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Association of Cytokeratin 5 and Claudin 3
expression with BRCA1 and BRCA2 germline
mutations in women with early breast
cancer
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Abstract

Background: It is important to identify biomarkers associated with BRCA mutation in women with early breast
cancer (BC) to improve early identification of mutation carriers. Thus, in this study, we examined the protein
expression of claudin (CLDN) 3, CLDN4, CLDN7, and E-cadherin. Moreover, we analyzed additional histopathological
variables and their associations in familial BC.

Methods: Immunohistochemical analysis for CLDNs and E-cadherin was performed on 237 BC cases of three
different subsets of BC tumors: 62 from BRCA1 mutation carriers, 59 from BRCA2 mutation carriers, and 116 tumors
from patients with BRCA wild type (WT) as controls. Histopathological data were also analyzed in the different
subgroups. Logistic regression and receiver operation characteristic (ROC) curve were conducted to investigate
factors associated with BRCA tumors.

Results: Expression of CLDN3 positively correlated with BRCA-mutated BC. CLDN3 was expressed in 58% of BRCA1-
mutated tumors compared to only 7% in BRCA2-mutated tumors (p < 0.001) and 1% in WT tumors (p < 0.001). CK5
and CK14 expression were also more likely to arise in BRCA1 tumors (44 and 16%, respectively) than in the control
group (8 and 4%) (p < 0.001, p = 0.012, respectively). We also found a significantly higher proportion of CK5+ among
BRCA1 tumors (44%) in comparison with BRCA2-related BC (8%) (p < 0.001). In addition, there was a significant
difference between both groups regarding CK14: positive expression in 16 and 5%, respectively (p = 0.030). CK5 and
CK14 did not differ between the BRCA2 group and the WT tumors significantly. In a multivariate regression model,
expression of CK5 (Odds ratio (OR): 6.46; 95% confidence interval (CI): 1.52–27.43; p = 0.011), and CLDN3 (OR: 200.48;
95% CI: 21.52–1867.61; p < 0.001) were associated with BRCA1 mutation status.

Conclusions: Our data suggests that CLDN3, CK5, and CK14 in combination with ER, PR and HER2 are associated
with BRCA1 mutation status.
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Background
Breast cancer (BC) is the leading cancer type among
women in the world [1]. Familial BC, representing 5–7%
of all BC, are hereditary and are associated with inher-
ited gene mutations [2]. Approximately 25% of familial
BC are due to germline mutations in the BRCA1 and
BRCA2 genes, which are located on chromosome 17 and
13, respectively [2–4]. The average cumulative BC risk
in BRCA1 mutation carriers by age 70 is 57–65%,
whereas the cumulative BC risk in patients with BRCA2
mutation is 45–49% [5, 6].
BRCA1-associated tumors show a more aggressive

phenotype, the majority of these tumors are invasive
ductal adenocarcionomas (74%) and are poorly differen-
tiated (high histological grade) [7–13]. More than 75% of
BRCA1-mutated tumors are triple-negative, have a
basal-like phenotype, or both [2, 7, 10, 14–20]. Triple-
negative BC is characterized by lack of expression of
hormone receptors (ie. estrogen receptor (ER) and pro-
gesterone receptor (PR)), and human epidermal growth
factor receptor 2 (HER2) [21]. Basal-like BC, a subtype
of triple-negative BC, can be characterized by the ex-
pression of basal cytokeratins (CK) (such as CK5/6,
CK14) and epidermal growth factor receptor (EGFR),
among others [14, 16, 22–28].
Claudin-low is another subtype of triple-negative

BC, and can be characterized by low expression of
claudin (CLDN) 3, CLDN4, CLDN7, and E-cadherin.
The majority of claudin-low tumors have a poor
prognosis [29–31]. CLDNs are structural and func-
tional components of tight junctions which provide
cell-cell adhesion in epithelial to endothelial cells
[32]. There are at least 24 different CLDNs existing
in humans, the expression of each seems to be tissue
specific [33]. E-cadherin is one of the most important
molecules in cell-cell adhesion in epithelial tissues
[34]. Loss of intercellular adhesion by E-cadherin cor-
relates with increased invasiveness and metastasis of
tumors [34–39].
On the contrary, BRCA2-mutated tumors are more het-

