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Abstract

Background: This paper presents a conditional random fields (CRF) method that enables the capture of specific
high-order label transition factors to improve clinical named entity recognition performance. Consecutive clinical
entities in a sentence are usually separated from each other, and the textual descriptions in clinical narrative
documents frequently indicate causal or posterior relationships that can be used to facilitate clinical named
entity recognition. However, the CRF that is generally used for named entity recognition is a first-order model
that constrains label transition dependency of adjoining labels under the Markov assumption.

Methods: Based on the first-order structure, our proposed model utilizes non-entity tokens between separated
entities as an information transmission medium by applying a label induction method. The model is referred to as
precursor-induced CRF because its non-entity state memorizes precursor entity information, and the model's structure
allows the precursor entity information to propagate forward through the label sequence.

Results: \We compared the proposed model with both first- and second-order CRFs in terms of their F;-scores, using
two clinical named entity recognition corpora (the i2b2 2012 challenge and the Seoul National University Hospital
electronic health record). The proposed model demonstrated better entity recognition performance than both the
first- and second-order CRFs and was also more efficient than the higher-order model.

Conclusion: The proposed precursor-induced CRF which uses non-entity labels as label transition information
improves entity recognition F; score by exploiting long-distance transition factors without exponentially increasing the
computational time. In contrast, a conventional second-order CRF model that uses longer distance transition factors
showed even worse results than the first-order model and required the longest computation time. Thus, the proposed
model could offer a considerable performance improvement over current clinical named entity recognition methods
based on the CRF models.

Keywords: Clinical named entity recognition, Conditional random fields, High-order dependency, Clinical natural
language processing, Induction method
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Background

With the recent application of artificial intelligence to the
medical field, health information systems are expected to
handle medical data in the form of unstructured text. The
unstructured clinical text conveys descriptions of patients’
health information, including their histories of illness and
hospital treatment. Salient concepts that express a patient’s
health status are represented by named entities (NEs) in
the text. The identifying textual mentions of health-related
concepts, termed clinical named entity recognition (NER),
is a sub-problem in the field of clinical natural language
processing (NLP) [1]. The health information that requires
identification can range from a single entity to an elaborate
description containing many entities. Heterogeneous clas-
ses of clinical entities have been employed in recent stud-
ies; these are strongly related to clinical activities, such as
medical examination, medication, and diagnosis [2-7].

The NER problem consists of identifying spans of entities
and attaching labels indicating the appropriate semantic
class, as shown in Fig. 1. In the NER task, the text can be
seen as a word (or token) sequence, and the most advanced
NER models are therefore based on sequence labeling ap-
proaches that use machine learning methods [3, 4, 8, 9].
The concept of conditional random fields (CRFs) [10] has
demonstrated promising results in many sequence labeling
problems, including NER [3, 10-14], as well as a deep
learning architecture applied to the NER task [15, 16]. CRF
models are particularly effective for text processing because
they learn transition factors between labels of single tokens,
assuming that the current label is conditioned on both
current observations and the immediately preceding label.
The first-order constraint is applied in order to reduce
computational complexity and to maintain the model’s
simplicity.

However, the constraint on the labels’ adjacency pre-
vents the model from expressing transition dependency
between entities separated by a long distance. NEs tend
to be separated by non-entity words in NER problems,
and this innate attribute inhibits the first-order CRF
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model’s ability to capture dependencies between NE la-
bels when the two entities are separated by non-entities
that are outside tokens [17]. Therefore, CRF models
using the first-order transition factor have difficulty in
capturing higher-order interdependencies of NEs.

More specifically, we assumed that 1) named entities
are prevalent in clinical texts, 2) the entities in clinical
texts are semantically related, thus the information of
preceding entity’s label would be an important feature
for an NER model’s prediction of a certain label (at a
time step), 3) the labeling mechanism of the CRF model
that uses label transition information as one important
feature would be suitable for clinical NER. However,
according to the study published by Dan Roth’s group
(CoNLL 2009), it is limited to use the transition infor-
mation, especially for NER in the first- or second-order
model based on Markov assumption because the named
entities are generally separated each other in a text.

Previous NER studies have focused on methods of
exploring long-distance dependencies in NER while main-
taining computational tractability. Conventional high-
order CRFs is known to be intractable in practice because
they multiply the feature space and require more training
data to prevent the data sparseness problem [18]. Sarawagi
and Cohen proposed a semi-Markov CRF [19] that treated
the same consecutive labels as a segment and used the
label transition between adjoining segments. Subsequent
studies have proposed using pre-defined label patterns to
implement high-order CRFs [20-22]. However, these
methods suffer from limitations associated with the
management of entity transitions within non-entity labels
of arbitrary length.

This study focuses on using the interdependency of
NEs separated by an arbitrary number of non-entity to-
kens, a condition that is predominant in clinical texts
but rarely captured by first-order CRF models. In order
to minimize the increase in the model’s computational
complexity associated with the extraction of long-
distance label transition information, this study proposes

Original text (punctuation is separated)

2 years ago NR OPD due to mixed dementia F/U donepezil 1t qd medication .
3 months ago ER visit due to sudden weakness , he has been taken aspirin+Plavix medication .

