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Mismatched Decoding in the Brain
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“How is information decoded in the brain?” is one of the most difficult and important questions in neuroscience. We have developed a
general framework for investigating to what extent the decoding process in the brain can be simplified. First, we hierarchically con-
structed simplified probabilistic models of neural responses that ignore more than Kth-order correlations using the maximum entropy
principle. We then computed how much information is lost when information is decoded using these simplified probabilistic models (i.e.,
“mismatched decoders”). To evaluate the information obtained by mismatched decoders, we introduced an information theoretic
quantity, I*, which was derived by extending the mutual information in terms of communication rate across a channel. We showed that
I* provides consistent results with the minimum mean-square error as well as the mutual information, and demonstrated that a previ-
ously proposed measure quantifying the importance of correlations in decoding substantially deviates from I* when many cells are
analyzed. We then applied this proposed framework to spike data for vertebrate retina using short natural scene movies of 100 ms
duration as a set of stimuli and computing the information contained in neural activities. Although significant correlations were observed
in population activities of ganglion cells, information loss was negligibly small even if all orders of correlation were ignored in decoding.
We also found that, if we inappropriately assumed stationarity for long durations in the information analysis of dynamically changing
stimuli, such as natural scene movies, correlations appear to carry a large proportion of total information regardless of their actual

importance.

Introduction

An ultimate goal of neuroscience is to elucidate how information
is encoded and decoded by neural activities (Averbeck et al.,
2006). One method of investigating the amount of information
encoded about certain stimuli in a certain area of the brain is by
calculating the mutual information between the stimuli and their
neural responses. Because the mutual information quantifies the
maximal amount of information that can be extracted from neu-
ral responses, it is implicitly assumed that encoded information is
decoded by an optimal decoder. In other words, the brain is
assumed to have full knowledge of the encoding process, in which
stimuli are transformed into noisy neural activities. Considering
the probable complexity of optimal decoding, however, the as-
sumption of an optimal decoder in the brain is doubtful; rather, it
is more plausible to consider that information is decoded in a
suboptimal manner by a simplified decoder that has only partial
knowledge of the encoding process. We call this type of a decoder
a “mismatched decoder.”

An example of a mismatched decoder is an independent decoder,
which ignores correlations in neural activities. Independent decod-
ers are potentially important because they are simpler, and the brain
might use them rather than take on the task of trying to figure out
what the correlation structure in the responses is. An experimental
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finding that a sufficiently large proportion of total information is
obtained by an independent decoder would suggest that the brain
may function in a manner similar to an independent decoder. In this
context, Nirenberg et al. (2001) computed the information obtained
by an independent decoder in pairs of retinal ganglion cells activities
and found that no pair of cells showed a loss of information >11%.
However, their analysis considered pairs of cells only, and the im-
portance or otherwise of correlations in population activities has not
been fully elucidated.

Here, we developed a general framework for investigating the
importance of correlations in population activities. Because anal-
ysis of population activities generally requires consideration of
not only second-order but also higher-order correlations, we hi-
erarchically constructed simplified decoders that ignore more
than Kth-order correlations using the maximum entropy method
(Schneidman et al., 2006). We inferred how many orders of cor-
relation should be taken into account to extract sufficient infor-
mation by evaluating the information obtained by the simplified
decoders. To accurately quantify information obtained by the
mismatched decoders, we introduce an information theoretic
quantity derived in the study by Merhav et al. (1994), I*. I* was
first introduced in neuroscience in the study by Latham and
Nirenberg (2005) to show that the previously proposed informa-
tion for mismatched decoders in the study by Nirenberg and
Latham (2003) is the lower bound of I*.

Here, we showed that this lower bound can be loose when
many cells are analyzed. We also justified the use of I* from the
viewpoint of the minimum mean-square error. Finally, we quan-
titatively evaluated the importance of correlations in decoding
neural activities by applying our theoretical framework to the
vertebrate retina.
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Part of this paper was published in the study by Oizumi et al.
(2009).

Materials and Methods

Retinal recording. Details of retinal recording have been described previ-
ously (Meister et al., 1994). The dark-adapted retina of a larval tiger
salamander was isolated in oxygenated Ringer’s medium at 25°C. A piece
of retina (2—4 mm) was mounted on a flat array of 61 microelectrodes
(MED-P2HO07A; Panasonic) and perfused with oxygenated Ringer’s so-
lution (2 ml/min; 25°C). Six thousand frames of a movie of natural scenes
(van Hateren, 1997) were projected at 30 Hz using a cathode ray tube
monitor (60 Hz refresh rate; Dell E551). The mean intensity of light was
4 mW/m?. Voltages from the electrodes were amplified, digitized, and
then stored. Well isolated action potentials were sorted off-line with
custom-built software. All procedures concerning animals met the
RIKEN guidelines.

Information for mismatched decoders. It is well known that neural re-
sponses, even to a single repeated stimulus, are noisy and stochastic. Let
us represent this stochastic process with the conditional probability dis-
tribution p(rls), namely that neural responses r are evoked by stimulus s.
We can say that the stimulus s is encoded by neural response r, which
obeys the distribution p(rls). We call this p(rls) the “encoding model.”
For the brain to function properly, the brain has to somehow accurately
infer what stimulus is presented from the observation of noisy neural
responses. We call this inference process the decoding process. To date,
we have not known how stimulus information is decoded from noisy
neural responses in the brain. Thus, when we investigate neural coding
problems, we usually simply consider the limit of decoding accuracy
assuming that stimulus information is decoded in an optimal way. Op-
timal decoding can be done by choosing the stimulus that maximizes the
Bayes posterior probability,

p(rls)p(s)

o (1)

p(slr) =

where p(r) = > p(rls)p(s) and p(s) is the prior probability of stimuli.
The mutual information invented by Shannon (1948) is one such quan-
tity that provides the upper bound of decoding accuracy. The mutual
information between stimulus s and neural responses r is given by the
following equation:

1= pr(r) log, p(r) + E Ep(s)p(rls) log, p(xls). (2)

If we experimentally obtain the conditional probability distribution
p(rls), we can easily quantify how accurately the stimulus is decoded
from the noisy neural responses with the mutual information.