erogeneous. The immunophenotype of BRCA2-associated
tumors is very similar to sporadic BC. They are frequently
characterized by low/intermediate histological grade. They
often show no or low expression of HER2 and are often
positive for ER and PR than in BRCA1-related tumors.
Furthermore, BRCA2-mutated tumors do not express
CK5, CK6 and CK14 [2, 7, 10, 13, 17, 40–44].
In this study, we analyzed clinicohistopathological fea-

tures which are already associated with BRCA1/2 tumors
(ER, PR, HER2, CK5 and 14, EGFR, among others). In
addition, we selected three important CLDNs in BC, ie.
CLDN3/4/7, and E-cadherin, which are used for
characterization of the claudin-low subtype. We aim to
define the expression profiles of these biomarkers in

BRCA1 BC and compare these with BRCA2 and BRCA
WT patients to improve early identification of mutation
carriers.
We presented the study as an abstract at the 15th St.

Gallen International Breast Cancer Conference in Vienna,
Austria. [Danzinger S et al.: Intratumoral Cytokeratin 5
and Claudin 3 protein expression predicts for the presence
of BRCA1 germline mutation in women with early breast
cancer. The Breast 2017, 32 (Suppl 1):S22–77.]

Methods
Study population
A total of 242 BC tissue microarrays (TMA) were ob-
tained from the Kathleen Cuningham Foundation
Consortium for research into Familial Breast cancer
(kConFab) [http://www.kconfab.org]. We evaluated
one case per patient, and one core per case. The core
diameter was 0.6 mm. Three BC cases were excluded
due to TP53 (n = 1) and PALP2 (n = 2) mutation sta-
tus. We also eliminated two cases of ductal carcinoma
in situ. Our analysis was therefore based on 237 BC
tumors where 62 tumors originated from BRCA1 car-
riers, 59 tumors were from BRCA2 carriers, and we
obtained the remaining 116 from BRCA WT patients.
The BRCA WT subgroup served as controls in our
study. The control group consists of tumors from
non BRCA1/2 mutation carriers. We used these tu-
mors from consecutive BC patients with familial his-
tory. BRCA testing and analysis are described in
the Supplemental (Additional file 1). Clinicopathologi-
cal information collected included age at diagnosis,
tumor size, tumor morphology, tumor grade, ER, PR,
HER2, CK5 and 14, and EGFR.
Immunohistochemical analysis for ER, PR, HER2, CK5

and 14, and EGFR.
Immunohistochemical staining of the samples was

performed as described in our previous study [45].
The following antibodies were used: clone SP1 against
ER (prediluted, 790–4296, Ventana Medical Systems
Inc., Tucson, AZ, USA), clone 1E2 against PR (790–
4325, Ventana Medical Systems Inc.), clone 4B5
against HER2 (prediluted, 800–2996, Ventana Medical
Systems Inc.), clone EP1601Y against CK5 (305R-16,
Cell Marque Corporation, Rocklin, CA, USA), clone
LL002 against CK14 (LL002-L-CE, Leica, Novocastra,
Newcastle upon Tyne, United Kingdom), and clone
31G7 against EGFR (28–0005, Zymed, South San
Francisco, CA, USA).
ER and PR were considered positive if there were ≥ 1%

tumor nuclei stained according to the American Society
of Clinical Oncology/College of American Pathologists
(ASCO/CAP) Guideline [46]. HER2-positivity was de-
fined by staining of > 10% of tumor cells as proposed by
the update of the American Society of Clinical
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Table 1 Characteristics of tumors (WT = BRCA wild type breast cancer, BRCA1, BRCA2 = breast cancer in BRCA1/BRCA2 mutation
carriers, ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal growth factor receptor 2, CK = cytokeratin,
EGFR = epidermal growth factor receptor, CLDN = claudin)

Characteristics WT (N =
116)

BRCA1
(N = 62)

BRCA2
(N = 59)