Perspective of tokens and semantic labels

token | 2 I years | ago | NR l OPD | due to mixed | dementia I F/U donepezil I It | qd I medication

label Tiime Visit [0} [0 Disease Drug [0}
token 3| months I ago | ER | visit | due | to | sudden | weakness | , | he | has | been | taken | AspirintPlavix [ medication
label Time Visit | O o | o Symptom o|lo| O 0 o Drug o

Fig. 1 NER perspective of a text; the label O represents a non-entity
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an induction method that allows information to propa-
gate from one state to state between two entities
through non-entity sequence within a single instance.

Concentrating on the CRF model study rather than
the medical NER, this paper would briefly introduce re-
cent studies in medical NER. Deep-learning based
methods for clinical concept identification are actively
studied especially based on recurrent neural network
structures [16, 23—28]. In the long short-term memory
and CRF architecture, the CRF is still used for labeling
of a sequence because the CRF model can jointly use
neighboring tags in its output decision [15]. In order to
automate medical NER a research [29] has been pro-
posed to incorporate active learning. Once named en-
tities are extracted, the identified terms can be utilized
in order to derive more information beyond textual data,
such as temporal information extraction [3, 30], drug-
disease relationship recognition from large scale medical
literature [31], and identification of risk factors related
to a particular disease [32]. In order to support re-
searchers requiring NER modules, off-the-shelf medical
NER programs are recently published such as CLAMP
[33] and MetaMap Lite [34].

The remainder of this paper is organized as follows.
The Methods section details the proposed CRF model
and the model evaluation method. The Results section
presents the evaluation results, and the Discussion sec-
tion considers several observations related to the use of
the proposed model in clinical NER. The Conclusion
section summarizes the study’s main findings.

Methods

Conditional random fields

In the conventional CRF model applied to NER, a textual
instance (i.e., sentence) can be represented as a pair (x, y)
where x is an observed feature sequence including one or
more words (tokens) and y is the feature sequence’s corre-
sponding label sequence. Because the text is a linear
sequence of tokens, the CRF for NER takes the form of a
linear chain. The length of x is the number of tokens, and
the sequence y has the same length as x. The label is hid-
den, and a hidden state value set consists of the target entity
labels and a single non-entity label for non-entity tokens.
The CRF model then represents the conditional distribu-
tion P(y|x) as an equation of feature functions as follows:

p0l) = 5 TI, e {3 0oy}
&

where f; is a k™ arbitrary feature function having the
corresponding weight 6;, K is the number of feature
functions, ¢ is the time step, T is the number of tokens
in an instance of x, and Z(x) is a partition function
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summing the numerator for all possible y sequences
[35]. The learning objective is to find the weight set that
maximizes the conditional distribution. The function f; is
a binary indicator function that has a value of 1 only if the
function matches the target condition, and is otherwise 0.
Dependencies between random variables are presented in
the form of feature function fi in the CRF; the feature
functions are either transition factors or observation factor
functions. The transition factors in the CRF model take
the form of f; '(y, 3, x) = 1;y_y1;y - where i and j are cer-
tain label symbols having transition relationship according
to this function. The observation factors takes the form as
Eq. (2) where i and o are certain symbols having an expli-
cit relationship according to this function:

fkio(yay’ax) = l{yzi}l{xzo}.. (2)

Based on this definition of the feature function, the CRF
model explicitly represents not only observation informa-
tion but also label transition information for sequence
labeling. For instance, presume a set {A, B, O} as the label
symbol set; assign A or B to NEs, assign a label symbol O
to non-entity tokens, and presume a label sequence of
length 4, [A, B, O, B], where the first occurrence of entity B
follows entity A, and a single non-entity token exists
between the two entity Bs. The first-order CRF models only
those label transitions between adjoining state labels, that
is, the label transition data {(A, B), (B, O), (O, B)}, in which
the transition between labels A and B is explicitly
expressed. Presume another label sequence [A, O, ...O, B]
where entity A precedes entity B by some distance and an
arbitrary length of consecutive non-entity tokens are be-
tween the two NEs. The first-order CRF model learns only
the label transitions {(4, O), (O, O), (O, B)} from the data, in
which the dependency (A, B) is not explicitly cap-
tured by the model and the fact that entity A pre-
cedes entity B is not learned during the training time.
Because the CRF model treats single observation to-
kens as single time steps in a sequence, the gap size
between two separate entities is broadened by the
number of intermediary non-entities, as shown in
Fig. 2.

