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Behavioral/Systems/Cognitive

Spinal-Like Regulator Facilitates Control of a
Two-Degree-of-Freedom Wrist

Giby Raphael, George A. Tsianos, and Gerald E. Loeb

Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089

The performance of motor tasks requires the coordinated control and continuous adjustment of myriad individual muscles. The basic
commands for the successful performance of a sensorimotor task originate in “higher” centers such as the motor cortex, but the actual
muscle activation and resulting torques and motion are considerably shaped by the integrative function of the spinal interneurons. The
relative contributions of brain and spinal cord are less clear for reaching movements than for automatic tasks such as locomotion. We
have modeled a two-axis, four-muscle wrist joint with realistic musculoskeletal mechanics and proprioceptors and a network of regula-
tory circuitry based on the classical types of spinal interneurons (propriospinal, monosynaptic la-excitatory, reciprocal Ia-inhibitory,
Renshaw inhibitory, and Ib-inhibitory pathways) and their supraspinal control (via biasing activity, presynaptic inhibition, and fusimo-
tor gain). The modeled system has a very large number of control inputs, not unlike the real spinal cord that the brain must learn to control
to produce desired behaviors. It was surprisingly easy to program this model to emulate actual performance in four very different but well
described behaviors: (1) stabilizing responses to force perturbations; (2) rapid movement to position target; (3) isometric force to a target
level; and (4) adaptation to viscous curl force fields. Our general hypothesis is that, despite its complexity, such regulatory circuitry

substantially simplifies the tasks of learning and producing complex movements.

Introduction

Extensive research of the past century led to the modern view of
the spinal cord as a center for sensorimotor coordination rather
than just a relay from brain to muscles. For example, locomotion
can be produced and controlled entirely by the spinal cord and
the peripheral sensorimotor apparatus by means of a central pat-
tern generator and associated circuitry responsible for reflexive
adjustments to various conditions, such as loads, obstacles, and
perturbations (McCrea and Rybak, 2008). Various descending
pathways from the cerebral cortex, cerebellum, vestibular appa-
ratus, brainstem, etc., modulate the function of the intrinsic spi-
nal circuitry rather than controlling directly the highly phasic
activity of the individual muscles responsible for the movement
(Lavoie et al., 1995; Ivashko et al., 2003).

By contrast, studies of arm and hand movements in primates
have focused largely on correlating the activity of populations
of neurons in motor cortex with measureable features of the
concomitant motor behavior. Inferring causation, however,
requires an understanding of the intervening neural circuitry
and musculoskeletal mechanics (Loeb et al., 1996). Various stud-
ies have shown that the indirect pathway via subcortical or spinal
interneuronal systems contribute the majority of inputs to fore-
limb motoneurons (Gelfan, 1964; Alstermark and Sasaki, 1985;
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Kitazawa et al., 1993). These spinal interneurons receive inputs
from the pyramidal tract (Isa et al., 2007) and also convergent
input from many modalities and sources of primary somatosen-
sory afferents (as well as extrapyramidal descending activity), and
they exert divergent excitatory and inhibitory influences on many
motoneuron pools (McCrea, 1986; Fetz et al., 1989). Direct cor-
ticomotoneuronal projections are largely absent in opossums,
rodents, cats, and lower primates (Rathelot and Strick, 2009),
which are capable of fairly sophisticated, voluntary limb move-
ments for prey catching and/or food handling.

Over the past 20 years, there have been several attempts to
model the lower sensorimotor system for voluntary movement,
but they were usually restricted to a hinge joint operated by an
antagonist muscle pair and they usually incorporated only a small
subset of the known spinal circuitry (Feldman, 1966; Bullock and
Grossberg, 1992; Bullock et al., 1993; Bashor, 1998; Feldman et
al., 1998; van Heijst et al., 1998; Ostry and Feldman, 2003; Lan
et al., 2005; Maier et al., 2005). Loeb et al. (1990) introduced
linear quadratic regulator design to find optimal solutions for
reflex gains in a multisegment limb model (He et al., 1991), but
there was no way to reconcile these gains with the actual inter-
neuronal elements of the spinal cord.

