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ABSTRACT: Electrochemical reduction of CO2 is a value-added
approach to both decrease the atmospheric emission of carbon
dioxide and form valuable chemicals. We present a zero gap
electrolyzer cell, which continuously converts gas phase CO2 to
products without using any liquid catholyte. This is the first report
of a multilayer CO2 electrolyzer stack for scaling up the electrolysis
process. CO formation with partial current densities above 250 mA
cm−2 were achieved routinely, which was further increased to 300
mA cm−2 (with ∼95% faradic efficiency) by pressurizing the CO2
inlet (up to 10 bar). Evenly distributing the CO2 gas among the
layers, the electrolyzer operates identically to the sum of multiple
single-layer electrolyzer cells. When passing the CO2 gas through
the layers consecutively, the CO2 conversion efficiency increased.
The electrolyzer simultaneously provides high partial current
density, low cell voltage (−3.0 V), high conversion efficiency (up to 40%), and high selectivity for CO production.

With either considering carbon dioxide as a feedstock
for transportation fuels and commodity chemicals
or aiming to reduce its atmospheric emission,

electrochemical reduction of CO2 (CO2RR) is one of the
major scientific and engineering challenges.1,2 Various catalysts
have been investigated in literally thousands of scientific works,
identifying active and selective candidates and revealing
important structure−property relationships with regard to
catalyst size, shape, morphology, etc. As important examples of
CO2RR, selective carbon monoxide formation was demon-
strated on Ag electrodes, while multitudes of different alcohols
and hydrocarbons form on copper catalysts.3 The large
differences in the activities and selectivities of different
catalysts in CO2RR are better understood by now and are
also supported by theoretical studies on the reaction
mechanism.4

The industrial implementation of this technology neces-
sitates the transformation of CO2 to products at a high rate
(i.e., current density, |jproduct| > 200 mA cm−2),5,6 which is
inherently hampered in aqueous solutions by the low solubility
of CO2. Continuous-flow gas-fed electrolyzers might offer the
only viable technological solution to overcome this limi-
tation.7,8 Apart from the high reactant concentration on the

catalyst surface ensured by the continuous CO2 flow, it is also
crucial to provide a high surface area for the electrochemical
reaction. Hence, porous, gas diffusion electrodes (GDEs) are
used in these electrolyzers, in which the triple phase boundary
among the reactant gas, the catalyst, and the solid ionomer is
maximized.9−11

To drive CO2RR in an economically feasible way,
electrolyzer cells must be developed, which operate (i) at
high current density (conversion rate), (ii) at low cell voltage
(i.e., high energy efficiency), (iii) with high faradic efficiency
(selectivity), and (iv) with high conversion efficiency. Notably,
even though these four parameters together describe the overall
performance of an electrolyzer cell, very seldom are all of these
reported in the scientific literature.
Over the past decade, a remarkable advancement was

achieved with continuous-flow electrolyzers,7,8,12,13 most
importantly with electrolyzers applying a dual (electrolyte +
CO2 gas) feed on the cathode (e.g., in microfluidic cells) and
electrolyte feed at the anode.14,15 Cation16 or anion17−20
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exchange membranes, bipolar membranes,21−23 (PEM, AEM,
and BPM, accordingly), and even an inorganic diaphragm24

were proved to be applicable separators between the cell
compartments. The effects of several parameters were
scrutinized: electrolyte composition (e.g., electrolyte type,
concentration, pH, etc.),14,23,25−27 structure of the micro-
porous layer,28 catalyst morphology,29 and immobilizing the
catalysts on different high surface area supports.30−32 Some of
these studies were performed applying pressurized CO2 inlets
(although not in the zero-gap configuration),16,25,33 further
improving the performance. As a result, industrially relevant
current densities, above |jproduct| = 200 mA cm−2, have become
a reality with both Cu34−38 and Ag30,32,39 catalysts. Achieving
high CO2 conversion efficiency, however, is a substantial
challenge in such electrolyzers because of (i) the typically large
gas head space above the GDEs and (ii) the CO2 losses due to
its dissolution in the catholyte.
Considerably less attention has been devoted to zero gap