The mutual information is a useful indicator, which quantitatively
shows how much the neural responses are related to the target stimuli.
However, it is not evident whether this quantity is biologically relevant
because it is implicitly assumed that information about stimuli is opti-
mally decoded in the brain. Taking account of the complexity of optimal
decoding and the difficulty of the brain in knowing the actual encoding
process p(rls), it is more plausible to consider that information about
stimuli is decoded in a suboptimal manner in the brain. Let us assume
that the brain has only the partial knowledge of the encoding process
p(rls) and denote the probability distribution that partially matches
p(rls) by g(rls). For instance, if we assume that the brain does not
know the complicated correlation structure in neural responses but
rather only knows the individual property of neural responses of each
neuron, ¢(rls) is expressed by the product of the marginal distribu-
tion of p(rls), g(xls) = [lp(rls).

Here, the important question is how accurately the stimulus is inferred
from neural responses only with the partial knowledge of p(rls). In this
case, we assume that the inference is done by choosing the stimulus which
maximizes the following posterior probability distribution as follows:

q(rls)p(s)

q(r) (3)

q(slr) =
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where g(r) = >, q(rls)p(s). This posterior probability distribution is
not equal to the actual distribution (Eq. 1) because g(r!s) is used instead
of the actual encoding model p(rls). We call g(r|s) the “decoding model.”
When the decoding model g(r|s) is mismatched with the actual encoding
model p(rls), the accuracy of the decoding is naturally degraded.

To quantify how much stimulus information would be lost because of
the mismatch in the decoding model, we need an information theoretic
quantity, which corresponds to the mutual information when the mis-
matched decoding model is used. Nirenberg and Latham (2003) previ-
ously proposed that the information obtained by mismatched decoders
can be evaluated using the following:

N = pr(r) logZEp(s)q(r\s) + EEp(s)p(rls) log, q(rls). (4)

We call their proposed information “Nirenberg—Latham information.”
By comparing Equations 2 and 4, we can see that I™" is equal to I when
the decoding model g(rls) is equal to the encoding model p(rls). To
derive IN", they adopted the yes/no-question formulation of mutual in-
formation given by Cover and Thomas (1991). By extending the mutual
information in the yes/no-question framework, they derived I"". Using a
different approach, Pola et al. (2003) derived I™" by decomposing the
mutual information. Amari and Nakahara (2006) justified the use of 1"
for quantifying the information obtained by mismatched decoding from
the point of view of information geometry. Because I™" is easy to under-
stand and appears sound, it has been used in neuroscience (Nirenberg et
al., 2001; Golledge et al., 2003; Montani et al., 2007). However, as is
shown in Appendix, I"* may be an inappropriate measure, particularly
when computed in large neural populations.

In the present study, we reintroduce an information theoretic quan-
tity, I*, which was originally derived by Merhav et al. (1994) by extending
the mutual information in the context of the best achievable communi-
cation rate when a mismatched decoding model is used (see the next
section for the information theoretic meaning of I*). We call this quan-
tity “information for mismatched decoders.” In the present study, we use
I* to quantify the decoding accuracy when the stimulus information is
decoded by using mismatched probabilistic models of neural responses.
I* can be computed by the following equations [for the details of the
mathematical derivation of I*, see Merhav et al. (1994) and Latham and
Nirenberg (2005)]:

I*(r;5) = maxI(B), (5)
B

1(B) = —, p(x) log, >, p()g(xls)®
+ 2 p(s)p(rls) log, qrls). (6)

To compute I¥, we need to maximize I(B) with respect to 8. Thus, the
equations for I* have no closed-form solution. However, we can easily find
the maximum of I(8) numerically by the standard gradient ascent method
because this is convex optimization (Latham and Nirenberg, 2005).

By comparing Equations 4 and 6, we can see that IN" is equal to I(3)
when 8 = 1 (Latham and Nirenberg, 2005). Because I* is the maximum
value of I(8) with respect to B, I* is always larger than or equal to IN".
Thus, IN"is alower bound of I*. I* was first introduced into neuroscience
in Latham and Nirenberg (2005) to show that their proposed informa-
tion, INY, provides a lower bound on I*. To our knowledge, however, no
application of I* in neuroscience has appeared.

As is shown in Appendix, this lower bound provided by I can be
loose, and can be negative when many cells are analyzed. It is also shown
that I* gives consistent results with the minimum mean-square error,
whereas I™* does not. Taking account of these facts, we consider that I*
should be used instead of I™",

Information theoretic meaning of information I and I*. In the previous
section, we introduced mutual information as a measure that quantifies
how accurately a stimulus is inferred from the observation of noisy neu-
ral responses. In information theory, the mutual information has a rig-
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Figure 1.

be sent error-free is quantified by the information for mismatched decoders /*(r; s) (Eqs. 3, 4).

orous quantitative meaning [i.e., it gives the upper bound of the amount
of information that can be reliably transmitted over a noisy channel (see
below)]. In this section, we first review the meaning of the mutual infor-
mation I within the framework of information theory using the language
of neuroscience. We then explain the meaning of I* as an extension of the
mutual information.

Let us consider information transmission using a set of stimuli s and
neural responses r (Fig. 1). We will consider a random-dot stimulus
moving upward, 1, or downward, | , as an example of stimulus s. The
sequence of stimuli s;s, ... s, (Fig. 1, 7 1 ... |) is sent over a noisy
channel, which in this case is a neural population, and the sequence of
noisy neural responses r;, r,, . . ., I, to each stimulus is then received
(Fig. 1). We assume that the channel is memoryless; that is, the neural
responses Iy, I,, ..., I, are mutually independent. This sequence of
stimuli is called a code word. We consider the limit that the length of code
word M tends to infinity, M — oo,

Here, we introduce an important concept, the codebook. A codebook
is the assembly of transmitted code words. The sender and the receiver
share the codebook. The job of the receiver is to determine which code
word was sent from observed neural responses ry, 1, . . . , r,, by consult-
ing the codebook. In this setting, let us consider the following question:
How many code words can be sent error-free when the transmitted code
words are “optimally” decoded? In other words, how many code words
can the codebook contain?