WT v
BRCA1

p-value (Chi = square or Fisher’s test (if cells <
5))*

N Col % N Col % N Col % WT v BRCA2 BRCA1 v BRCA2 WT v BRCA1/2

Age at diagnosis <50y 79 68 47 76 38 64 0.282 0.623 0.170 0.721

> = 50y 37 32 15 24 21 36

Tumor grade 1 29 25 1 2 4 7 <.001 0.006 0.021 <.001

2 37 32 12 19 22 37

3 31 27 40 65 26 44

Unknown 19 16 9 15 9 15

Tumor size < 2 cm 73 63 28 45 31 53 0.152 0.272 0.411 0.147

2-5 cm 35 30 26 42 20 34

> 5 cm 2 2 1 2 3 5

Unknown 6 5 7 11 7 12

Tumor morphology Invasive ductal carcinoma 83 72 56 90 47 80 0.027 0.327 0.072 0.068

Invasive lobular carcinoma 8 7 0 0 5 8

Invasive ductal+lobular carcinoma 6 5 0 0 2 3

Carcinoma – undefined 4 3 2 3 3 5

Other 15 13 4 6 2 3

ER Negative 28 24 47 76 13 22 <.001 0.448 <.001 <.001

Positive 78 67 14 23 45 76

Unknown 10 9 1 2 3 5

PR Negative 42 36 49 79 23 39 <.001 0.89 <.001 0.001

Positive 68 59 11 18 34 58

Unknown 6 5 2 3 4 7

HER2 Negative 77 66 43 69 22 37 0.887 <.001 <.001 0.003

Positive 22 19 13 21 32 54

Unknown 17 15 6 10 7 12

CK5 Negative 78 67 28 45 44 75 <.001 0.702 <.001 0.001

Positive 9 8 27 44 5 8

Unknown 29 25 7 11 12 20

CK14 Negative 89 77 45 73 49 83 0.012 0.999 0.030 0.129

Positive 5 4 10 16 3 5

Unknown 22 19 7 11 9 15

EGFR Negative 76 66 52 84 52 88 0.585 0.052 0.209 0.122

Positive 10 9 5 8 1 2

Unknown 30 26 5 8 8 14

CLDN3 Negative 107 92 24 39 50 85 <.001 0.039 <.001 <.001

Positive 1 1 36 58 4 7

Unknown 8 7 2 3 7 12

CLDN4 Negative 6 5 6 10 0 0 0.423 0.094 0.999 0.059

Positive 100 86 56 90 58 98

Unknown 10 9 5 8 3 5

CLDN7 Negative 109 94 62 100 57 97 n/a 0.339 0.475 0.999

Positive 0 0 0 0 1 2
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Oncology/College of American Pathologists (ASCO/
CAP) clinical practice guideline. Staining of HER2
should also be strong and circumferentially membranous
[47]. CK5, CK14, and EGFR were regarded as positive if
any cytoplasmic and/or membranous staining was seen
in the tumor cells [33].
Immunohistochemical analysis for CLDN3/4/7 and E-

cadherin.
Immunohistochemical staining for CLDN3, CLDN4,

CLDN7, and E-cadherin was performed according to the
protocol of our previous study [45]. For immunohisto-
chemistry of paraffin-embedded sections (5 μm), we used
the ultraView Universal DAB Detection Kit (5269806001,
760–500, Ventana Medical Systems Inc., Tucson, AZ,
USA), and an automated immunostainer system (Ventana
Benchmark, Ventana Medical Systems Inc.). Tissues were
processed with high-temperature technique for 30min
(CLDN3 and CLDN7) or 60min (CLDN4, E-cadherin)
and incubated with antibodies.
We used the following antibodies for staining the tis-

sue sections: Rabbbit anti-Claudin-3 against CLDN3 (32
min; 34–1700, Invitrogen, Thermo Fisher Scientific,
Rockford, IL, USA), Mouse anti-Claudin-4 (monoclonal)
against CLDN4 (64 min; 32–9400, Invitrogen), Rabbit
anti-Claudin-7 against CLDN7 (32 min; 34–9100, Invi-
trogen), and anti-E-Cadherin (36) Mouse Monoclonal
against E-cadherin (16 min; 790–4497, Ventana Medical
Systems Inc.). The antibody concentrations for CLDN3,
CLDN4, and CLDN7 were in the range of 2–3 μg/ml,
the antibody concentration for E-cadherin was 0.314 μg/
ml.
We used hydrogen peroxide and 3,3’-diaminobenzi-

dine-tetrahydrochloride for visualization of the reaction.
The slides were counterstained with haemalaun and ex-
posed to a bluing reagent for different times. We used
colon (CLDN3, E-cadherin) and breast tissue (CLDN7)
as positive controls. CLDN4 was overexpressed in ovar-
ian cancer.
Immunohistochemical staining was centrally reviewed

by an experienced pathologist (MR) to ensure compar-
able results. The stained sections were visualized on an