In Fig. 2, each circle denotes a random variable for la-
bels, and each edge denotes that there is a dependency
between connected random variables. In this structure,
labels have dependency only between neighbors. Thus a
dependency for entity prediction between the label sym-
bols ‘Symptom’ and ‘Drug’ for predicting the word ‘ASA’
seems to be ignored. In the case of the ‘ASA; we sus-
pected that the preceding label information could
provide additional information for prediction of a par-
ticular label for the word if the information can be
delivered forward.
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Perspective in the linear chain CRF

g
Token dit sudden  weakness

~ 000000000
s he has

been taken ASA

Sentence I

d/t sudden weakness , he has been taken ASA |

Fig. 2 Example of entities separated by non-entity words in the CRF model (S: symptom; D: drug; O: non-entity)

*S: Symptom, D: Drug, O: Outside

Precursor-induced conditional random fields

In order to improve the CRF model for NER applica-
tions, this study introduces a precursor-induced CRF
(pi-CRF) model to capture specific long-distance transi-
tion dependencies between two NEs separated by mul-
tiple non-entities. The pi-CRF model:

e Uses non-entity labels to propagate transition infor-
mation between separated NEs;

e Retains the first-order model structure to reduce the
model’s computational complexity than the second-
order or higher-order CRF;

e Focuses on label subsequences with the [entity,
outside”, entity] pattern, as shown in Fig. 3 (a),
where the outside* notation denotes one or
successive non-entity label symbols;

e Adds a memory element to the hidden state
variables to represent those states labeled as non-
entities, such that the initial outside label in a
non-entity subsequence propagates its explicit
first-order dependency on its adjacent entity to

the next outside label, which in turn propagates
the information to the next outside label, as
shown in Fig. 3 (b); and

e Uses an induction process to transmit the
information from the first entity through multiple
outside label sequence to the second entity state,
even though the model uses the first-order depend-
ency (Fig. 3 (b)).

e Modifies the observation feature functions of the
CRF in order to share observation symbols among
outside label symbols (Eq. 4).

Label induction

In the pi-CRE, a state with an outside label binds with an
additional memory element and behaves as an informa-
tion transmission medium, delivering information about
the presence or absence of the preceding entity forward,
which requires the expansion of the hidden state value
set (label symbols). The entity label symbols are col-
lected from the training data, and the expanded state
value set is eventually derived by a concatenation of

Q

S

b
<

(a) Label sequences of named entities separated by non-entities

=

outside

time step

induced

(b) Concept of the propagation of precursor-label information in the pi-CRF

induced

>

observable

Fig. 3 The transformation from conventional first-order CRF to precursor-induced CRF
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entity label symbol and the outside label symbol. The
concatenated outside label symbols thus indicate that
the outside label follows a specific entity label. As a
naming convention, we use label[O]" to implicitly indi-
cate that the sequence of O (outside) labels follows the
concatenated label series. In the example, the symbol
A[O]" is one outside label symbol that indicates that an
entity A precedes itself, and O[O]" is one fragmented
outside label symbol indicating that no entity has
occurred before this non-entity state. The CRF models
distinguish the features for observation symbols and the
label symbols. Thus, any types of label symbols do not
violate the token symbols, and any label naming conven-
tion can be used.

The form of the pi-CRF is derived from Eq. (1), and
the conditional probability distribution of the CRF
model extension takes the form of feature functions as
follows:

T

p(yv('l'x) = %'szl exp{Zleekfk(ynyphxtv“tvalfl)}’
(3)

1 define y[] and fill label sequence

2 define a[] and fill non-entity labels with length of y
3 IF y[0] is non_entity:

4 y[0] = concat(al[0], '[O]+")

%iterate 5-10 for t in range(l,len(y))

5 IF y[t] is non_entity:

6 IF y[t-1] is non_entity:

7 alt] = a[t-1]

8 ELSE:

9 aft] = ylt-1]

10 y[t] = concat(alt], '[O]+")

Code 1. Pseudocode of the pi-CRF model.

where the variable a stores the induced label informa-
tion, and the value of a, is activated by the value of a,
and y.. The conjoined variables a and y are eventually
used to derive a newly induced label sequence: once a; is
activated, a, transmutes the value of y, (see the Code 1).
Based on this model, the dependency of label transition
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is engaged within only adjacent tokens (i.e., y, and y)
because this model is designated to keep the first-order
structure. Thus, the information exists flows forward
with the induced outside label by the first-order transi-
tion. This structure makes the conveyed information
flows forward regardless of the distance.

This induction process subsequently expands the ori-
ginal label symbol set inside the model, producing newly
induced and multiple outside label symbols instead of
the single outside label symbol. For example, the process
modifies an original label sequence [A, O, ---O, B] to [A,
A[O]*, ---A[O]", B] according to Code 1. This transform-
ation helps the model learn long-distance transitions be-
tween successive NEs even in the first-order form: from
the modified example sequence, the model can learn
label transition data {(A[O]*, B)} where the entity B de-
pends on the non-entity taking entity A as its precursor.
This process also generates a trellis structure (Fig. 4 (c))
that is slightly more complex than the trellis generated
by the conventional first-order CRF model (Fig. 4 (a)),
but simpler than the trellis generated by a conventional
second-order CRF model (Fig. 4 (b)). The CRF models
generally have as many hidden state options (represented
by the nodes in Fig. 4) as there are variables at each time
step, and each combination of hidden states denotes a
path forward. If N is the number of hidden states in the
original first-order CRF model, the pi-CRF model intro-
duces N additional new states; however, this increase in
computational complexity is relatively moderate com-
pared to the increase induced by second- or higher-order
CRF models. In addition, if the IOB2 tagging scheme [36]
is applied to the pi-CRF model, the increase in the num-
ber of newly induced hidden states is halved.