Optimal decoding is done by choosing a code word that maximizes
Bayes posterior probability given by the observed sequence of neural
responses r, r, . . ., r,, from the codebook. The decoding procedure is
described by the following equations:

_ pnry ... rylop(c)
plelrr, .. .1y) = ST pns el P’ (7)

p(rir; ... ryle = 5,(0)s,(0) . . . sy(0)) = [ip(x;lsi(e)), (8)

Coptimal = argmax p(cleyr, . .. ry), 9)

where s;(c) means the ith stimulus of the sequence of stimuli correspond-
ing to code word c. A uniform prior distribution on cis usually assumed,
in which case Equation 7 becomes the maximum-likelihood estimation.

If stimuli 1 and | evoke nonconfusable neural responses, 2 code
words can be sent error-free. However, when there is an overlap between
neural responses to stimuli 1 and |, the question “How many code

Information transmission using stimulus s and neural responses r as symbols when the neural population is consid-
ered as a noisy channel. Random-dot stimuli moving upward or downward are considered. Code words encoded with the sequence
of stimuli, for example, s,s,...5,= 1 1 +++ |, are sentand neural responses of the six neurons to each stimuli, £, r, ...,
are received. Neural responses r are binary, either firing (“1”) (filled circles) or silent (“0”) (open circles). The neurons stochastically
fire in response to each stimulus s according to the conditional probability distribution p(r|s). The receiver infers which code word
is sent from the received neural responses (decoding). When decoding is performed using the actual probability distribution p(r ),
the maximum number of code words which can be sent error-free is quantified by the mutual information /(r;s) (Eq. 2). In contrast,
when decoding is performed using a mismatched probability distribution g(r|s), the maximum number of code words which can
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words can be sent error-free?” is not easily an-
swered. In this case, we cannot let our code-
book contain all of possible 2* code words but
rather need to sparsely select the transmission
of some of them so as to avoid confusable neu-
ral responses to each code word. Shannon’s
mutual information gives the answer to this
nontrivial question (Shannon, 1948). If we de-
note the upper bound of the number of code
words that can be sent error-free by 2K Kis
given by the following:

Mutual information

I(r;s)

Information for
mismatched decoders

I*(rss)

KIM = I(r; ), (10)

where I is the mutual information given by
Equation 2. This relationship can be mathe-
matically proved by taking advantage of the law
of large numbers (Shannon, 1948; Cover and
Thomas, 1991). The ratio K/M is called the
communication rate or information rate. Thus,
within the framework of information theory,
the mutual information defined by Equation 2
has the meaning of the upper bound of com-
munication rate (i.e., the number of code
words that can be sent error-free).

When we have full knowledge of the channel
property, p(rls), the mutual information gives
the upper bound of the number of code words
that can be sent error-free. The next question is
how many code words can be sent error-free when we only partially know
the channel property. In other words, we assume that the mismatched
probability distribution g(rls), which partially matches with the actual
channel property p(rls), is used for decoding. Similarly to Equations 7-9,
decoding is done by the following equations:

q(rir; ... tylo)p(e)

qlclrr, .. .1y) = Zc' demn el () (11)
q(rixr, ... ryle = 51(0)5,(¢) . .. su(0) = [ig(r;1s:(c)), (12)
Coptimal = argmax q(clrr, . .. ry). (13)

Note that g(rls) is used instead of p(rls). Merhav et al. (1994) provided
the answer to this question: if we denote the upper bound of the number
of code words that can be sent error-free by 2X" when the mismatched
decoding model g(rls) is used, K* (<K) is given by the following:

KX/IM = I*(r; s), (14)
where I* is information for mismatched decoders given by Equations 5 and
6. This relationship can be also mathematically proved by making use of the
large deviation theory (Merhav et al., 1994; Latham and Nirenberg, 2005).
Thus, I* gives the upper bound of the number of code words that can be sent
error-free for mismatched decoders. In this sense, I* is a natural extension of
the mutual information I.

Stationarity assumption about neural responses. We used a movie of
natural scenes, which was 200 s long and repeated 45 times, as a stimulus.
We divided the movie into many short segments as is shown in Figure 2
and considered them as stimuli over which information contained in
neural activities was computed. We assumed that neural responses were
stationary while each short natural scene movie was presented. Thus, the
length of each stimulus should be short enough for us to assume the
stationarity of neural responses. To determine the appropriate length of
the stimuli, we computed the correlation coefficients between the tem-
porally separated frames of the natural scene movie. The correlation
coefficient between two frames separated by time 7, C(7), is computed by
the following:

LI Glt) = ) - (el 1) — ()
€ =72 (1) = )P ’

t=1

(15)
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Figure 2.
considered as one stimulus.

Schematic of a set of stimuli over which mutual information was computed. Each short segment, extracted from a movie of natural scenes of 200 s duration, s,, 5, 5, .

oo S7_ 1S Was

>

Correlation C(T)

0 10 20 30
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Figure 3.  Correlation coefficients between the temporally separated frames of a natural
scene movie (dashed line). The solid line is a least-squares fit. The fitted function is of the form
y(1) = a, exp(—7/7,) + a, exp(—7/7,).

where x(7) is the grayscale pixel value of the frame at time ¢ and (x) is
the averaged pixel value of the frames over the total time of the natural
scene movie. C(7) is shown as a dotted line in Figure 3. C(7) rapidly
decays initially and then slowly approaches 0. We fit C(7) with the
sum of two exponents y(1) = a, exp(—17/7;) + a, exp(—1/7,) by the
least-squares method. The fitted line is shown as a solid line in Figure
3. The fitted time constants 7, and 7, are 7, = 332 ms and 7, = 9.77 s.
This result indicates that the length of stimuli should be shorter than
the faster time constant, 7, = 332 ms.

