coercivity values at room temperature were HC ≈ 0 for all 
samples. The zero field cooling (ZFC) and field cooling (FC) curves at HFC = 100 Oe of Fe3O4, γ-Fe2O3 
and γ-Fe2O3@NGO samples reflected similar features, i.e., a broad maximum in the ZFC curves 
originated from the distribution of blocking temperatures due to the distribution of particle sizes 
(see inset of Figure 4). The maxima were centered around T ≈ 194, 245, and 242 for Fe3O4, γ-Fe2O3, 
and γ-Fe2O3@NGO, respectively. These broad maxima are consistent with the blocking of the 
smallest nanoparticles at these temperatures, while the presence of irreversible behavior up to the 
highest temperature (400 K) suggests that a fraction of the largest particles are still blocked above 
room temperature.  

The thermogravimetric analysis (TGA) curves of NGO and γ-Fe2O3@NGO were depicted in 
Figure 5. 

 

(a) 

 

(b) 
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Figure 4. Hysteresis loops M(H) for Fe3O4 (black) and γ-Fe2O3 (red) and γ-Fe2O3@NGO (blue)
nanoparticles. The insets show the Zero-field cooled (black) and field-cooled (orange) magnetization
curves for Fe3O4, γ-Fe2O3, and γ-Fe2O3@NGO, taken with HFC = 100 Oe.

The magnetization did not fully saturate within our experimentally available fields (H = 70 kOe),
attaining a value of MS = 59.36 emu/g and MS = 49.25 emu/g at H = 70 kOe for Fe3O4 and γ-Fe2O3,
respectively. After assembling γ -Fe2O3 into NGO the Ms value was 15.02 emu/g, consistent with a
≈30.5% wt. of magnetic material into NGO matrix, confirming the dispersion on magnetic nanoparticle
into the hybrid platform. The coercivity values at room temperature were HC ≈ 0 for all samples.
The zero field cooling (ZFC) and field cooling (FC) curves at HFC = 100 Oe of Fe3O4, γ-Fe2O3

and γ-Fe2O3@NGO samples reflected similar features, i.e., a broad maximum in the ZFC curves
originated from the distribution of blocking temperatures due to the distribution of particle sizes
(see inset of Figure 4). The maxima were centered around T ≈ 194, 245, and 242 for Fe3O4, γ-Fe2O3,
and γ-Fe2O3@NGO, respectively. These broad maxima are consistent with the blocking of the
smallest nanoparticles at these temperatures, while the presence of irreversible behavior up to the
highest temperature (400 K) suggests that a fraction of the largest particles are still blocked above
room temperature.

The thermogravimetric analysis (TGA) curves of NGO and γ-Fe2O3@NGO were depicted in
Figure 5.
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For the NGO sample (Figure 5a), the mass loss in the range 150–250 ◦C with the maximum in
the derivative %M/◦C graph at 215 ◦C (arrow (1)) was ascribed to the decomposition of decorated
oxygen functionalities on the basal graphene structure, while between 400 and 525 ◦C (maximum
at 490, see arrow (2)), a high weight loss occurs due to the discard of more thermally stable oxygen
groups. On the other hand, for γ-Fe2O3@NGO (Figure 5b), these mass losses were found to shift to
lower temperatures (maximum in the derivative %M/◦C graph at 170 ◦C and 305 ◦C, respectively) as a
consequence of the effective binding of γ-Fe2O3 nanoparticles onto NGO layers.

2.2. Evaluation of Carrier Performances

Before testing the efficiency of γ-Fe2O3@NGO nanohybrid as CisPt carrier, we evaluated the
toxicity of the empty nanoparticles (γ-Fe2O3, NGO, and γ-Fe2O3@NGO) on human glioblastoma U87
cell lines at a concentration range of 0–25 µg mL−1. This range of concentration was selected because
of the absence of any sign of aggregation as per Dynamic light-scattering (DLS) measurements. The
viability values (>96% for all samples and concentrations, see Figure 6) proved the high biocompatibility
of all nanoparticle systems, confirming their suitability as drug carrier [58].

