Skip to main content
. 2019 Jun 23;9(6):910. doi: 10.3390/nano9060910

Table 1.

Commonly used materials for catalytic removal of VOCs.

No. Catalytic Category VOC Nanomaterial Morphology Medium Doping Concentration Synthesis Ref.
1 Photo- TiO2 Trichloro-ethylene nanostructured TiO2 particles Primary particle size: 2.3–30 nm, secondary particle size: 100–900 nm titanium isopropoxide water concentrations: 2.3, 0.3, 0.27, and 0.18 M low-temperature synthesis, modified sol–gel method [33]
2 Photo- TiO2 Toluene Titanium isopropoxide Primary particle size:11 nm isopropanol–water solution 2.5 mL H2O, 25 mL ethanol, 150-mL (hydrothermal) sol–gel synthesis, thermal & hydrothermal methods [34]
3 Photo- TiO2 Toluene TiO2 thin films particle sizes less than 100 nm, monocrystalline nanodiamond Titanium (IV) tetraisopropoxide (TTIP) (Ti(OCH(CH3)2)4) and water detonation method (purchased from microdiamant) [35]
4 Photo- TiO2 Toluene, acetaldehyde TiO2 nanotubes (TNT) & nanopartcles (TNP) film; commercial TiO2 (P25) average surface area of 50 m2 g−1, primary particle size: 20–30 nm, channel pores diameter: 40–60 nm, tube length: 9.5 (±0.9) μm. [TNP] Ethanol
[TNT] ethylene glycol electrolyte
[TNP] 0.15 g/mL
[TNT] 1st anodization: 0.5 wt% NH4F and 3 wt% H2O; 2nd: 0.3 wt% NH4F and 1 wt% H2O.
[TNP] doctor-blade method
[TNT]two-step electrochemical anodization
[36]
5 Photo- TiO2 Toluene Ti-foil (99.7%,0.25 mm, Aldrich, USA) top and bottom opened structure of which thediameters are 100 nm and 50 nm, respectively NP@DNT films of 15 (±2) μm ethylene glycol solution containing 0.25 wt% NH4F and 0.3 vol% distilled water potentiostatic anodization method [37]
6 Photo- TiO2 Hexane, methanol anatase and rutile TiO2 (0.1 mol) Surface area between 39 to 84 m2/g (given in table) 1.5 mol anhydrous Ethanol, water–ethanol solution containing 1 mol ethanol with a ratio of water:butoxide = 50:1. aqueous HNO3 solution of various concentration (0.1–1.0 mol/L) with the ratio of solid (g): liquid (mL) = 1:10 hydrothermal method [38]
7 Photo- TiO2 Toluene Anatase/brookite/rutile tricrystalline TiO2 amorphous TiO2 suspension HNO3 solution (65%) The molar ratios of HNO3 to TBOT (RHNO3) were varied from 0.2 to 1.2 at intervals of 0.2 by varying the volume of HNO3 solution. low-temperature hydrothermal method [39]
8 Photo- TiO2 Toluene co-alloying TiO2 fine bright yellow powder, primary particles diameter: 1–2 μm TiCl4 reacted with NbCl5 and urea in an ethanol solution toluene concentrations: 1~5 ppm; relative humidity: 25~65%; air velocity: 0.78~7.84 cm/s; irradiancy: 42~95 W/m2. urea-glass synthesis [40]
9 Photo- TiO2 Isopropyl alcohol Hybrid CuxO/TiO2 Nanocomposites Commercial TiO2 (rutile phase, 15 nm grain size, 90 m2/g specific surface area) CuCl2 solution, NaOH and glucose solutions (reduce & control the CuI/CuII ratio 10 mL of CuCl2 solution.
Weight fraction of Cu: TiO2 is 1 × 103: 2 × 102.
simple impregnation method [41]
10 Photo- TiO2 Toluene commercial TiO2 (P25) Platinum nanoparticles in the size of 1–3 nm were clearly deposited on the surface of TiO2 0.5 wt% Pt and 30 mM fluoride for VOC
degradation
sodium fluoride (10, 30, and 50 mM) and Pt (0.1, 0.5, and 1 wt%) photo deposition method [42]
11 Photo- TiO2 Toluene hybrid nanomaterial Pt-rGO-TiO2 TiO2 nanopowder: commercial P25 (Degussa). ethanol-water 0.1, 0.5, 1 and 2 wt% Pt-rGO-TiO2 nanocomposite catalysts solvothermal method [43]
12 Photo- TiO2 Toluene Composites ACFF
0.5 mL tetra-butyl titanate (97 wt%)
Diameter: 12 μm, pore size: 32 μm. Polytetrafluoroethylene (Teflon)-lined stainless-steel autoclaves 1.0, 2.0, 3.5 and 5.0 l of toluene were injected into the above reactor Purchased ACFF, [6]