Constructing mismatched decoding models by the maximum entropy
method. Figure 4 A shows the response of seven retinal ganglion cells
to natural scene movies from 0 to 10 s in length. To apply information
theoretic techniques, we first discretized the time into small time bins
At and indicated whether or not a spike was emitted in each time bin
with a binary variable: r; = 1 means that the cell i spiked and r; = 0
means that it did not. We set the length of the time, A7, to 5 ms so that
it was short enough to ensure that two spikes did not fall into the same
bin. In this way, the spike pattern of ganglion cells was transformed
into an N-letter binary word, r = {r,, r,, ..., ry}, where N is the
number of neurons (Fig. 4 B). We then determined the frequency with
which a particular spike pattern, r, was observed during each stimulus
and estimated the conditional probability distribution p4,.,(rls) from
experimental data. If we set the length of stimuli to 100 ms, there
were, effectively, a total of 900 (=20 bins X 45 repeats) samples for
estimating the conditional probability distribution pg4,,(rls) of each
stimulus because each 5 ms bin within the 100 ms segment was as-
sumed to come from the same stimulus. Using these estimated con-
ditional probabilities, we evaluated the information contained in
N-letter binary words r.
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Figure4. A, Raster plot of seven retinal ganglion cells responding to a natural scene movie.

B, Transformation of spike trains into binary words.

Generally, the joint probability of N binary variables can be written as
follows (Amari, 2001; Nakahara and Amari, 2002):

20515+ -

i<j

1
pn(r) = Zexp Zoirﬂr + 6, anry...ry|. (16)

This type of representation of probability distribution is called a log-
linear model. Because the number of parameters in a log-linear model
is equal to the number of all possible configurations of an N-letter
binary word r, we can determine the values of parameters so that the
log-linear model p(r) exactly matches the empirical probability dis-
tribution pg,,(r): that is, p(r) = pya(r)-

To compute the information for mismatched decoders, we con-
structed simplified probabilistic models of neural responses that par-
tially match the empirical distribution, pg,.,(r). The simplest model
was an “independent model,” p,(r), in which only the average of each
r; agreed with the experimental data: that is, (r;),,(r) = (r})pgaa(r).
Many possible probability distributions satisfied these constraints. In
accordance with the maximum entropy principle (Jaynes, 1957;
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Schneidman et al., 2003, 2006), we chose the one that maximized
entropy H, H = — X, p(r)logp,(r).
The resulting maximum entropy distribution is as follows:

1
pi(r) = A eXP|: ze(il)ri:|:

(17)

in which model parameters 8% are determined so that the constraints
are satisfied. This model corresponds to a log-linear model in which all
orders of correlation parameters {6,,0,, . . . ,0,, __n} are omitted. If we
perform maximum-likelihood estimation of model parameters " in
the log-linear model, the result is that the average r; under the log-linear
model equals the average r; found in the data: that is, (r),(¥) = (rpaa(®)
(r19p2(r) = {7)paua(r). This result is identical with the constraints of the
maximum entropy model. Generally, the maximum entropy method is
equivalent to the maximum-likelihood fitting of a log-linear model
(Berger et al., 1996).

Similarly, we can consider a “second-order correlation model” p,(r),
which is consistent with not only the averages of r; but also the averages of
all products r;r; found in the data. Maximizing the entropy with constraints
<ri>p2(r) = <ri>pdata(r)<rirj>p2(r) = <ri>pdata(r) and <rirj>p2(r) = <rirj>pdam(r)
(rir)p(r) = {7)piaa(r), we obtain the following:

1

par) =+ exp[zﬂgz)ri + Eeﬁfwj], (18)
2 i ij

in which model parameters 6® are determined so that the constraints
are satisfied.

The procedure described above can also be used to construct a “Kth-
order correlation model” p,(r). If we substitute the simplified models of
neural responses py(rls) into mismatched decoding model g(rls) in
Equation 6, we can compute the amount of information that can be
obtained when more than Kth-order correlations are ignored in the de-
coding as follows:

I¥ = max I(B), (19)

B
Te(B) = —, pu(r) log, >, p(s)px(rls)®

+ Zp(s)EpN(rls) log, px(rls)E.  (20)

By evaluating the ratio of information, I/I, we can infer how many orders of
correlation should be taken into account to extract sufficient information.

Limited sampling problem in estimating mutual information. It is well
known that estimating mutual information in Equation 2 with a limited
amount of neuronal data causes a sampling bias problem (Panzeri and
Treves, 1996). With a small amount of data, the mutual information is
biased upward. Recently, tight data-robust lower bounds to mutual in-
formation, I, were developed (Montemurro et al., 2007). I was de-
rived using “shuffling,” namely, the shuffling of neural responses across
trials, to cancel out the upward bias of the mutual information. I, can be
computed by the following equation:

Ish = ILB*I + AIl*sh)

Ly = — 2 p(r) log, >, p(s)py(xls) + > >, p(s)py(xls) log, py(xls),

(21)

(22)

Al g =1+ >, p(r)log, >, p(s)p,(rls)

=2 p()pr-m(rls) log, py_g(rls), (23)

where [ is the mutual information in Equation 2, and p, (r|s) is the inde-
pendent model, that is, p,(r1s) = [[;p(r;ls), and p; _ y,(rls) is the distri-
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Figure 5.  Difference between / (solid line) and /;, (dashed line). Spike data and length of
stimuli are the same as in Figure 9, A7 and A2. /is the value of the mutual information that is
directly computed from Equation 2. /;, is computed using Equation 21. / provides the upper
bound of the real value of the mutual information /,,,,,, and /, provides the lower bound of /.
In other words, I, </, <<I. The difference between/and /;,is markedly small even when all
recorded cells (N = 7 in spike data 1; N = 6 in spike data 2) are analyzed. A, Spike data 1. B,
Spike data 2.

bution of shuffled neural responses. Using p, _ ,(rls) instead of p, (rls)
in Equation 23, the upward bias of I is canceled out by a downward bias
ofthe third term of AT, _ ;. Asaresult, AI, _ is mildly biased downward.
Since I; ;_, is virtually unbiased, I, is mildly biased downward. Using I
in Equation 2 and I, in Equation 21, the real mutual information, I, is
bounded upward and downward as follows:

Ish < Ireal <L (24)

We computed both I'and I ;. We found that the difference between I and
I, was markedly small even when all recorded cells were analyzed (Fig.
5). This meant that we had a sufficient amount of data to accurately
estimate the mutual information. Thus, in Results, we show the value of

mutual information that is directly computed from Equation 2 only.