The ultimate aim of the study is to check the suitability of γ-Fe2O3@NGO to selectively vectorize
the cytotoxic drug to the tumor site under magnetic actuation. Indeed a key requirement for this
nanocarrier is the ability to retain the drug until it reaches the target site. γ-Fe2O3@NGO was found to
possess high affinity for CisPt (Drug Loading Efficiency of 0.37 mg mg−1) and the release profiles were
recorded after loading the drug by a soaking procedure (drug to carrier ratio of 10% by weight).
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(black).

The cumulative amount of drug released (Mt/M0) was compared with those recorded when
uncombined γ-Fe2O3 or NGO were employed as carrier (Figure 7).
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For a more exhaustive analysis of the CisPt release profiles, a mathematical model considering the
partition between the carrier and the surrounding environments and the underlying mechanism of
the drug release was applied according to the literature [59]. In this model, a key parameter (α) was
adopted to describe the physicochemical affinity of the drug between the carrier and solvent phases
according to Equation (1):

α =
Fmax

1− Fmax
(1)

where Fmax represents the maximum value of relative release (Mt/M0).
The overall drug release can be modeled according to reversible first- or second-order kinetics of

Equations (2) and (3).
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with kR being the release rate constant.
The time required for reaching 50% of Fmax (t1/2) can be obtained by applying the following

Equations (4) and (5), respectively:
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Fmax

kR
ln2 (4)

t2
1/2 =

α
2kR

ln(3− 2Fmax) (5)

Both models are suitable for describing the CisPt release (see R2 in Table 1), with the presence of
NGO making the release better described by reversible second-order kinetics. In the absence of NGO, a
fast CisPt release was recorded (Mt/M0 of 0.90 after 20 h), with high α value indicating a low affinity of
the drug towards the carrier phase (γ-Fe2O3). On other hand, the strong interaction between CisPt and
NGO [60–62] resulted in a more extended release over time (Fmax < 0.8 even after 250 h), with the same
affinity (3.54) recorded for either NGO or γ-Fe2O3@NGO. The presence of γ-Fe2O3 in γ-Fe2O3@NGO
was found to slow the release, with reduced kinetic constant (kR) and t1/2 values moving from 19.01
(NGO) to 29.38 (γ-Fe2O3@NGO) h. This could be ascribed to the hindrance to the drug diffusion from
the NGO to the solvent phase by the oleate coating of γ-Fe2O3 nanoparticles [55].
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Table 1. R2 values and kinetic parameters for CisPt release according to the applied mathematical model.

Mathematical Model Parameter γ-Fe2O3 NGO γ-Fe2O3@NGO

Mt
M0

= Fmax
(
1− e−(kR/Mmax)t

) R2 0.9818 0.9822 0.9909
Fmax 0.98 0.76 0.74
α 49 3.17 2.85
kR (10−2) 12.71 2.76 1.85
t1
1/2 (h) 5.35 18.81 27.00

Mt
M0

=
Fmax

(
e2(

kR
α )t
−1
)

1 − 2Fmax+ e2(
kR
α )t

R2 0.9340 0.9908 0.9960
Fmax 0.97 0.78 0.78
α 32.33 3.54 3.54
kR (10−2) 18.28 3.42 2.25
t2
1/2 (h) 5.15 19.01 29.38

CisPt loaded γ-Fe2O3@NGO were employed in different drug-to-carrier ratios (concentration
ranges of 0–25 µg mL−1 and 0–10 µM for carrier and drug, respectively, see Figure 8). From the data in
Figure 8, it is clear that the lowest toxic concentrations of CisPt (10 µM) is unchanged after loading on
the different carriers, with γ-Fe2O3@NGO being the most effective vehicle for killing cells.