13 Photo- TiO2 Formaldehyde, trichloro-ethylene TiO2 nanoparticles BET area:392 m2 g−1, micro mean pore size: 0.6 nm 8 wt% DAPs incipient wetness impregnation, freeze-drying, or mechanical mixing [44]
14 Photo- Zinc oxide Toluene ZnAl2O4 nanoparticles commercial P25 powder (reference)
TiO2 nanoballs in anatase phase
[solvothermal synthetic] Al(NO3)3·9H2O (2 mmol), Zn(NO3)2·6H2O (1 mmol), ethylene glycol (30 mL)
[citrate precursors] 0.01 M Zn(NO3)2·6H2O, 0.02 M Al(NO3)3·9H2O, 100 mL DI water
[hydrothermal] an equimolar amount of Zn(NO3)3·6H2O (2 mmol), Al(NO3)3·9H2O (4 mmol), urea[CO(NH2)2] (20 mmol) and deionized water (80 mL)
solvothermal, citrate precursor, hydrothermal methods [45]
15 Photo- Ni oxide Toluene Nitrogen-doped carbon nanotubes (NCNTs) supported NiO(NiO/NCNTs) NCNTs: tubular structure, 20 nm-diameter; NiO: crystallite, 3–10 nm catalyst and pyridine and/or 3-(aminomethyl)pyridine volume ratio of pyridine to 3-(aminomethyl)pyridine: 5, 3, 1 and 0 Chemical vapor deposition method [46]
16 Photo- WO3 H2O2 Nano-diamonds combined with WO3 ND: ca. 4–6 nm diameter WO3 (Aldrich) 0.5–16 wt% ND contents Simple dehydration condensation [47]
17 Photo- Manganese Oxide Benzene, Toluene, Ethylbenzene, Xylenes Manganese Oxide and Copper KMnO4 solution (OMS-2);
Mn(CH3COO)2 4H2O (AMO)
Mn(CH3COO)2 solution (OMS-2);
KMnO4 (AMO);
a simple refluxing method [48]
18 Photo- Manganese Oxide Formaldehyde indoors manganese oxide Shown in SEM images ethanol solution of manganese acetate
tetrahydrate (Mn(CH3COO)2·4H2O
Mn(CH3COO)2·4H2O:PAN-ACNF 0.5–20 wt.% [49]
19 Photo- Bi-based compounds Acetone, toluene Bi2WO6 CQDs: high dispersion, uniform size of 3–5 nm in diameter carbon quantum dots (CQDs) adding 1.0–6.0 g of CQDs Hydrothermal synthesis [50]
20 Photo- AgBr methyl orange AgBr monoclinic WO3 substrate, face-centered cubic AgBr nanoparticles: crystalline sizes less than 56.8 nm. WO3 AgBr contents were respectively obtained and defined as TA-0.05, TB-0.10, TC-0.15, TD-0.20, TE-0.25, TF-0.30 and TG-0.40. deposition–precipitation method [51]
21 Thermal Platinum Toluene Pt/Al2O3–CeO2 nanocatalysts average size: 5–20 nm. CeO2(10%)/Al2O3, 2.8 g Ce(NO3)3·6H2O, 100 mL distilled water ceria loading of 10, 20 and 30% wet impregnation method [52]
22 Thermal Platinum benzene Pt/Al2O3 Pt particle sizes between 1.2–2.2 nm H2PtCl6·6H2O Pt/A l2O3−x, x: pH value of 7.0, 9.0 and 11.0 modified ethylene glycol (EG) reduction approach [53]
23 Thermal Platinum Formaldehyde (HCHO) Pt/TiO2/Al2O3 BET area from 16.5 to 182.5 m2/g (NH4)[TiO(C2O4)2] The platinum loading: 0.62, 1.26,1.19 and 1.25 gm2 Electro-deposition technology [54]
24 Thermal Silica-iridium Toluene chloride-ion free iridium acetylacetonate, Ir(AcAc)3 ∼5 to 27 nm SiO2 Degussa Aerosil 200 Size of iridium particles: ~5 to 27 nm (calcination temperature 350~750 °C) incipient wetness impregnation [55]
25 Thermal Carbon benzene, toluene, ethylbenzene, and oxylene Pt/carbon nanotube (CNT) Multiwalled carbon nanotubes (MWCNT) CNTs: 20–50 nm column diameters MWCNTs: 20–50 nm diameters acid treatment using HF, H2SO4, and HNO3 Pt content in the catalysts ranging from 10 to 30 wt%. a molecular-level mixing method [56]
26 Photo- Carbon based Volatile Aromatic Pollutant TiO2_graphene Shown in SEM image An ethanol-water solvent P25_GR with weight addition ratios of 0.2, 0.5, 1, 2, 5, 10, and 30% GR. facile hydrothermal reaction [57]
27 Photo- Carbon-based methanol graphene oxide, reduced graphene oxide, and few-layer graphene BET area (m2/g):
rGO+TiO2: 49.34, GO+TiO2: 43.79, G+TiO2: 41.54
Polyacrylonitrile a polymer concentration of 5% (w/w) in N,N-dimethylformamide. hydrothermal method (reduced graphene oxide); others purchased [58]