Results

Information conveyed by correlated activities is negligibly
small despite the presence of substantial correlations

We quantitatively evaluated the importance of correlated activities
by comparing the mutual information I (Eq. 2) with the information
for mismatched decoders I (Egs. 19, 20). We considered the inde-
pendent model p,(r) in Equation 17 and the second-order correla-
tion model p,(r) in Equation 18 as mismatched decoders. We
analyzed two spike data recorded from isolated retinas of different
salamanders. Seven neurons were simultaneously recorded in spike
data 1 and six in spike data 2. The same 200 s natural scene movie was
used as a stimulus for spike data 1 and 2.

We computed the spike-triggered averages of all recorded
neurons responding to the natural scene movie stimulus in spike
data 1 and 2. The recorded cells were all OFF cells. The fits of
two-dimensional Gaussian functions to the spike-triggered aver-
ages are shown in Figure 6. As can been seen, the receptive fields
mostly overlapped in both spike data 1 and 2. Figure 7 shows
cross-correlograms of all pairs of cells in spike data 1 and 2.
Many pairs show strong peaks with a width of ~100 ms
around the origin. To show the degree of correlation in the
population activities of the retinal ganglion cells, we investi-
gated how accurately the independent model and the second-
order correlation model predicted the actual neural responses,
following previous studies (Schneidman et al., 2006; Shlens et
al., 2006). Figure 8 shows the observed frequency of N-letter
binary words r against the predicted frequency of the indepen-
dent model and the second-order correlation model. As can be
seen from Figure 8, the independent model roundly failed to
capture the observed statistics of firing patterns. The second-
order correlation model substantially improved the prediction
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of the observed pattern rate. We therefore consider that cor-
relations need to be taken into account to explain the observed
neural responses. However, this does not necessarily mean
that they need to be taken into account in decoding neural
activities (see Discussion).

We computed the ratio of information obtained by indepen-
dent model, I/I, and that obtained by a second-order correlation
model, I;/I. Considering the decay speed 7, = 332 ms of the
correlations between the frames of the natural scene movie (see
Materials and Methods), we set the length of stimuli to 100 ms,
providing 2000 stimuli from the 200 s movie. With a uniform
stimulus length of 100 ms, no spikes occurred when some stimuli
were presented. We removed these stimuli and used the remain-
ing stimuli for analysis. Figure 9A shows I{/I and I}/I when the
number of cells analyzed was changed. Although I}/I decreased
slightly as the number of cells analyzed
increased, If/I was >90% in both spike
data 1 and 2 even when all cells (N = 7 in
spike data 1 and N = 6 in spike data 2)
were analyzed. This result means that the
loss of information associated with ignoring
correlations was minor.

We computed the mutual information
between all stimuli and neural responses.
In terms of average, the percentage of in-
formation conveyed by correlations was
low. However, it is possible that correlations
play an important role in discriminating
some stimuli. To test this possibility, we 500 0
computed I and If for pairs of 100 ms natu- Time (ms)
ral scene movie stimuli selected from all
stimuli. Figure 10 shows the histogram of

>

1

Firing rate (Hz)

If/I'when all recorded cells were analyzed.
If/I'was >90% for ~95% of pairs of stim-
uli. Pairs whose correlations carried a large
proportion of total information were ex-
tremely rare. This result also supports the
idea that almost all stimulus information

could be extracted even if correlations were A2
ignored in decoding. a
An important point is that the amount % ®
of information conveyed by correlations T ®
was markedly small (Figs. 94, 10) even & 1
though there were significant correlations i o

in population activities of ganglion cells 500 0
(Figs. 7, 8). This result shows that, to as- Time (ms)
sess the importance of correlations in in-
formation processing in the brain, we
should not only evaluate the degree by
which the actual neural responses differ
from the independent model but should
also compute the information obtained by
the independent model, I}/1.

Figure 7.
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Figure 6. A, B, Receptive fields of seven OFF cells in spike data 1 (A) and six OFF cells in spike
data 2 (B). Ellipses represent 15D of the Gaussian fit to the spatial profile of the spike-triggered
averages measured from the natural scene movie stimulus.
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Synchronous firing in a population of retinal ganglion cells. A7, A2, Example cross-correlograms in spike data 1 (A7)
and spike data 2 (A2) showing the firing rate of one cell when the time difference between spikes of one cell and the other cell is
given. Mean firing rates are subtracted so that the vertical axis shows the excess firing rate from the baseline firing rate. B7, B2,
Cross-correlograms of all pairs of recorded cells in spike data 1(B7) and spike data 2 (B2). The range of the vertical and horizontal

axes is the same as that in the example cross-correlograms in A7 and A2.

Pseudo-importance of correlations

arising from stationarity assumption about neural responses
We also computed IY/Iand I5/I when the length of stimuli was set
to 10 s to see what happens if the stimulus length is made consid-
erably longer than the time constant of the stimulus autocorrela-
tion, 7, = 332 ms. Figure 9B shows If/I and I}/ when the length
of stimuli was set to 10 s. When only two cells were considered,

I§/I exceeded 90%, which means that, consistent with the result
obtained by Nirenberg et al. (2001), ignoring correlation leads to
only a small loss of information. However, when all cells were
used in the analysis, If/I was only ~60% with both spike data 1
and 2. Thus, we reached different conclusions when the length of
stimuli was set to 10 s from those when it was 100 ms. This is
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Figure8. Relationship between the observed frequency of firing patterns and the predicted
frequency of firing patterns from an independent model p, (blue dots) and second-order corre-
lation model p, (red dots) constructed using the maximum entropy method. Natural scene
movies of 100 ms duration were used as stimuli. p,(r1s) (K = 1, 2) for all stimuli are plotted
against py,.,(r1s). The black line shows equality of the observed frequency and the predicted
frequency of firing patterns. A, Spike data 1. B, Spike data 2.

because 10 s is too long to be considered as one stimulus during
which neural responses are stationary, that is, during which neu-
ral responses obey the same conditional probability distributions
p(rls). If we assume stationarity when neural responses are not in
fact stationary, correlations may carry a large proportion of in-
formation that is irrelevant to the actual importance of correlated
activities.