To investigate the possibility of obtaining a selective vectorization of the drug, a proof of concept
experiment was designed by incubating U87 cells with 10 µM CisPt loaded γ-Fe2O3@NGO for 24 h
kept under the effect of a magnetic field generated by a permanent Nd-Fe-B magnet. As a result of the
magnetic carrier driven spatial concentrations of the drug, a selective cell death at the region close to
the magnet was reached, even at low drug concentration (10 µM), with no relevant toxicity detected on
the region where the magnetic forces were negligible (Figure 9).
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Figure 8. U87 viability after 72 h incubation with CisPt concentrations 2.5 (blue); 5.0 (orange); and 10.0
(green) µM in the free form and after loading on γ-Fe2O3; NGO; γ-Fe2O3@NGO. Carrier concentrations
were 2.0; 5.0; 10.0; and 25.0 µg mL−1. An overall p-value less than 0.05 was accepted as significant. For
individual comparisons ofγ-Fe2O3@NGO (10µM CisPt) vs. γ-Fe2O3 or NGO at the same concentrations,
adjusted p-values are indicate as * p < 0.05 vs. NGO; *** p < 0.001 vs. NGO; ◦◦◦ p < 0.001 vs. γ-Fe2O3;
◦◦◦◦ p < 0.0001 vs. γ-Fe2O3. Error bars represent standard error of the mean (n = 3 independent
experiments).

Overall, the obtained results are of great interest for application in cancer therapy for two main
outcomes: (i) an effective magnetic vectorization of CisPt to cancer cells can be reached, since a very
low amount of CisPt was released in the first 20 h (Mt/M0 < 0.30) and thus negligible side toxicity can
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be hypothesized, and (ii) the CisPt loaded into γ-Fe2O3@NGO is biologically active in reducing the
viability of cancerous with an efficiency comparable with that of the free drug.

Future experiments will be performed for evaluating the therapeutic performance of the designed
magnetic nanohybrid, by determining the pharmacokinetics profiles with or without a magnetic
field, the anticancer activity in appropriate in vivo models, and the possibility to use the system for
theranostics applications.
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3. Materials and Methods

3.1. Synthesis of Graphite Oxide

Graphite oxide particles were prepared from graphite powder (natural, -200 mesh, 99.9995%
purity, Alfa Aesar) by using a modified Hummers method [63]. Graphite powder (1.0 g) was sonicated
in water for 5 min, filtrated, washed with water and dried in an oven at 40 ◦C for 12 h. The dried
graphite was transferred to a beaker and mixed with concentrated H2SO4 (98%, 23 mL). The mixture
was left overnight under stirring at room temperature. Thereafter, 3.0 g KMnO4, as an oxidizing agent,
was added gradually while keeping the reaction mixture below 10 ◦C, in order to decorate the surfaces
of graphite by various oxygen groups (hydroxy, epoxy, carboxylic, etc.). After complete addition of
KMnO4, the reaction mixture was stirred for 30 min at 35 ◦C and 45 min at 50 ◦C for enhancing the
degree of oxidation. 46.0 mL of distilled water was added while maintaining the temperature between
98–105 ◦C for 30 min 10 mL of 30% H2O2 was added in order to terminate the reaction. The mixture
of GO was washed several times with 5% HCl and water during the suction filtration. The filtrated
graphite oxide was dried in an oven at 40 ◦C for 5 h.

3.2. Synthesis of Nanographene Oxide

NGO particles were prepared as reported previously [46]. The resultant material of graphite oxide
was cracked in distilled water with different power percent and sonication time using a horn-tipped
ultrasonic probe. The material was separated to different sizes by repeated centrifuge and filtration.
SEM images were obtained using a FEI, NOVA NanoSEM200 (FEI, Hillsboro, OR, USA) with an
acceleration voltage of 15 kV. AFM images of well-defined NGO sizes were acquired using Digital
Instruments Veeco, NanoScope IIIa, operating in the tapping mode. The images were analyzed using
WSxM software designed by Nanotech Electronica (Madrid, Spain). The distribution used during this
study was approximately 100 nm in lateral size and 6 nm in thickness.
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3.3. Synthesis of Maghemite Nanoparticles