membrane electrolyzers, in which CO2 gas is directly fed to the
cathode.40−46 These cells offer a simple technological solution,
in which (i) the cell resistance can be very low (which
translates to high energy efficiency), (ii) the inlet can be
pressurized relatively easily, (iii) no catholyte is used and,
hence, no liquid catholyte circulation loop is required, and
finally, (iv) the losses due to CO2 dissolution in the catholyte
are minimal. The knowledge gathered with fuel cells and PEM
water electrolyzers might contribute to future scale-up of this
technology, as these are mature electrochemical technologies
with cells of similar structure. Constructing large size and

multilayer stacks is a common practice in both above-
mentioned fields;47,48 nonetheless, it has not been demon-
strated for CO2 reduction yet. Implementation of this concept
to CO2 electrolyzers can accelerate technology development,
to scale up electrochemical CO2 reduction to an industrially
relevant level. Here we present a zero gap CO2 electrolyzer
stack, which consists of multiple electrolyzer layers and can
operate with a pressurized CO2 gas feed, without the need for
any liquid catholyte. Furthermore, the flexibility of the
presented design allows different connections between the
layers of the electrolyzer regarding the distribution of the
reactant CO2 gas. Connecting the cells in parallel (Figure 1A),
the gas is equally distributed among them; hence, pure CO2 is
fed to each cathode. On the other hand, when connecting the
gas channels in series (Figure 1B), the total gas flux enters the
first layer, and the off-gas (remnant CO2 + products) continues
to the subsequent layer(s), hence allowing very high
conversion efficiencies. From an electric perspective, the cells
are connected in series in both cases (i.e., the same current
flows through them). While the presented cell is completely
scalable, the presented data were recorded with a cell which
contained up to three electrolyzer units (having 61 cm2/cell
active area), connected through bipolar plates. For testing the
operation of the electrolyzer cell and to analyze the formed
products, a test station was designed (Figure 1C) that was used
throughout the experiments presented here. Further informa-
tion regarding the cell (Figure S1) and the electrolyzer station
is provided in the Supporting Information.

Figure 1. CO2 gas channel structure in an electrolyzer stack consisting of three layers in the (A) parallel and (B) serial connection
configurations. BPP: bipolar plate; ACL: anode catalyst layer; GDE: gas diffusion electrode; GDL: gas diffusion layer; AEM: anion exchange
membrane. (C) Schematic flowchart of the measurement setup.

ACS Energy Letters Letter

DOI: 10.1021/acsenergylett.9b01142
ACS Energy Lett. 2019, 4, 1770−1777

1771

http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.9b01142/suppl_file/nz9b01142_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.9b01142/suppl_file/nz9b01142_si_001.pdf
http://dx.doi.org/10.1021/acsenergylett.9b01142


Electrochemical CO2 Reduction to Gas Phase Products Using Ag
and Cu Catalysts. Ag nanoparticles and electrodeposited Cu
nanocubes,49,50 immobilized on separate gas diffusion layers,
were used to validate the operation of the electrolyzer in a
single layer setup (see SEM images in Figures S2 and S3). The
onset of a faradic process, read at 10 mA cm−2 current density,
was observed at −1.71 V with the Cu nanocube catalyst and
−2.01 V with the Ag nanoparticles on the linear sweep
voltammetry curves (LSVs, Figure 2A). At voltages between
−1.2 and −1.5 V, a reduction peak, related to the reduction of
copper oxide, was observed for the Cu nanocube catalyst in
line with our previous study.51