Figure 11 shows I{/I and I} /I when the duration of stimuli was
changed. When the length of stimuli is appropriately set, >90%
ofinformation can be extracted even if correlations are ignored in
decoding neural activities. However, when the length of stimuli is
too long, correlations appear to carry a large proportion of total
information because of the stationarity assumption about neural
responses.

To clarify why the correlation becomes less important as the
stimulus is shortened, we used the toy model shown in Figure 12.
We considered the case in which two cells fire independently in
accordance with a Poisson process and performed an analysis
similar to that for the actual spike data. We used simulated spike
data for the two cells generated in accordance with the firing rates
shown in Figure 12 A. Firing rates with a 2 s stimulus sinusoidally
changed with time. We divided the 2 s stimulus into two 1 s
stimuli, s, and s,, as shown in Figure 12 B. We then computed
mutual information I and the information obtained by indepen-
dent model I over s, and s,. Because the two cells fired indepen-
dently, there were essentially no correlations between them.

J. Neurosci., March 31,2010 - 30(13):4815- 4826 + 4821

However, pseudocorrelation arose because of the assumption
of stationarity for the dynamically changing stimulus. The
pseudocorrelation was high for s; and low for s,. In contrast to the
difference in the degree of “correlation” between the two stimuli,
s, and s,, the mean firing rates of the two cells during each stim-
ulus were equal. If the stimulus is 1 s long, therefore, we cannot
discriminate two stimuli using the independent model, namely
If = 0. This implies that, when the stationarity of neural re-
sponses is assumed for long durations, correlations could carry a
large proportion of total information irrespective of its actual
importance.

We also considered the case in which the stimulus was 0.5 s
long, as shown in Figure 12C. In this case, pseudocorrelations
again appeared, but there was a significant difference in mean
firing rates between the stimuli. Thus, the independent model
could be used to extract almost all the information. The depen-
dence of I{/I on stimulus length is shown in Figure 11C. Behav-
iors similar to those in this figure were also observed in analysis of
the actual spike data for retinal ganglion cells (Fig. 11 A, B). Even
if we observe that correlation carries a significantly larger propor-
tion of information for longer stimuli compared with the speed of
change in the firing rates, this may simply have resulted from
meaningless correlation. Thus, to assess the role of correlation in
information processing, the stimuli used should be sufficiently
short that the neural responses to these stimuli can be considered
to obey the same probability distribution. Considering the re-
sponse speed of retinal ganglion cells, 100 ms, to which we set the
stimulus length in the present study, is still not short enough for
the stationarity assumption. However, we kept the stimulus
length equal to or longer 100 ms to ensure sufficient data to allow
the mutual information to be reliably estimated. If the stimulus
length is shortened, the ratio of information carried by correla-
tions could be smaller, as suggested by the analysis in this section
(Fig. 11C).

Comparison between IN" and I*

In Appendix, we show a simple example in which the difference
between I"" and I* is large particularly when many cells are ana-
lyzed. To see the difference between I"™" and I* in the actual spike
data, we computed I, which corresponds to the information
obtained by the independent decoder, I. The dot-dashed lines in
Figure 9 plot I'". Although the difference between I™" and I*
increases slightly as the number of cells analyzed increases, the
lower bound of I¥ provided by I}’ was relatively tight, even when
all recorded cells were analyzed. These results suggest that the
values of I"" previously reported in the analysis of pair of cells
were also probably close to I* (Nirenberg et al., 2001; Golledge et
al., 2003).

Discussion

Here, we describe a general framework for investigating to what
extent the decoding process in the brain can be simplified. In this
framework, we first constructed a simplified decoding model
(i.e., mismatched decoding model), using the maximum entropy
method. We then computed the amount of information that can
be extracted using the mismatched decoders. We introduced the
information for mismatched decoders, I*, which was derived in
terms of communication rate in information theory (Merhav et
al., 1994). By analytical computations, we showed that both the
mutual information I and the information for mismatched de-
coders I* are inversely proportional to the minimum mean-
square error under the condition that neural responses obey
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Gaussian statistics. We also pointed out
that the difference between the previously
proposed information I"* (Nirenberg
and Latham, 2003) and I* may become
large when many cells are analyzed. By us-
ing the information theoretic quantity I*,
we showed that >90% of the information
encoded in population activities of retinal
ganglion cells can be decoded even if all
orders of correlation are ignored in de-
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Shlens et al., 2006; Tang et al., 2008) em-
phasized the discrepancy between the in-
dependent model and actual probability
distribution. That is, their results show
that there are significant correlations in large neural populations.
The impact of such significant correlated neural activities on in-
formation encoding has been recently addressed (Montani et al.,
2009). In the present study, we addressed how important the
correlations are in information decoding. Our results indicate
that, even if the independent model fails to capture the statistics
of population activities, it does not necessarily mean that corre-
lations play an important role in extracting information about
stimuli. Assume that we experimentally obtained the probabil-
ity distribution of neural responses to two different stimuli,
Paaa(Tlsy) and py..(rls,), respectively. Even when the indepen-
dent models of two stimuli, p,(rls;) and p,(rls,), mostly deviate
from the data distribution pg,.,(rls;) and pg..(rls,), if the two
independent models p,(rls,) and p,(rls,) are significantly differ-
ent from each other, correlations are not important in decoding
neural activities. In fact, the information conveyed by correlated
activity in our analysis represented only 10% of the total, albeit
that we observed a large deviation in the independent model from
the data distribution in our spike data, as in previous studies (Fig.
8). As shown in Figure 8, the independent model fails disastrously
in predicting the actual probability distribution. However, the
second-order correlation model considerably improves the fit-
ting accuracy of the actual probability distribution, as was shown
in the previous studies (Schneidman et al., 2006; Shlens et al.,
2006). If we consider only the discrepancy between the indepen-
dent model and the actual probability distribution (Fig. 8), we
may mistakenly conclude that correlations play an important role
in information processing in the brain. To assess the importance
of correlations, we rather need to evaluate the difference between
the mutual information and the information obtained by simpli-
fied probabilistic models I, as was done in the present study.