One of the main factors determining the CRF model’s
complexity is the model’s graphical structure. The struc-
ture can be presented in the form of a tuple. Thus, the
structures of the first-order CRF can be presented in

-

() Trellis of the first-order CRF  (b) Trellis of the second-order CRF () Trellis of the precursor-induced-CRF
Q00 29828 o O O O
a0 ON O8O
e  -9000
n® @ @O
0 0 ® "o o ® o @U@L®
sn @ @ @
9se . Q0O O
e @@ <@
- @ @ @ w @ @ @ - @ @ @
t=0 1 2 t=0 1 2 t=0 1 2
Fig. 4 Trellis graphs generated by different CRFs; each circle indicates random hidden state variables at each time step, and lines indicate the
transition paths among the labels. The small circles in (c) are the memory elements added to the hidden states for the non-entity label
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(Ye.1» ¥ v xp). Because the relationship between ys is re-
lated to transition, the number of transition pair (y 1, y)
can be N?. It means that at least N* calculations are re-
quired for each time step of a sequence in both of the
training and testing time. In the same way, the graphical
structure of the second-order CRF can be presented in
(Ve Ye1, ¥ v %) and the transition pair (.2, y.1, ¥ ) de-
rives at least N* (=N? times N?) calculations for each
time step in training and testing the second-order
model. According to the formulation of the pi-CRF (Eq.
2), the variable a does not act as a hidden variable but
interacts with the variable y in order to expand the pos-
sible values of the variable y. This system allows the pi-
CRF to operate in the first-order structure and it keeps
the model’s complexity feasible.

Observation symbol sharing

It is worth addressing one of the attributes of the pi-
CRF. The model uses modified observation feature func-
tions. The observation feature function £° (Eq. 2) dir-
ectly implies that a certain label i has ‘one-to-one’
relationship with a certain observation symbol o. If a
label symbol does not have a relationship with a particu-
lar observation symbol, its relationship is not trained.

The label induction process makes multiple outside
label symbols (i.e., ‘label[O]+ symbols), instead of using
one single outside symbol (i.e., ‘O’ symbol for the outside
label). This induction process would interrupt an outside
label symbol to have relationships with whole observa-
tion symbols related to non-entities.

Finally, each outside label symbol has relationships
with only a portion of observation symbols. For the same
training data, it is generally known that machine learn-
ing models with more hidden states are more likely to
experience data sparseness problems because of their in-
creased feature dimensions [37]. Likewise, in our devel-
opment period, we observed that the first-order CRF
performs worse if the conventional model was trained
with the induced label pattern.

In order to prevent the performance decrease, the
multiple outside symbols are allowed to share an obser-
vation symbol each other in the pi-CRF model, accord-
ing to the following observation feature function:

fkio <Y» Y, ’ X) = l{xzo}'(l{isﬁauzside and y=i} + l{ieautside and yevutsidz})
(4)

The second and the third indicator terms in the right-
hand side determine whether the y value is an outside
label symbol or not. If the i (the corresponding label
symbol of the function f) is not outside symbol, then
this equation tests whether the y value is equal to i. Con-
trary, if the i is an outside symbol, then the third indica-
tor term has value 1 as long as the value of the y is an

(2019) 19:132

Page 6 of 13

outside symbol. Unlike the feature functions in the con-
ventional CRF constrain ‘one-to-one’ relationship be-
tween a label symbol and an observation symbol in a
feature function, the third indicator term allows ‘many-
to-one’ relationship between whole outside label symbols
and one observation symbol.

In the pi-CRF, the model used the Eq. (4) for its obser-
vation feature function instead of using the Eq. (2) that
is used in the conventional CRF. By way of illustration,
presume a token, “doctor,” occurred with three outside
label symbols (O[O]", A[O]*, and B[O]") in the training
set. According to the definition of the observational
feature function constraining one-to-one relationship, a
first-order CRF has three distinct feature functions
fl°(x = doctor, y = O[O]"), f,°(x = doctor, y = A[O]"), and
fl°(x = doctor, y=B[O]"). Although the original CRF
treats the three feature functions independently, the pi-
CRF has one single feature function for the observation
symbol and the outside label symbols, for instance,
filo(x = doctor, y = outside symbol).