Chronoamperometric curves were recorded for both
catalysts at −2.75 V, where a stable operation was observed
(Figure 2B). Gas chromatographic analysis of the composition
of the product stream during electrolysis showed the formation
of C2H4, CH4, CO, and H2 for the Cu nanocube catalyst, while
only CO and H2 formed on the Ag catalyst (Figure S4A,B).
The cumulative faradic efficiency calculated for these products
approached 100% in both cases, which suggests that the
possible formation of other products is negligible. These results
agree with earlier literature reports30,34 and confirm that the
CO2 gas enters the GDE and reaches the catalyst surface;
hence, the structure of the electrolyzer cell is appropriate for
such studies. In the following, the detailed study on the effect
of different experimental conditions and cell parameters is
presented for the silver nanoparticle catalyst. Notably, in this

study we focus on the operation of the electrolyzer; hence, the
cathode GDEs were formed from commercially available
components (GDL, Ag catalyst, ionomer), based on earlier
reports.17,19,20

Ef fect of the Operational Parameters. The effect of the cell
voltage on the conversion rate and selectivity of CO2RR was
investigated at constant CO2 feed rate (Figure 3A). Increasing
the cell voltage leads to an increase in the overall current
density. The CO partial current density (jCO) peaks at −3 V,
while the partial current density for H2 production (jH2

) grows
monotonously with the cell voltage; hence, the hydrogen
evolution reaction (HER) becomes dominant at higher cell
voltages.
Regarding the CO2 gas feed rate, HER is dominant over

CO2RR at lower values. The jH2
decreases and reaches a

minimum value, while jCO (together with the faradic efficiency
of CO formation) increases and then peaks with the increasing
CO2 feed rate. Importantly, a partial current density for CO
formation above −250 mA cm−2 was achieved (this is an
average of multiple measurements on five different cell
assemblies, where the champion cell resulted in −300 mA
cm−2), while the faradic efficiency (FECO) was around 85%.
We emphasize that only hydrogen was formed as a byproduct;
no liquid or other gas phase products were detected. This
simplifies the further processing of the product stream, as this
syngas mixture can be directly used in the Fischer−Tropsch

Figure 2. (A) LSV curves recorded at ν = 10 mV s−1 sweep rate and (B) chronoamperometric curves recorded at ΔU = −2.75 V with different
catalyst containing cathode GDEs. The cathode compartment was purged with humidified CO2 at a flow rate of u = 150 cm3 min−1.

Figure 3. Partial current densities for CO and H2 formation (A) at different cell voltages, at a CO2 feed rate of u = 500 cm3 min−1, and (B) at
ΔU = −3.00 V, as a function of the CO2 feed rate to the cathode.
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synthesis, after adjusting the proper CO to H2 ratio using an
external hydrogen source, such as a water electrolyzer cell.52

Electrolysis of CO2 to CO in a Multilayer Electrolyzer Stack.
Assembling multilayer electrolyzer stacks, in which the cathode
compartments are connected in parallel, is a way to increase
the electrochemically active surface area without having to
increase the lateral size of the electrolyzer. Comparing the
results obtained with a single-cell electrolyzer and a stack cell
consisting of three layers in parallel connection, the partial
current density for CO formation and the CO2 conversion
were very similar at all studied cell voltages (Figure 4A). This
indicates that the CO2 gas is evenly split among the layers in
the stack and all individual cells operate with the same
performance. We note again that the layers are connected in
series electrically, and therefore the overall stack voltage can be
controlled. Measuring the individual cell voltages during
electrolysis, we found that the overall stack voltage is split
evenly among them. Furthermore, the onset voltage (note that
the stack voltage is normalized with the number of electrolyzer
layers) and currents on the LSV curves recorded with a single-
cell electrolyzer and a 3-layer electrolyzer stack in the parallel
configuration are also comparable (Figure S4). The faradic
efficiencies were also very similar: around 85% at lower cell
voltages in both cases, which decreased to 75% at −3.0 V/layer

voltage. From a technological perspective, assembling multiple-
layer electrolyzer stacks instead of parallelly operating multiple,
single-cell electrolyzers decreases the capital investment costs,
as the electrolyzer frame and the anolyte circulation loop only
has to be built once and any further cell only requires an extra
bipolar plate, insulation, and a membrane electrode assembly.
Connecting the cells in series is a completely different story.