Olympus BX50 microscope (Olympus Corporation,
Tokyo, Japan). The imaging software cell^P (Olympus
Corporation) was used for taking pictures of the slides.
The tumor samples were evaluated by differentiation be-
tween positive and negative staining. Only membranous
staining was classified as positive. There is no standard
for assessing the CLDN expression [48]. Positive expres-
sion of CLDN3, CLDN4, and CLDN7 was defined by
any detectable staining in the membrane of the tumor
cell. E-cadherin was regarded positive if any staining was
observed. Thus, complete absence of any membranous
E-cadherin immunoreactivity was considered as E-
cadherin-negative [49].

Statistical methods
Descriptive statistics were performed to determine the
characteristics of our study sample, which comprise
three groups: BRCA1, BRCA2, and BRCA WT.
ANOVA test and student’s t-test were used to com-
pare the mean age at diagnosis between two groups.
Chi-square and Fisher’s Exact (for smaller sample
size) tests were used to compare the proportions of
clinicohistopathological (categorical) parameters. To
further determine the relationship between clinicohis-
topathological parameters with mutation status,
Spearman’s correlation analysis was performed. Logis-
tic regression was conducted to identify independent
factors associated with BRCA1 (and BRCA2) mutation
status. Associations were summarized using the odds
ratio (OR) and corresponding 95% confidence interval
(CI) derived from the model estimates. The receiver
operation characteristic (ROC) curves were con-
structed for the prediction of BRCA1 mutation status.
The predictive ability of each model was summarized
by the area under the curve (AUC), and optimal
models were classified as those that yielded the high-
est AUC in the ROC analysis. We excluded all un-
knowns/undetermined values from analysis. Statistical
significance was considered as p < 0.05 (2-tailed). We
performed all statistical analyses using SPSS (v. 23.0
(SPSS Inc., Chicago, IL, USA)).

Table 1 Characteristics of tumors (WT = BRCA wild type breast cancer, BRCA1, BRCA2 = breast cancer in BRCA1/BRCA2 mutation
carriers, ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal growth factor receptor 2, CK = cytokeratin,
EGFR = epidermal growth factor receptor, CLDN = claudin) (Continued)

Characteristics WT (N =
116)

BRCA1
(N = 62)

BRCA2
(N = 59)

WT v
BRCA1

p-value (Chi = square or Fisher’s test (if cells <
5))*

N Col % N Col % N Col % WT v BRCA2 BRCA1 v BRCA2 WT v BRCA1/2

Unknown 7 6 0 0 3 5

E-cadherin Negative 10 9 9 15 16 27 0.296 0.002 0.081 0.016

Positive 89 77 48 77 40 68

Unknown 17 15 5 8 5 8

*unknown/undetermined values are excluded from analysis
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Results
The characteristics of the patients are summarized in
Table 1. Immunohistochemical staining of CLDN3,
CLDN4, and CLDN7, and E-cadherin is shown in Fig. 1
and Fig. 2. The tumor size of most of the tumors in all of
the three groups (45% of BRCA1, 53% of BRCA2, and 63%
of WT tumors) was < 2 cm. The histological type is domi-
nated by invasive ductal carcinoma in all groups (72–
90%). Grade 3 was the most common tumor grade in
BRCA1 tumors (65%), followed by BRCA2 (44%) tumors,

compared to only 27% of BRCA WT tumors (p < 0.001,
p = 0.006, respectively).
Negative expression of ER and PR was significantly

more common among BRCA1 mutation carriers (76 and
79%, respetively) compared to the BRCA2 group (22 and
39%, respectively) (both p < 0.001) and in comparison
with the WT subgroup (24 and 36%, respectively) (both
p < 0.001). HER2 was positive in 54% of BRCA2 versus
19% of WT tumors (p < 0.001) and versus 21% of
BRCA1-mutated tumors (p < 0.001). Positive HER2 was
found to be associated with a BRCA2 mutation com-
pared to the WT.
Tumors with expression of CK5 and CK14 were more