Model implementation

Both the original and the pi-CRF models were imple-
mented using Java. The basic CRF structure and algo-
rithms were implemented in MALLET [38]. The pi-CRF
model was trained using the original linear chain CRF al-
gorithms without modification because the graphical
architecture of the pi-CRF model is fixed as a template for
each time step in the same manner as in the original CRF
model. In order to train the pi-CRF model, the L-BFGS
optimization method [12] and /2-regularization [39] were
used to exploit the conventional CRF model’s most advan-
tageous features [35]. Furthermore, the Viterbi algorithm
was used for inferences from unlabeled sequences. The
executable files are available online."

Parameter tuning

In order to train both models properly, the model pa-
rameters were regularized during the development
phase. In both the original and the pi-CRF models, /2-
regularization [39] was used in order to avoid overfitting,
and the form of regularization is as that in Eq. 5:

K Oi
_Zkzl 202’ (5)

where K is the number of feature functions and 6 is
the weight of the kK™ feature function f, and o is the
hyper-parameter for the regularization that adjusts the
amount of penalty. The regularization term is applied to
a log-likelihood form of the CRF models and penalizes
large weights.

The executable jar files are available in https://github.com/jinsamdol
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During the model development process, the training
data were split by 8:2 for each training and development
set and the parameter ¢ was chosen to provide the best
F;-score for the development set. The parameter tuning
was independently performed on each data set, and the
third feature set was used during the tuning process.

Results

Dataset description

All the experiments were performed on the NER sets in
clinical and general domains: English clinical texts (i2b2
2012 NLP shared task data [3]), rheumatism patients’ dis-
charge summaries obtained from Seoul National University
Hospital (SNUH) [40], and the CoNLL-2003 NER shared
task corpus [41]. The documents in the SNUH set were
written using English and Korean. The discharge summar-
ies were annotated using the IOB2 tagging scheme [36].

Although the original annotation in the i2b2 2012 data
contains more semantic classes, this evaluation was con-
ducted using the problem, test, and treatment entities.
For the SNUH corpus, the entities of symptom, disease,
clinical lab test, medication, and procedure/operation
were used. We are interested in identifying clinical
events related to a patient’s clinical events. Thus, we
used the clinical semantic classes listed above in our
evaluation. For the CoNLL-2003 data, the entities of
location, person, organization, and miscellaneous were
annotated from the general domain news articles.

Tables 1 and 2 show the data and annotation statistics for
each data set. The training and testing sets in the i2b2 2012
and the CoNLL-2003 NER sets were divided following the
official distribution set by the data source administrators.

As we assumed that a significant portion of the NEs is
separated in sentences, we measured the word distance
between the entities in the data sets. The distance de-
pendency was measured within each instance. Table 3
shows examples of the distances between entities in the
i2b2 corpus and Fig. 5 shows the distributions of dis-
tances between entities in the entire data set for each
corpus. The median distance value between entities was
3 and the mean values were within the range of from 3
to 5, indicating that the NEs in the data sets tended to
be separated by 3 to 5 non-entity tokens. The data also
indicates that the number of entities within the first-

Table 1 Data specification

Corpus Domain  Set Article  Sentence  Token Entity
i2b2 2012 Clinical ~ Train 190 7,258 94,836 11,239
Test 120 5547 78564 9,623
SNUH Clinical ~ Train 196 11,669 116,402 18,383
Test 193 11,042 107,666 17,125
CoNLL 2003 General ~ Train 946 14,987 203,621 23499
Test 231 3,684 46,435 5,629
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Table 2 Annotation statistics
a) i2b2 2012
Set Problem Test Treatment
Train 4,962 2,558 3,719
Test 4,270 2,140 3,213
b) SNUH
Set Symptom  Test Disease Medication  Procedure
Train 3,923 4,559 5,084 3,642 1,175
Test 3,737 3917 4,828 3,496 1147
¢) CoNLL 2003
Set Location Person  Organization  Miscellaneous
Train 7,140 6,600 6,321 3438
Test 1,656 1617 1,662 694

order range is less than the number of entities within
the second- or higher-order ranges. In addition, the ra-
tios of the number of entities having transition depend-
ency to the total number of entities were 0.85, 0.73, and
0.78 for i2b2 2012, SNUH, and CoNLL2003 data sets,
respectively. These values indicate that in most cases,
entities tend to be interrelated in an instance, rather
than being present as single entities.