In this case, the off-gas of the first electrolyzer layer is fed to
the subsequent layers, where (part) of the remnant CO2 is
transformed to products. Comparing the results measured with
an electrolyzer stack consisting of three cells in serial
configuration with that recorded for a single-layer cell, a
large increase (ca. 70%) in CO2 conversion was achieved even
at low CO2 feed rates, where the CO2 conversion is already
over 20% for the single-cell electrolyzer; hence, a CO2 stream,
diluted with CO and H2, reached the subsequent layers of the
stack (Figure 4B). When increasing the gas feed rate, the
difference increases drastically. At the highest studied gas feed
rate, the CO2 conversion was three times higher in the
electrolyzer stack, indicating the comparable operation of three
individual cells. Furthermore, the faradic efficiency for CO
production was above 95% in this case. We note that achieving
high conversion decreases the separation and handling costs

Figure 4. (A) CO partial current density and CO2 conversion with a one-cell electrolyzer and an electrolyzer stack consisting of three cells, in
the parallel configuration during electrolysis at different cell voltages with 433 cm3 min−1 CO2 feed rate per cell at the cathode. (B) CO2
conversion with a single-cell electrolyzer and an electrolyzer stack consisting of three cells, in the serial configuration, at different CO2 feed
rates, at ΔU = −2.75 V/cell.

Figure 5. Chronoamperometric curves recorded at ΔU = −3.00 V with u = 750 cm3 min−1 CO2 flow rate, humidified at (A) T = 85 °C and
(B) T = 60 °C, while the cell was rinsed with ca. 50 cm3 deionized water at the beginning of each hour. The CO faradic efficiency values were
calculated from the analysis of the gas products by gas chromatography.
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and, therefore, increases the value of the final gas mixture,
strongly supporting the industrial implementation of CO2RR.
Stationary Operation of the CO2 Electrolyzer. When using

anion exchange membranes and concentrated KOH solution in
CO2RR, the precipitation of K2CO3 at the cathode side is a
common issue, decreasing the performance of the electrolyzer
by blocking the gas channels and the active catalyst sites.53

Different approaches can be envisioned to overcome this
challenge. The first and most obvious one is to use pure
deionized water as anolyte instead of strong alkaline solutions.
This tactic is feasible for some AEMs,54 and with the rapid
development in this field, we envision that other membranes
will also be available to be used with pure water (just like
Nafion in water electrolyzer cells). For cells working with
KOH, dissolving the precipitated K2CO3 during operation
must be solved (without disassembling the cell), but as of yet,
no ultimate engineering solution has been developed.
We present two possible avenues here. One is to increase the

temperature of the humidified CO2 inlet and, thus,
continuously feed more water vapor into the cell (Figure
5A). The other approach is to periodically flush the cell with
liquid water (Figure 5B). In the first case, the temperature of
the water humidifier was increased to 85 °C, which led to the
stable operation of the cell after a 30 min transient period at
the beginning of the experiment. The FECO however, was
considerably smaller (65−70%) throughout the measurement,
compared to previous studies at lower inlet temperature
(Figure 3). This trend can be attributed to the increased
amount of water in the cell (i.e., higher probability of the
HER). On the other hand, when the humidification was
performed at lower temperature, a continuous current decay
was observed during the measurements, due to K2CO3
precipitation. Therefore, the cell was flushed with deionized
water at the beginning of each hour for 10 s. This rapid
washing step healed the electrolyzer stack and restored the
current to its original value (∼250−275 mA cm−2). The FECO
was around 85% through the whole electrolysis. Comparing
the current values at the end and at the beginning of each hour,
no systematic decrease and, hence, no irreversible degradation
were observed during the 8 h. Overall, both approaches avoid
the accumulation of K2CO3 precipitate. In the first case, the
elevated temperature increases both the water amount in the
CO2 stream and the solubility of K2CO3. In the second case,
K2CO3 is washed out before larger plaque could build up.