The model of spinal circuitry presented here appears to be the
first to consider the shifting patterns of muscle coordination
needed to operate multi-muscle, multi-degree-of-freedom link-
ages in a variety of complex sensorimotor behaviors described in
the experimental literature. The model is called a spinal-like reg-
ulator (SLR) because it embodies the multi-input, multi-output
connectivity, and gain features of an engineering regulator (Loeb
etal., 1990; He et al., 1991). The most salient emergent property
of the whole system is that despite the complexity of the available
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tionary forearm aligned with the vertical axis as
shown in Figure 1. The muscles actuated the
cone about the x- and z-axes analogous to ex-
tension—flexion and radial-ulnar deviation ro-
tations of the hand, respectively. The rotations
of the cone were limited to 75° using a vis-
coelastic stop. The variation in moment arm
during the range of all movements was tuned to
be within a reasonable approximation to the
parameters observed in a realistic human hand.
Previously developed mathematical models of
muscle spindles (Mileusnic et al., 2006) and Golgi tendon organs (Crago
et al., 1982; Mileusnic and Loeb, 2009) were used for proprioceptive
feedback. We used only the primary output (Ia) of the spindles in our
simulations, which provides both position and velocity feedback de-
pending on separately modulated static and dynamic fusimotor con-
trol. The spindle secondary afferents provide essentially pure muscle
length information, but relatively little is known of their interneuro-
nal circuitry in the spinal cord. The output of the closed loop simu-
lations was visualized in MusculoSkeletal Modeling Software
(Davoodi et al., 2003).

Unlike the simple elbow joint that is used in many studies, the wrist
joint presents additional challenges to the control system. The extra de-
gree of freedom obviously adds to the mechanical complexity, but even
more distinctively, the muscles controlling the wrist movement must
switch their functional relationships based on the type of task performed.
For example, during wrist extension the extensor muscles function as
agonists and the flexor muscles function as antagonists, but during radi-
al/ulnar deviation, the extensor muscles (as well as the flexor muscles)
oppose each other. The spinal cord circuitry is intimately related to these
functional relationships between muscles, so these dynamic relationships
required a new classification and corresponding synapses/connections in
our spinal cord model. In our terminology, we decided to call the adja-
cent muscles “partial synergists” because they switch from agonist to
antagonist based on the type of task. The diagonal muscles that were
farthest apart from each other and that always opposed each other (for
example, extensor carpi radialis and flexor carpi ulnaris) are designated
as “true antagonists” and include only the classical reciprocal antagonist
circuitry between them (Fig. 2). We modeled both synergistic and antag-
onistic circuits between the partial synergists (Fig. 3) and let the control
algorithm adjust the gains of each independently, thereby establishing
functional synergist and antagonist relationships as required for each
task.

These projections were associa

to a new state.

Figure1. Biomechanical model. The human hand was approximated as a cone with realistic parameters (table). It was attached
to a stationary forearm via a two-degree-of-freedom joint. Four realistic muscle models [Virtual Muscle (Cheng et al., 2000)]
actuated the cone to produce force or motion in the extension—flexion direction (in plane of drawing) and radial— ulnar direction
(perpendicular to plane of drawing). Proprioceptive sensors attached to each muscle provided proprioceptive feedback to the SLR.
The SLRintegrated proprioceptive feedback and descending commands to provide motoneuronal excitation to the muscles.

ted with 184 control inputs that were differentiated as SET and GO inputs (see also Fig. 2).