Feature settings

Three types of feature settings were investigated in this
evaluation, as summarized in Table 4. The setting #1 is
the simplest available, and the setting #2 is the configur-
ation in which character-wise prefixes and suffixes could
be exploited. Although these two settings use only simple
features, these configurations reduce the potential bias
that the features could exert on the performance compari-
son. The setting #3 implemented features used in previous
evaluations of NER methods for each data set [17, 40, 42];
some particular features that are easy to implement were
selected for use here. Also, “Token” and “n-gram” are typ-
ical features used in NER. The morphologic information
used included character-wise affixes (i.e., the first two
characters of a token), capitalization patterns (e.g., all

Table 3 Example sentences of the entity distances (single:
entity not having a precursor)

Type Example sentence with entity annotation
single The patient is a 28-year-old woman who is
[HIV positivelyropiem for 2 years .
distance  With [intravenous hydration]yeatment [the BUN]es;
0 and ...
distance ... because of [pancytopenialyoplerm and
1 [Vomiting]problem on [DDlyreatment
distance  She was brought in for [an esophagogastroduodenoscopylest

8 on 9/26 but she basically was not sufficiently
[sedated]ieatment @and readmitted at this time for
[a GI work-upliest -
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(a) i2b22012 (b) SNUH

(c) CoNLL 2003
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capitalized or capitalization at the word beginning) [17].
Matching indicates whether a token matches a controlled
vocabulary, e.g., the previous token is an obvious modifier
of the current token, or a token is matched to a list consist-
ing of the first entity tokens in the training data (fre-
quency > 10) as performed by Li, et al. [43].

Performance evaluation

We used the three NER datasets to compare the proposed
model structure with the first- and the second-order linear
chain CRFs, and semi-Markov CRF [19], high-order CRF
[18] that are variants of the CRF leveraging higher-order
label transition dependency.

At first, we compared the pi-CRF with the first-order
models. Table 5 shows the F; scores of the first-order
CREF, the first-order CRF trained with the induced labels,
and the pi-CRF for each test set. F; score is harmonic
mean of the precision and recall scores. We first tested
the models on all instances in each data set, and then
tested the models on only those instances having two or
more entities. The table shows that the proposed model
structure offers a demonstrable improvement over the
first-order models. The pi-CRF showed higher F; scores

for all feature settings on both the i2b2 2012 and the
SNUH data sets.

In addition, the first-order CRF with induced labels shows
the worst performance than others. Even though the in-
duced label patterns can be easily obtained in the first-
order model, we can see that the use of the label induction
without the ‘observation symbol sharing’ in the conven-
tional model rather negatively affects its performance.

We also evaluated higher-order CRF models such as
the conventional second-order CRF, semi-Markov CRF
[19] and the high-order CRF [18, 20] implemented by A
Allam and M Krauthammer [44]. The semi-Markov CRF
and the high-order CRF are CRF variants using higher-
order transition dependencies. The two CRF variants
were trained with the stochastic gradient descent for 50
epochs. The results are reported in Table 6. As shown in
the table, the pi-CRF shows a bit better performance
than the other models in several settings and the pi-CRF
also shows similar performance with the variants in a
complex feature set.

In addition, we may observe the performance of the
higher-order models including the pi-CRF were de-
creased in the general domain set (CoNLL 2003) in the
simple feature settings. When we compare this result

Table 4 Summary of the feature settings. (The w denotes the window size. If the value is absent, only feature of the current token is
used. The n denotes the n of the n-gram. The ‘len” denotes the length of affixes. The matching features denote the result of

controlled vocabulary matching)

Set Token Norm-token n-gram character affix capitalization POS/Chunk Matching
#1-context w=3 w=3
#2-morph w=3 w=3 len=2~3
w=3
#3-i2b2 w=5 w=5 n=2 len=2~7 w=1
w=5 w=3
#3-snuh w=5 w=3 n=2 len=2~3 modifier /control
w=5
#3-conll w=5 len=3~4 w=5 n=1

w=5
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Table 5 F, scores of the first-order models and the pi-CRF for each corpora. The first value (‘whole instance’) is F; score with whole
test set and the second value ('distanced instance’) is F; score evaluated only with instances having transition dependency between

NEs. (bold: best performance, shaded: pi-CRF)

Feature Models i2b2 2012 SNUH CoNLL 2003
whole distanced whole distanced whole distanced
instance instance instance instance instance instance
Set 1 1st-order CRF 67.22 68.24 7475 73.20 60.68 62.19
1st-order CRF with induced 66.60 67.69 74.09 72.85 23.38 15.24
labels
pi-CRF 67.29 68.43 75.50 74.43 4554 4341
Set 2 1st-order CRF 7161 72.85 7581 75.04 6843 72.93
1st-order CRF with induced 70.73 71.98 75.24 7436 44,90 41.89
labels
pi-CRF 71.99 73.35 76.04 75.29 69.61 7231
Set 3 1st-order CRF 7255 7397 76.18 75.06 82.57 83.13
1st-order CRF with induced 71.25 72.75 7537 74.18 80.81 81.55
labels
pi-CRF 72.58 74.04 76.24 75.33 82.08 82.76

with the corresponding tests in Table 5, the pi-CRF per-
forms worse than the conventional models for the
CoNLL data, though, we may interpret the performance
decrease of the higher-order models in naive feature set-
ting might be expected.

Table 7 compares the proposed model’s training and in-
ference times using the feature setting #3 with the conven-
tional models. The table shows the numbers of parameters,
states, elapsed training time, training time per iteration,
and elapsed inference time. These values indicate that the
pi-CRF design was slightly more complicated than the
first-order CRE, although the proposed design was less
complicated than the second-order CRF while still

exploiting the transition information between NEs sepa-
rated by long and arbitrary distances.