Pressurized Electrolysis of CO2 to CO. Performing CO2RR
with a pressurized CO2 inlet is technologically important from
multiple aspects. Some of the industrial CO2 point sources are
already under pressure, so the technology can be easily
implemented. In addition, a pressurized product stream can be
more easily transported, handled, and utilized.
Pressurizing the cathodic CO2 feed leads to the positive shift

of the onset potential on the LSV curves (Figure 6A),
indicating a thermodynamically more favored CO2RR process.
The current also increases slightly with the applied pressure. In
line with this, the CO formation partial current density during
potentiostatic measurements initially increases from −250 mA
cm−2 above −285 mA cm−2 with the applied pressure and then
decreases at 10 bar (Figure 6B). The decrease at high pressure
might be related to the enhanced crossover of CO2 (and
possibly CO) through the employed anion exchange
membrane; a notable decrease (above 20%) was observed in
the gas flow rate during these measurements, even without any
electrochemical polarization. More importantly, the selectivity
for CO formation increases remarkably under pressure; a
faradic efficiency of 95% (as compared to ∼85% at
atmospheric pressure) was found for CO2RR even at 1 bar
CO2 overpressure, which is not influenced by the further
pressure increase. The operation of the electrolyzer was stable
under intermediate pressure (4−6 bar) during the tests, for
tens of hours.
The effect of pressure on the electrochemical properties of

the electrolyzer cell is rather complex. The most important
factors are the following: (i) the applied pressure presses the
GDE on the membrane surface, hence ensuring better contact
between them, (ii) the CO2 gas is forced to enter into the
GDE structure, (iii) smaller relative amounts of water enter the
cell with the humidified, pressurized CO2 stream, and (iv) the
concentration (activity) of the CO2 increases. As one can see,
some of these effects are simply mechanical while others are
chemical, and it is not trivial to deconvolute them.
To further emphasize the complex effect of pressure,

measurements similar to what is shown Figure 6 were
performed with an electrolyzer built of the same components,
but which was significantly underperforming compared to the
average cells. Surprisingly, the effect of pressure was much
larger in this case! A great current increase was seen in the
currents on the LSV curves with increasing pressure (Figure
7A). The jCO showed a volcano type dependency, while the

Figure 6. (A) LSV curves recorded at ν = 10 mV s−1 sweep rate and (B) partial current densities for CO and H2 formation, and the ratio of
these during electrolysis at ΔU = −3.00 V, both as a function of the differential CO2 pressure. The cathode compartment was purged with
humidified CO2 at a flow rate of u = 750 ncm3 min−1.
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reaction selectivity increased continuously with the pressure
(Figure 7B). Interestingly, the jCO and the FECO is very similar
to what was shown for the well performing electrolyzer cells at
intermediate pressure (p = 6 bar).
Two important conclusions can be drawn from these

observations. First, when reporting the effect of pressure, it is
very important to investigate and exclude all trivial effects (e.g.,
the compression of the GDE) and study cells which already
have good performance at atmospheric pressure. Second, an
electrolyzer cell underperforming at atmospheric pressure, in
which the dimensions of the components are not perfectly
matched, can function the same way under pressure as a
properly assembled cell.
In summary, we developed a direct CO2 gas-fed, zero gap

electrolyzer cell, which can operate with different catalysts. By
employing GDEs formed of commercially available compo-
nents, CO formation partial current densities above −250 mA
cm−2 were routinely achieved. By pressurizing the CO2 inlet,
this could be increased close to −300 mA cm−2, and the CO to
H2 ratio was extraordinarily high in this case (above 20). The
assembly and operation of a multilayer electrolyzer stack of any
CO2 electrolyzer was demonstrated for the first time. We
highlighted two possible scenarios for assembling multiple cells
in an electrolyzer stack: one in which the electrolyzer layers are
connected in parallel in terms of the gas feed, where hence the
operation of electrolyzer stack is identical to the sum of
multiple single-cell electrolyzers, and another one, where, when
connecting the layers in series, the conversion rate increased
significantly compared to a single-cell electrolyzer. These
insights might trigger further development in scaling-up this
fledging technology, which will bring us closer to its industrial
implementation.
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*E-mail: endrodib@chem.u-szeged.hu (B. Endrődi).
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