Maghemite γ-Fe2O3 nanoparticles were synthesized in a three-step procedure as follows: first,
the magnetite Fe3O4 nanoparticles were prepared by co-precipitation method in basic medium [53].
The synthesis of Fe3O4 nanoparticles is shown in Equation (6):

2FeCl3 + FeCl2 + 8NaOH→ Fe3O4 (s) + 4H2O + 8NaCl (6)

Briefly, 2.25 g of FeCl3·6H2O and 0.825 g of FeCl2·4H2O were mixed in an alkaline solution (NaOH,
1.7 g). The mixture stirred at 65–80 ◦C for 12 h. The resultant material was filtrated and washed many
times by distilled water and ethanol.

Subsequently, magnetite Fe3O4 nanoparticles were employed as starting material for the synthesis
of maghemite γ-Fe2O3. An initial amount of 1.0 g of Fe3O4 was placed in furnace and heated up to 450
◦C in the presence of Argon and H2(g) for 12 h [54,57]. Thereafter, the reaction was quenched down to
room temperature. The resulting material was collected, washed several times in deionized water and
ethanol, dried in an oven at 65 ◦C for 3 h. A second annealing was applied at the same conditions in
order to identify the structure of Fe2O3 whether it was maghemite or hematite form.

In the final step, 0.5 g of γ-Fe2O3 were heated to 60 ◦C for 15 min separately. Consequently,
an excess of sodium oleate (20% wt/vol) was added under vigorous stirring for 15 min. Oleate
functionalized nanoparticles were collected by magnetic decantation to remove the non-magnetic
materials. The product was washed with water and acetone several times, filtrated and dried in an
oven at 40 ◦C for 2 h.

The relevant X-ray diffraction patterns were performed by using Pert Pro MPD PW3040/60 X-ray
diffractometer with Co Kα radiation (λ = 0.179278 nm) at ambient temperature.

3.4. Synthesis of γ-Fe2O3@NGO Nanohybrid

An amount of 0.5 g of NGO -100 nm particles was sonicated for 15 min in order to homogenize it
in distilled water. The solution was heated up to 60 ◦C for 15 min directly; an excess of γ-Fe2O3 system
was added and stirred for 15 min. The final material was separated by magnetic decantation, washed
with water and acetone, filtrated and dried in an oven at 40 ◦C for 2 h. TEM images were recorded on
HRTEM/Tecnai F30 [300 kV] (FEI, Hillsboro, OR, USA). TGA was performed on a STA 409 PC/PG-Luxx
analyzer (Netzsch, Selb, Germany). Measurements were conducted in a nitrogen atmosphere (flow of
10 mL min−1), with an initial sample weight of ∼10 mg in the temperature range 50–900 ◦C at a heating
rate of 10 ◦C min−1.

Drug loading efficiency (DLE) of γ-Fe2O3@NGO for CisPt was estimated by mixing drug and
carrier in a 1:1 ratio (by weight) and determining the amount of unloaded CisPt by UV-Vis on a
Jasco V-530 UV/Vis spectrometer (Jasco Europe s.r.l., Milan, Italy) at 301 nm [64]. DLE was calculated
according to the following Equation (7):

DLE
(
mg mg−1

)
=

WD

WC
(7)

where WD and WC are the amount of loaded drug and carrier, respectively. In our condition, to ensure
the same amount of drug being loaded on the three carriers (γ-Fe2O3@NGO, γ-Fe2O3, or NGO) the
CisPt loading procedure was performed by mixing, in separate experiments, variable amounts of CisPt
solution with the carriers and drying the products under vacuum at RT.

3.5. Magnetic Characterization

Magnetization curves were measured as function of temperature M(T) in the 4 K ≤ T ≤
400 K temperature rage, in a SQUID magnetometer (MPMS 5000 from Quantum Design). The
Zero-field-cooling (ZFC) and Field-cooling (FC) curves were measured under a field-cooling field
HFC = 100 Oe Hysteresis loops M(H) were taken at 4 K and 300 K within the −70 kOe ≤ H ≤ +70 kOe



Pharmaceuticals 2019, 12, 76 11 of 15

field range. For all these measurements, the colloids were conditioned in cylindrical sample holders
and diamagnetic signal were extracted from the total magnetization.