Result analysis

We also examined the model’s behavior on the test data set.
Table 8 shows the numbers of predicted entities and correct
predictions on each held-out data set, using feature setting
#1. For the clinical data sets, the models that used long-
distance transition dependency (i.e., the second-order and
pi-CRF) tended to predict more entities than the first-order
model, and the pi-CRF model correctly predicted more en-
tities than both the first- and second-order CRF models,
resulting in an improvement in recall performance: + 0.7

Table 6 F, scores of higher-order CRF models and pi-CRF for each corpora. The first value (‘whole instance’) is F; score with whole
test set and the second value ('distanced instance’) is F; score evaluated only with instanced having transition dependency between

NEs. (bold: best performance, shaded: pi-CRF)

Feature  Models i2b2 2012 SNUH CoNLL 2003
whole instance  distanced instance  whole instance  distanced instance  whole instance  distanced instance
Set 1 2nd-order CRF 69.46 70.88 7343 7221 58.34 54.52
semi-Markov CRF  67.87 68.91 7344 7161 3731 3413
high-order CRF 68.38 69.52 73.50 71.69 36.97 33.87
pi-CRF 67.29 6843 75.50 74.43 45.54 4341
Set 2 2nd-order CRF 70.99 72.31 74.31 7327 73.21 7226
semi-Markov CRF 7219 73.54 76.01 74.87 63.19 63.32
high-order CRF 71.50 72.74 76.11 74.97 63.56 63.76
pi-CRF 72.30 73.61 76.20 75.47 69.61 72.31
Set 3 2nd-order CRF 71.75 73.01 7517 74.05 83.13 83.96
semi-Markov CRF 69.30 70.73 76.70 75.79 8247 83.29
high-order CRF 69.26 70.64 76.73 75.91 82.18 82.80
pi-CRF 72.58 74.04 76.28 7545 82.08 82.76




Lee and Choi BMC Medical Informatics and Decision Making

(2019) 19:132

Page 10 of 13

Table 7 Efficiency test results. The numbers of parameters and states indicate the model's size. The elapsed training/inference times
indicate the model's speed. (shaded: pi-CRF)

Data Model Parameter State Elapsed training time (sec) Training time per iteration (sec) Elapsed
inference time (sec)
i2b2 1st-order CRF 442,705 8 1,550 125 1.7
2nd-order CRF 581,604 64 6,819 554 57
pi-CRF 442,768 1 3,751 17.0 2.1
SNUH 1st-order CRF 396,245 12 2,946 195 19
2nd-order CRF 495,772 144 27,388 139.7 93
pi-CRF 396,400 17 6,231 23.6 2.1
CoNLL 1st-order CRF 313,672 10 4,031 19.1 06
2nd-order CRF 431,044 100 24,828 1736 26
pi-CRF 313,776 14 13,512 294 0.7

and + 1.13 for the i2b2 and SNUH, respectively. The final
Fy-score of the pi-CRF was improved than the first-order
model, and we may indicate that the improvement of the re-
call consequently affects the improvement of the F;-score of
the pi-CRF. However, the models that used long-distance
transition dependency (the second-order and the pi-CRF)
showed the opposite behavior on the general data set, pre-
dicting noticeably fewer entities than the first-order model,
although most of the higher-order models’ predictions were
correct. Thus, the precision performance of the pi-CRF
showed an improvement of + 16.4 for the CoNLL set, even
though the recall performance was relatively low.

The models’ expectation performance were add-
itionally analyzed along the distances from the pre-
ceding entities. Trying to analyze the models
according to the distance between the entities, we in-
evitably used the recall. Because this evaluation of the
models with recall alone has its limitations, so this
result was presented as an auxiliary indicator. The
initial recall scores were calculated only for the en-
tities not having precursors, and then the recall
scores were updated sequentially by adding entities

along the distances from 0 to the maximum distance
for each data set. Figure 6 shows the analysis result.
The graph of the models moved similarly along with
the distance between entities: according to this figure,
we can observe the recall scores of the CRF decrease
as distance increases. The CRF models seem to miss
the entities following when two entities are consecu-
tive. We could not observe a significant performance
improvement of the pi-CRF compared to other
models. However, the pi-CRF shows better results in
this result when this model was compared with the
first-order CRF that uses a similar graphical structure
with the pi-CRF. Especially, the performance of the
first-order model, which was trained with induced la-
bels, was remarkably decreased according to the dis-
tance. The use of the induced label is easy in the
conventional model, but, it would not guarantee the
performance improvement in the model without the
observation symbol sharing. The models’ recall scores
have risen sharply at the points where distance is 1
in the i2b2 2012 and CoNLL. There is a small num-
ber of the entities having gap (order) value as 0 in