The SET inputs continuously regulated the background activity in the spinal cord and the GO inputs produced the transition

The complete SLR model has 184 control inputs. We differentiated
the inputs as “SET” and “GO” (Fig. 1), according to the terminology
of Eliasmith and Anderson (2003). The “SET” inputs regulated the
background activity in the spinal cord throughout the simulation and
consisted of the gains of neural pathways, presynaptic inhibition, the
subthreshold biases of the interneurons, and the fusimotor drive (y
static and 7y dynamic) to muscle spindles. The “GO” inputs initiated
movement or other state changes and maintained the new state until
the end of the modeled behavior. To explore the intrinsic properties
of the spinal cord model and to test our hypothesis, we used the
simplest descending inputs, namely step functions, as “GO” inputs.
All simulations had a duration of 3 s and the background activity in
the spinal cord was responsible for maintaining a steady posture of
the hand for a specified initial time (1 s) before the impending “GO”
input. The SET gains alone mediated the rapid reflexive response of
the hand during perturbation in the passive postural stabilization
task.

Spinal circuitry model

Modeling the neuron is often a tradeoff between biological realism and
computational feasibility, especially when large numbers of neurons are
involved, such as in the spinal cord model. The computational complex-
ity of the model is one of the most critical factors in our simulations
because hundreds of runs must be performed while the optimization
algorithm converges to a desired solution. We modeled the input—out-
put behavior of individual pools of interneurons and motoneurons using
a sigmoidal transfer function (Eq. 1):

1
1+ e etmt»

(1)

where x is the input to the neuron, and a and b control the slope and
range of the sigmoid. The control inputs to interneurons were further
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spindles (the large white circles marked SET).

differentiated as follows: (1) bias input that controlled the background
activity in the interneuron (SET) and (2) supraspinal descending input
that initiated movement (GO). The dynamic range of all neural activity
was normalized between 0 and 1 and all inputs were constrained to the
range * 1. The nonlinearity in the sigmoidal model enabled the “reflex
gating” described when biological systems switch between behavioral
states. Throughout this article, we refer to “gains” as the input settings of
these nonlinear operators in the regulator.

We extracted the structure and properties of the known pathways in
the spinal cord from the literature (summarized by Pierrot-Deseilligny
and Burke, 2005) and modeled five classical types of interneurons and the
connectivity that they establish between the afferents from a given muscle
and the motoneurons of the same (homonymous), synergist (heterony-
mous), and antagonist motoneuron pools (e in Figs. 2, 3).

Propriospinal pathway. The proprioceptive sensory outputs (muscle
spindle primary Ia and Golgi tendon organs Ib) excited the propriospinal
pathways (PN in Figs. 2, 3) (Malmgren and Pierrot-Deseilligny, 1988a;
Gracies et al., 1991; Burke et al., 1992). The propriospinal circuit models
directly excited the homonymous motoneurons and also formed the
following connections with other motoneurons: “selective” synapses
whose gain could be excitatory or inhibitory for the partial synergists and
inhibitory synapses for the true-antagonist muscles.

Monosynaptic la excitation pathway. Muscle spindle primary afferents
excited the motoneurons monosynaptically (Malmgren and Pierrot-
Deseilligny, 1988a). The afferents also excited the heteronymous mo-
toneurons of partial-synergist muscles (Lloyd, 1946; Meunier et al.,
1993).

Reciprocal la inhibition pathway. The la-inhibitory interneuron re-
ceived monosynaptic input from Ia afferents and provided inhibitory
projections to true-antagonist and partial-synergist motoneurons
(Tanaka, 1974; Pierrot-Deseilligny et al., 1981; Crone et al., 1987), as well

Spinal circuitry between true antagonists. The diagonal muscles are called true antagonists because they oppose each
other in all tasks. There are two such circuits in the integrated model. Five interneuronal pathways were modeled: (1) PN—
propriospinal, (2) monosynaptic la-excitatory, (3) reciprocal la-inhibitory, (4) R—Renshaw inhibitory, and (5) Ib-
inhibitory pathways. The inputs are differentiated as SET and GO. The SET inputs regulate the background activity in the
spinal cord and consist of the gains in the neural pathways plus la presynapticinhibition (small white circles marked Sin the
figure), and biases to the interneurons and motoneurons and fusimotor drive (+y static and -y dynamic) to the muscle

J. Neurosci., July 14,2010 - 30(28):9431-9444 - 9433

as disynaptic recurrent inhibition (disinhibi-
tion of antagonists via the Renshaw pathway)
from homonymous motoneurons (Hultborn et
+ al., 1971). The Ia interneurons were themselves
inhibited by the corresponding true-antagonist
and partial-synergist Ia interneurons (Hultborn
etal., 1976).