likely to arise in BRCA1 (44 and 16%, respectively) than
in the control group (8 and 4%) (p < 0.001, p = 0.012, re-
spectively). We also found a significantly higher propor-
tion of positive CK5 expression among BRCA1 tumors
(44%) in comparison with BRCA2-related BC (8%) (p <
0.001). CK14 was positive in 16% of BRCA1 versus 5%
of BRCA2 tumors (p = 0.030). Furthermore, EGFR nega-
tively correlated with the BRCA2 mutation status in
comparison with BRCA WT with statistical significance.
Thirty-six of 41 CLDN3-positive cases had a BRCA1

mutation, and 40 of 41 such cases have a mutation in ei-
ther BRCA1 or BRCA2. CLDN3 was positively correlated
with BRCA1-mutated BC. Positive CLDN3 was found in
58% of BRCA1-mutated tumors compared to only 7% of
BRCA2-mutated tumors (p < 0.001) and 1% of WT tu-
mors (p < 0.001). Positive CLDN3 was also significantly
more frequent in the BRCA2 in comparison with the
WT group (p = 0.039) (Table 1). A positive correlation
was observed between CLDN3 with tumor grade and
CK5. In contrast, CLDN3 negatively correlated with ER
and PR.
E-cadherin expression was significantly different in

proportion between tumors of BRCA WT and BRCA2
mutation (77% versus 68%, respectively, p = 0.002). With
regard to CLDN4 and CLDN7, there were no significant
differences observed among the groups. Positive CLDN4
was very common (86–98%), but CLDN7 was rarely
positive (0–2%).
In an univariate analysis of clinicopathological factors

associated with BRCA1-mutated BC versus the WT sub-
type, tumor grade, ER, PR, and expression of CK5,
CK14, and CLDN3 were found to be independent pa-
rameters. However, when these features were put into a
multivariate regression model and adjusted with age,
only CK5+ (Odds ratio (OR): 6.46; 95% Confidence
interval (CI): 1.52–27.43; p = 0.011), and CLDN3+ (OR:
200.48; 95% CI: 21.52–1867.61; p < 0.001) they revealed
to be associated with BRCA1 mutation status (Table 2).
For BRCA2 BC versus WT, univariate analysis showed

that tumor grade, the expression of HER2, and E-
cadherin were independent markers of BRCA2 status. In

Fig. 1 Claudin (CLDN) 3. Positive expression in BRCA1 breast cancer
(BC) (a) and negative control (isotypic antibody) (b). Positive CLDN4
expression in BRCA1-mutated BC (c), negative control of CLDN4
(isotypic antibody) (d). Positive CLDN7 in BRCA2 BC (e), negative
CLDN7 in BRCA1-related tumor (f), and negative control of CLDN7
(isotypic antibody) (g). Positive CK5 staining in BRCA1 BC (h)
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a multivariate regression model, the expression of HER2
(OR: 5.21; 95% CI: 2.18–12.45; p < 0.001) showed an as-
sociation with BRCA2 mutation status (Table 2).
For BRCA2 versus BRCA1 tumors, univariate analysis

showed that tumor grade, ER, PR, HER2, CK5, CK14,
and CLDN3 were independent parameters of BRCA2
status. However, in a multivariate model, all parameters
were not significantly associated with the mutation sta-
tus, except for CLDN3. Positive CLDN3 in BRCA2-re-
lated tumors has an OR of 0.05 (95% CI: 0.01–0.26; p <
0.001) with reference to BRCA1 tumors. Thus, negative
CLDN3 was found in 85% of BRCA2-related tumors ver-
sus 39% of BRCA1 BC (p < 0.001).
Our receiver operation characteristic (ROC) analysis

showed that the base model that correlates with BRCA1
status, which consisted of only ER, PR and HER2,
yielded an area under the curve (AUC) of 0.792. The
addition of CLDN3 to this model resulted in an AUC of
0.931. When CK5 was added to this model, the model
yielded an AUC of 0.942. Further addition of CK14

resulted in an AUC of 0.946 in the ROC curve which is
shown in Fig. 3.