3.6. In Vitro Cisplatin Release

Release experiments were performed by dialysis methods using 5.0 mL phosphate buffer saline
(10−3 M, pH 7.4) was releasing media and dialysis tubing cellulose membranes of 25 mm average
flat width and 12,000 MW cutoff (Fisher Scientific, Waltham, MA, USA). 5.0 mg nanoparticles
(γ-Fe2O3@NGO, γ-Fe2O3, and NGO) loaded with CisPt were inserted into the dialysis tubes and
subject to dialysis. At predetermined time intervals, the amount of CisPt in the releasing media
was determined by UV-Vis on a Jasco V-530 UV/Vis spectrometer (Jasco Europe s.r.l., Milan, Italy)
at 301 nm [64]. The cumulative amount of drug released (F) was calculated using the following
Equation (8):

F =
Mt

M0
(8)

where Mt and M0 are the amounts of drug in solution at time t and loaded into the carrier, respectively.
Sink conditions were maintained through the experiment: the maximal theoretical concentration of
dissolved CisPt was 0.33 mM, with its solubility being 3.3 mM in these conditions [65].

3.7. Cell Growth Inhibition Assays

Human Glioblastoma cells (U87) were grown as a monolayer in a humidified atmosphere at 37 ◦C
and in 5% CO2 in the presence of Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
10% Fetal bovine serum (FBS), 1% L-glutamine, and 1% penicillin–streptomycin. Treatment effects
on U87 cell growth were measured on the basis of the metabolic activity of cells using Alamar Blue
assays [66]. Briefly, cells were plated in clear transparent 96-well plates at an optimized cell density
of 2.5 × 103 cells per well 48 h prior to treatment. Cells were then treated with either CisPt loaded
or unloaded carriers (γ-Fe2O3@NGO, γ-Fe2O3, NGO) and effects on cell growth assessed 72 h later.
Treatments involved the combination of CisPt and carrier concentrations of 2.5; 5.0; 10.0 µM and 2.0;
5.0; 10.0; 25.0 µg mL−1, respectively. Resazurin reduction was measured (excitation 530 nm, emission
590 nm) on a Versamax microplate reader (Molecular Devices, Sunnyvale, CA, USA).

To evaluate the magnetic vectorization ability, viability experiments were performed by treating
250 X 103 cells seeded in a 35 mm petri dish with 10 µM CisPt loaded on γ-Fe2O3@NGO for 24 h under
the effect of a magnetic field generated by a permanent magnet (100 G).

All chemicals were purchased by from Merck/Sigma Aldrich, Taufkirchen, Germany.

3.8. Statistical Analysis

Three experiments were carried out in triplicate. Values were expressed as means ± standard
error of the mean. For viability assay, statistical significance was assessed by one-way analysis of
variance followed by post-hoc comparison test (Tukey’s test). Significance was set at p < 0.01.

4. Conclusions

The possibility of CisPt delivery to specific target sites by remote actuation was reached by
combining γ-Fe2O3 magnetic nanoparticles ensembled into a NGO nanoplatform. The correct assembly
of the components was responsible for the efficiency of γ-Fe2O3@NGO as a drug delivery system. While
NGO conferred high loading capabilities to the nanosystems, the magnetic nanoparticles provided the
magnetic actuation capabilities for targeting and delivery of therapeutics.

The mathematical model of the CisPt release profiles suggested a sustained reversible second-order
kinetics, which implies low amounts of CisPt released during the first seconds of the experiments. This
type of release profile is of major importance if low toxicity levels are required for in vivo applications.
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These findings, considered together with the retainment of CisPt toxicity upon loading and the
possibility to increase the dose delivered at the target site by a magnetic actuation, make the nanocarrier
developed here a valuable tool for applications in cancer therapy.
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