The average values of I for K = 1,2 over all possible combinations of recorded cells is shown when the number of cells analyzed
is given. Spike data 1is used in A7 and B7, and spike data 2 in A2 and B2. A1, A2, A natural scene movie of 100 ms duration was
considered as the stimulus. BT, B2, A natural scene movie of 10 s duration was considered as the stimulus.

A Spike data 1 B Spike data 2
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Figure10.  Histogram of I}/I. Allrecorded cells (N = 7in spike data 1; N = 6 in spike data 2)

were analyzed. A, Spike data 1. B, Spike data 2.

Temporal correlations across time bins

In this study, we focused on synchronous firing within one time
bin, on the basis of suggestions that synchronous firing has func-
tional importance (Gray et al., 1989; Meister et al., 1995; Meister,
1996; Stopfer et al., 1997; Dan et al., 1998; Perez-Orive et al., 2002;
Ishikane et al., 2005), and spike timing-based computations tak-
ing advantage of synchronous firing can be implemented in a
biologically relevant network architecture (Hopfield, 1999;
Brody and Hopfield, 2003). Given previous findings that neurons
carry substantial sensory information in their response latencies
(Panzeri et al., 2001; Reich et al., 2001; Gollisch and Meister,
2008), consideration of temporal correlations across the time
bins may be important. Statistical models that take account of
time-lagged correlations can be constructed based on the maxi-
mum entropy method with a Markovian assumption of temporal
evolution (Marre et al., 2009) or based on a generalized linear
model (Pillow et al., 2005, 2008). By comparing the amount of
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data generated according to the firing rates shown in Figure 12 A.

information obtained by a probabilistic model that takes account
of time-lagged correlations with that obtained by a probabilistic
model that only takes account of simultaneous firing within a
short time bin, we can quantitatively evaluate the amount of
information conveyed by the complex temporal correlations be-
tween spikes.

Using a different approach than ours, Pillow et al. (2008)
reported that model-based decoding that exploits time-lagged
correlations between neurons extracted 20% more informa-
tion about the visual scene than decoding under the assump-
tion of independence. Decoding performance was quantified
using the log signal-to-noise ratio. Our results showed that the
second-order correlation model, which takes account of cor-
relations within one time bin only, extracts only ~10% more
about the visual scene than the independent model. The dif-
ference in improvement of decoding performance from the
independent model between this work and the work of Pillow
et al. may be attributable to the amount of information con-
veyed by time-lagged correlations. Besides, this could be also
explained by the fact that they analyzed more cells (27 cells)
than we did. Additional investigations of the importance of
time-lagged correlations in information processing in the
brain is required.

Quantitative investigation of the relationship between
synchronized activity and animal behavior
We showed that synchronized activity does not convey much
information about stimuli from a natural scene. In some ex-
periments, however, a strong correlation between synchro-
nized activity and animal behavior has been demonstrated
(Stopfer et al., 1997; Ishikane et al., 2005). Stopfer et al. (1997)
showed that picrotoxin-induced desynchronization impaired
the discrimination of molecularly similar odorants in honey-
bees but did not prevent coarse discriminations of dissimilar
odorants. Ishikane et al. (2005) showed that bicuculline-
induced desynchronization suppressed escape behavior in
frogs. The important point in these studies is that pharmaco-
logical blockade of GABA receptors strongly affected synchro-
nization only, and had little effect on the firing rate of neurons.
If the firing rate of neurons relevant to the behavior did not
change at all, we could say without doubt that synchronized
activity is essential to the decoding of neural activities. How-
ever, some ambiguity remains because it is impossible that
pharmacological blockade does not alter the firing rate of any
neuron at all. To resolve this ambiguity, the information for
mismatched decoders, I*, may be helpful.

Let us assume that we experimentally obtain normal neural
responses to a specific stimulus s, r;, and altered neural responses
to the same stimulus s after pharmacological blockade of neuro-

Dependence of the amount of information obtained by simplified decoders on the length of stimuli (Oizumi et al.,
2009). Allrecorded cells (N = 7 spike data 1; N = 6in spike data 2) were analyzed. 4, Spike data 1. B, Spike data 2. C, Artificial spike
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Artificial spike data transmitter receptors, r,. If animal behav-
ior between r, and r, differed, this would
mean that the brain interpreted that two
“different” stimuli were presented when
r, and r, were evoked, even though the
same stimulus, s, had in fact been pre-
sented. The important question is what
difference in neural activities before and
after the pharmacological blockade deter-
mined the judgment of the brain. This
question can be quantitatively answered

y computing the mutual information, I,
between the two “different” stimuli inter-
preted by the brain and the corresponding
neural responses and by comparing I with the information for
mismatched decoders, I*. For example, if If/I is high, it can be
said that the decision of the brain is mainly based on the differ-
ence in firing rate between two neural responses r; and r,. How-

—
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ever, if I/I is low, the difference in correlated activities plays a
crucial role in discriminating the stimulus. Applying the infor-
mation theoretic measures, I and I*, to behavioral experiments
with physiological measurements will provide profound insights
into how information is decoded in the brain.

Appendix: Theoretical evaluation of information

L I*,and I™*

In this appendix, we compared three measures of information
contained in neural activities, namely mutual information I, in-
formation obtained by mismatched decoding I*, and Nirenberg—
Latham information I"", by analytical computation. Two results
were obtained: (1) I and I* provide consistent results with the
minimum mean-square error, and (2) the difference between I*
and I"" may increase when many cells are analyzed and I"™" can
take negative values.