Discussion
Taken together, results from our study showed that
CLDN3, CK5, and CK14 are associated with BRCA1 mu-
tation status when used in a model where ER, PR and
HER2 status are already known. Our research shows that
staining of CLDN3, CK5, and CK14 in combination with
ER, PR and HER2 indicate an association with BRCA1
mutation status.
Our findings show that tumors with expression of

CK5 and CK14 were more likely to arise in BRCA1 than
in the control group. This has been reported previously
by Lakhani et al. where they investigated immunohisto-
chemical staining for basal markers. They found that
CK5/6, CK14, and EGFR were more frequent in BRCA1
tumors compared to non-mutation BC (58% versus 7,
61% versus 12, 67% versus 21%, p < 0.0001 in each case,
respectively) [42]. This supports that most of BRCA1-

Fig. 2 E-cadherin. Positive staining in BRCA1-mutated (a) and BRCA wild type breast cancer (b). Positive benign epithelium (colon) as positive
control (c). Negative staining in the wild type group (d)
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related cancers belong to the basal-like subtype [2].
Foulkes and colleagues showed that the expression of
CK5/6 was statistically significantly associated with
BRCA1-related BC [18, 50]. Furthermore, an association
between positive CK5/6 and BRCA mutation status was
shown by Murria Estal et al. [51] However, Mohanty et
al. could not show a statistically significant difference of
CK14 expression between BRCA-mutated and sporadic
BC [52]. In addition, CK5/6, CK14, and E-cadherin were
not associated with BRCA1 status in a study from Has-
sanein et al. [53] Eerola et al. reported that CK14 was
significantly associated with BRCA1 tumors in univariate
analysis [54]. In our study, the model which consisted of
ER, PR, HER2, positive expression of CLDN3, CK5, and
CK14 yielded an AUC of 0.946 in the ROC analysis to in-
dicate an association with the BRCA1 mutation status.
We also found a significantly higher proportion of CK5
expression in BRCA1 than BRCA2 BC. EGFR, an add-
itional biomarker of the basal-like subtype, negatively cor-
related with the BRCA2 mutation status in comparison

with BRCA WT in our study. Expression of CK5/6 and
CK14 in BRCA2-related BC is rare and does not differ
from sporadic tumors [7, 40–42, 55]. Results from our
study showed similar findings. Otherwise, Eerola et al.
showed a positive expression of CK5/6 and CK14 in 7.7
and 26.9%, respectively, in BRCA2 tumors. Only regarding
CK14, there was a significant difference between these tu-
mors and the sporadic ones [54].
CLDN3 and CLDN4 are commonly expressed in BC

[32, 56, 57]. Madaras et al. examined the expression of
CLDN3, 4, and 7, among other variables, in BRCA-mu-
tated and BRCA WT tumor tissues. In BRCA-mutated
tumors, CLDN3, 4, and 7 were expressed at higher level
compared to BRCA WT tumors [58]. Higher overexpres-
sion rates for CLDN3, 4, and 7 were found in BRCA1-re-
lated BC compared to sporadic BC [48]. We showed that
CLDN3 was positively correlated with BRCA1-mutated
BC. Positive CLDN3 was also significantly more frequent
in the BRCA2 in comparison with the WT group. How-
ever, in our study there was no association between

Table 2 Logistic regression for BRCA1 versus WT and BRCA2 versus WT: univariate and multivariate analysis
Characteristics Univariate LR

OR (95%CI)
p-value Multivariate LRa

OR (95%CI)
p-value Univariate LR

OR (95%CI)
p-value Multivariate LRa

OR (95%CI)
p-value

BRCA1 vs WT BRCA2 vs WT

Age at diagnosis (years) <50y 1.0 1.0

≥50y 0.68 (0.34–1.37) 0.283 1.18 (0.61–2.28) 0.624

Tumor grade 1 + 2 1.0 1.0 1.0

3 6.55 (3.07–13.97) <.001 2.13 (1.06–4.29) 0.034 2.41 (1.02–5.69) 0.045

Tumor size < 2 cm 1.0 1.0 –

> = 2 cm 1.90 (.98–3.68) 0.056 1.51 (0.77–2.96) 0.227 –

ER Negative 1.0 1.0 –

Positive .11 (.05–.22) <.001 0.46 (0.09–2.66) 0.400 1.35 (0.62–2.91) 0.449 –

PR Negative 1.0 1.0 –

Positive 0.14 (0.07–0.30) <.001 0.35 (0.07–1.87) 0.354 0.96 (0.49–1.85) 0.890 –

HER2 Negative 1.0 1.0 1.0

Positive 1.06 (.49–2.31) 0.887 1.03 (0.24–4.48) 0.970 5.33 (2.58–11.03) <.001 5.21 (2.18–12.45) <.001