Table 8 The numbers of the models’ expectation and the correct on each held-out set. (shaded: pi-CRF)

Data Model Whole instances Distanced instances
gold expected correct gold expected correct
i2b2 (clinical) Tst-order CRF 9,623 7,361 5,708 8552 6,188 4,927
2nd-order CRF 7,785 6,046 6,547 5,245
pi-CRF 7,542 5,775 6,397 5012
SNUH (clinical) Tst-order CRF 17,125 15,326 12,128 12,520 10,813 8,540
2nd-order CRF 15,702 12,053 11,088 8,524
pi-CRF 15516 12,322 11,012 8,758
CoNLL (general) 1st-order CRF 5,629 3,785 2,856 4331 2,693 2,184
2nd-order CRF 2,778 2,529 1,986 1,799
pi-CRF 1,855 1,704 1,280 1,218
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Parametric analysis of recall versus distance
i2b2 2012 SNUH CoNLL 2003
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Fig. 6 Recalls along the distances between named entities in each corpus. The y-axis denotes recall score, numeric labels on the x-axis denote
sets of entities having outside labels between the entity and its precursors as much as the numbers. (feature set: set #3)

both data collections: the numbers of entities having
gap value as zero are 50, 30, and 707 in the i2b2,
CoNLL, and SNUH data respectively.

Discussion

In this study, we investigated the performance of the pi-
CRF model which is a newly proposed variant of the
CRF model designed particularly for extracting clinical
NEs: the proposed model utilizes long-distance depend-
ency relationships between the NEs separated by mul-
tiple non-entities in the CRF. The model fragments the
non-entity state into fine-grained non-entity states and
treats them as an information transmission medium
based on the first-order linear chain CRF structure. The
evaluation results showed that the proposed pi-CRF
model is more effective at clinical NER. Although the pi-
CRF model was slower than the first-order CRE, it was
significantly faster than the second-order CRF model
even while expressing higher-order transition dependen-
cies between NEs.

Higher-order transitions are expressed as fixed-size
label transitions in the conventional CRF model. Because
the NEs tend to be separated by arbitrary distances, the
conventional higher-order CRF model using a fixed-size
state transition dependency has limited ability to express
the desired information. One study of a semi-Markov
CRF [19] proposed that consecutive units with the same
label can be presented as a group although the model
could not convey the information from the separated
NEs. Based on this idea, we developed an induction
method to present consecutive non-entity labels grouped
by their precursor information. Besides, the mathemat-
ical formula (Eq. 3) used to express the proposed CRF

model was derived from a CRF model that used virtual
evidence [45], which incorporates prior knowledge of
prototypes to make the model prefer to label consecutive
values for a subsequence that matches a predefined
pattern.

In contrast, our model used the formula to extend
the hidden variables by joining two variables, y and a.
The two hidden variables are conjoined in Eq. 3: the
variables are multiplied, and they are merged into a
new hidden variable instead of using two hidden vari-
ables in the mathematics form. Because the variable a
has values only if the value of the corresponding y is
the non-entity state, the multiplication implies that
the newly derived hidden variable y’ has multiplied
non-entity hidden states and the total number of the
hidden states is expanded compared to the conven-
tional CRF.

The design of the pi-CRF model improves the CRF
model’s expressive power according to the evaluation re-
sults. The transition information is implemented as fea-
ture functions, and thus the transition information
ultimately affects the model as one of many features. Le-
veraging the high-order label transition information, the
pi-CRF shows better performance than other higher-
order CRF models in many evaluation settings. It could
be the model’s advantageous attribute that the proposed
model preserves relatively compact model complexity
than other higher-order models.

Avoiding the data sparseness problem was another sig-
nificant concern in the model design. We expected the
data sparseness problem to occur because the induction
algorithm divides a single non-entity state into multiple
states, and thus the frequency of observation features
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related to the outside label symbols was divided. In the
model development phase, we observed that the model’s
performance was inferior without the feature sharing im-
plemented by Eq. (4). For the clinical NER tasks, the re-
sults showed that the pi-CRF design increased the F;
score compared with the first- and second-order CRF
models while reducing the model’s speed loss. Further im-
provement could be achieved by testing models trained
with more sophisticated features on various data sets, or
porting the model onto the state-of-the-art neural NER
architecture with long short-term memory [15].

Conclusion

This study proposed a variant of the CRF model to im-
prove the model’s expressive power for clinical NER
problems, in which NEs tend to be separated from non-
entities. The proposed pi-CRF utilizes non-entity labels
between NEs as an information transmission medium
that delivers the preceding entity information forward to
the following entity. Our evaluation results showed that
the proposed model improves clinical NER performance
and reduces the computational complexity of the
second-order CRF. Despite some inherent limitations,
the results suggest that the utilization of non-entity la-
bels could enable higher-order CRF model implementa-
tion while limiting the model’s complexity growth. We
plan to test the model on various NER datasets and also
to port the model onto a neural NER architecture [15]
to further advance the clinical NER field.
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