First, let us consider the problem in which mutual informa-
tion is computed when stimulus s, which is a single continuous
variable, and slightly different stimulus s + As are presented. We
assume the prior probability of stimuli p(s) and p(s + As) are
equal: p(s) = p(s + As) = 1/2. Neural responses evoked by the
stimuli are denoted by r, which is considered here to be the neu-
ron firing rate. When the difference between two stimuli is small,
the conditional probability p(rls + As) can be expanded with
respect to As as follows:

1
p(rls + As) = p(rls) + p'(rls)As + Ep”(rls)(As)2 + en

(25)

where " represents differentiation with respect to s. Using Equa-
tion 25, to leading order of As, we can write mutual information
I as follows:

As? (p'(xls))?
1= sfdrp(rls) 5 (26)
(p'(xls))* L . L
where |dr W) is the Fisher information. The Fisher infor-

mation has also been widely used in neuroscience as the maximal
amount of information that can be extracted from neural re-
sponses (Paradiso, 1988; Seung and Sompolinsky, 1993; Abbott
and Dayan, 1999; Gutnisky and Dragoi, 2008) because the inverse
of the Fisher information gives the lower bound of the mean-
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Firing rates of two model cells. Rate of cell 1is shown in top panel; rate of cell 2 is shown in bottom panel (Oizumi et al., 2009). A, Firing rates from 0 to 2 5. B, Firing rates (solid line)

and mean firing rates (dashed line) when stimulus duration was 1 s. C, Firing rates (solid line) and mean firing rates (dashed line) when stimulus duration was 500 ms.

square error when the stimulus s is optimally estimated (i.e., the
minimum mean-square error). As we can see in Equation 26, the
mutual information is proportional to the Fisher information

when Asis small. Similarly, I(8) (Eq. 6) can be written as follows:

_ As’ ) q'(xls) ’
1p) =8(—B fdrp(rw(q(rls))

BJHH) o)

q(rls)

By maximizing I(8) with respect to 8, we obtain the correct
information I* for mismatched decoders as follows:

. As? p'(xls)g'(xls) ’

By substituting 8 = 1 into I(8), we can obtain the Nirenberg—
Latham information I™" as follows:

_ As? q'(xls) ’ p'(xls)q' (xls)
I —8<—Jdrp(rls) (q(rls)) +2J’dl‘q(rls)).

(29)

p(r1s)(q (xl9)?\
q(rls)? )

(28)

We can also easily check that I(8) becomes equal to the mutual
information I when g(rls) = p(rls) and B = 1. Taking into con-
sideration the proportionality of the mutual information to the

p'(xls)q’ (rls))2
q(rls)

Fisher information, we can interpret (jdr

(J p(rls)(q’ (rls))?

-1
q(rls)? ) in Equation 28 as being a Fisher infor-

mation-like quantity for mismatched decoders.
We assume that the encoding model p(r|s) obeys the Gaussian
distribution as follows:

1 1
p(rls) = Zexp(— E(r —f(s))TC Yr — f(s))), (30)

where T stands for the transpose operation, f(s) is the mean firing
rates given stimulus s, and C is the covariance matrix. We con-
sider an independent decoding model g(rls) that ignores corre-
lations as follows:
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Figure 13.  Difference between /*// (solid line) and /"// (dotted line) in a Gaussian
model in which correlations and derivatives of mean firing rates are uniform (Oizumi etal.,
2009). Correlation parameter ¢ = 0.01.

1 1
q(rls) = ZDexp(— E(r —f(s)T Cyl(r — f(s))), (31)

where Cj, is the diagonal covariance matrix obtained by setting
the off-diagonal elements of C to 0. If the Gaussian integral is
performed for Equations. 26, 28, and 29, I, I*, and I™* can be
written as follows:

2

As
1= ? f’T(S)Cilf’(S),

(32)
CAY ({TOG )
= Focccr sy (33)
As?
I = S T(6)C, CCL T (5) + 26 T(5)C ' ().
(34)

Next, let us consider the minimum mean-square error when
stimulus s is presented. The optimal estimate of stimulus s
when we know the actual encoding model p(rls) is the value of
$ that maximizes the likelihood p(rls). Similarly, the optimal
estimate of stimulus s when we can only use the independent
model gq(rls) is the value of § that maximizes the likelihood
q(rls). Previously, Wu et al. (2001) computed the minimum
mean-square error when the optimal decoder is applied,
MMSE, and the minimum mean-square error when the inde-
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pendent decoder is applied, MMSE* (Wu et al., 2001). These
are given by the following:

1
MMSE(s) = FHCT ) (35)

L FT9C'CC T (s)
MMSE*(s) = TG (36)

If we compare Equation 32 with Equation 35, we can see that
mutual information I is inversely proportional to the minimum
mean-square error when the optimal decoder is applied. Simi-
larly, as can be seen in Equations 33 and 36, I* is also inversely
proportional to the minimum mean-square error when the inde-
pendent decoder is applied. Thus, I* corresponds to the mutual
information not only from the viewpoint of communication rate
across a channel but also from that of the minimum mean-square
error. However, I"" is not inversely proportional to the mini-
mum mean-squared error.

As a simple example that demonstrates a large discrepancy
between I* and INY, we considered a uniform correlation model
(Abbott and Dayan, 1999; Wu et al., 2001) in which covariance
matrix C is given by C;; = o’ [8; + c(1 — 8;)] and assumed that
the derivatives of the firing rates were uniform: that is, f,=f. In
this case, I, I*, and I™* become the following:

ASZ Nf/ 2

=% vNer 1o 47

. ASZ Nf!Z

P P10 By
o A (CaN =1+ DNF? 30

8 o ’

where N is the number of cells. We can see that I* is equal to I,
which means that information is not lost even if correlation is
ignored in the decoding process. Figure 13 shows IN"/I and I*/I
when the degree of correlation cis 0.01. As shown in Figure 13, the
difference between the correct information I* and Nirenberg—
Latham information I™" is markedly large when the number of

c+1
cells Nis large. When N > ool NLis negative. Analysis showed

that the use of Nirenberg—Latham information I"" as a lower
bound of the correct information I* can lead to erroneous con-
clusions, particularly when many cells are analyzed. In the spike
data used in this study, we did not observe a large discrepancy
between I* and I", possibly because the number of cells analyzed
was small (Fig. 9).
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