CK5 Negative 1.0 1.0 –

Positive 8.36 (3.50–19.93) <.001 6.46 (1.52–27.43) 0.011 0.79 (0.23–2.71) 0.705 –

CK14 Negative 1.0 1.0 –

Positive 3.96 (1.28–12.27) 0.017 0.73 (0.14–3.89) 0.709 –

EGFR Negative 1.0 1.0

Positive 0.73 (.24–2.26) 0.586 0.15 (0.02–1.20) 0.074

CLDN3 Negative 1.0 1.0

Positive 160.50 (20.96–1229.06) <.001 200.48 (21.52–1867.61) <.001 8.92 (0.97–81.90) 0.053

CLDN4 Negative 1.0 – – –

Positive 3.36 (0.39–28.62) 0.267 – – –

CLDN7 Negative – – – –

Positive – – – –

E-cadherin Negative 1.0 – 1.0 1.0

Positive 0.60 (0.23–1.58) 0.299 – 0.27 (0.11–0.64) 0.003 0.33 (0.11–0.98) 0.046
aadjusted for age at diagnosis
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CLDN4 or CLDN7 and BRCA-mutated BC found. Posi-
tive CLDN4 was very common, but CLDN7 was rarely
positive in all groups (BRCA1, BRCA2, WT).
In the analysis of CIMBA (Consortium of Investigators

of Modifiers of BRCA1/2), Mavaddat et al. showed that
78% of BRCA1-related tumors were ER-negative, but in
patients with BRCA2 mutation status ER was negative
only in 23% of the tumors. The authors could demonstrate
that in the BRCA1 group, 79% were PR-negative and 90%
HER2-negative compared to 36 and 87% in BC patients
with BRCA2 mutation status, respectively. These results
allow to conclude that ER-positive tumors occur more
likely in BRCA2 than in BRCA1 cases [44]. Several studies
could also demonstrate that negative ER and PR were sig-
nificantly more common among BRCA1-mutated tumors
compared to sporadic cases, among others [11–13, 20, 48,
53]. Therefore, these results are similar to our findings. A
low prevalence of positive HER2 (6.8%) expression was
shown among patients with BRCA2-related BC by Evans
et al., too [59]. BRCA2 tumors often show no or low ex-
pression of HER2 [7, 13, 17, 40] However, Armes et al.
showed a strong expression of HER2 in 44% (4 of 9) of
BRCA2 tumors [60]. Accordingly in our study, positive
HER2 was found to be associated with a BRCA2 mutation
compared to the WT.
The limitations of this study are a small sample size

resulting in a large OR as observed in the results for
CLDN3, and should consequently be interpreted with cau-
tion. A larger sample size for future studies would be neces-
sary to confirm these findings. Moreover, we did not
analyze different molecular subtypes in this study. Future
studies should therefore investigate the relationship be-
tween the molecular subtypes and the BRCA mutation

status. Additionally, the problem of selection should be
mentioned as a further limitation of our study. We selected
patients with familial breast cancer based on the BRCA1/2
mutation status. Thus, the controls consist of predomin-
antly luminal subtypes.
The dataset of this study should be considered as a

training dataset, the analysis is hypothesis generating.
This aspect is one of the limitations of our study which
is exploratory. We do not have a sufficiently high num-
ber of independently collected samples to test the pa-
rameters in an independent dataset, too. Thus, further
studies are necessary regarding this point.
The examination of TMA should be mentioned as a

further limitation of this study. However, the staining
was fairly homogenous across the tumor. There were no
areas with stronger or weaker intensity observed. TMA
is an acceptable and sufficient device, which has been
developed and used in research settings [61–65].
In conclusion, findings from our study showed that

CLDN3, CK5, and CK14 in combination with ER, PR
and HER2 are associated with BRCA1 mutation status.

Conclusions
Our data suggests that CLDN3, CK5, and CK14 in com-
bination with ER, PR and HER2 indicate an association
with BRCA1 mutation status.
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