Renshaw inhibition pathway. Renshaw inter-
neurons (R in Figs. 2, 3) formed recurrent con-
nections with homonymous motoneurons.
They were also excited by motoneurons of
partial-synergist muscles (Eccles et al., 1954,
1961). They inhibited both partial-synergist
motoneurons and true-antagonist Renshaw
interneurons (Hultborn et al, 1979; Ryall,
1981).

Ib-inhibitory pathway. The Ib interneuron re-
ceived excitatory input from Golgi tendon
organs. The dominant effects of the Ib interneu-
ronal circuitry were inhibition of homonymous
motoneurons, excitation of true-antagonist mo-
toneurons, and either excitation or inhibition of
partial-synergist motoneurons (Eccles et al,
1957).

Excluded spinal circuitry. We excluded other
known interneurons and connections listed
below to limit the complexity of the model and
to minimize the number of arbitrary decisions
required to model poorly characterized path-
ways. The most detailed studies of wrist sensori-
motor circuitry are in the cat, but comparisons
with monkeys and humans suggest substantial
refinements related to the substantially changed
mechanics and behavioral repertoire of limbs
used for manipulation rather than locomotion
(for review, see Illert and Kiimmel, 1999). Be-
cause the SLR model proved to be surprisingly
tractable computationally, it would be feasible
to add other circuits in the future, but this
would be useful only to account for behaviors that the model cannot
perform well. As described below, the SLR as modeled accounted well for
all motor tasks attempted so far.

All cutaneous input was omitted because the tasks to be modeled can
be performed without it and because the details of these oligosynaptic
circuits (e.g., Hongo et al., 1989a,b) are poorly described in man.

The excitatory and inhibitory group Il interneurons as well as all group
II projections from the muscle spindles were omitted because their con-
nectivity is not well characterized (Lundberg et al., 1987; Jankowska,
1992). Furthermore, the excitatory and inhibitory group II pathways
parallel the Ia pathways to a great extent, suggesting a functional similar-
ity between them (Lundberg et al., 1987). The variable y-static and
y-dynamic gains in our model allow for the adjustment of the relative
sensitivity of Ia fiber activity to muscle length and velocity, so it captures
to some extent the group II contribution to movement.

The known but poorly defined pattern of Ia projections to Ib interneu-
rons (Jankowska, 1992) was omitted. An important property of this con-
vergence is that it provides a reflexive adjustment of the firing sensitivity
of the Ib interneuron with respect to the phase of the movement. This
may be especially important for simulating more complicated tasks, and
we plan to incorporate some of these projections in future models.

The disynaptic inhibition of propriospinal interneurons (Illert et al.,
1975) was omitted. The apparently diffuse connectivity of these cutane-
ous and proprioceptive inhibitory effects (Alstermark et al., 1984) sug-
gests that they may be responsible for setting the bias of the propriospinal
interneurons (SET input in our model), while the more specific excita-
tory projections (Illert et al., 1978; Malmgren and Pierrot-Deseilligny,
1988b) seem more likely to mediate functional relationships among the
muscles and their modulation during the dynamic phase of the move-
ment. Furthermore, the feedback inhibitory interneurons are more

Gamma Dynamic

Gamma Static
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sensitive to input from cutaneous fibers
(Malmgren and Pierrot-Deseilligny, 1988b;
Alstermark et al., 2007), which could be es-
pecially important for tasks that include state
transitions, such as between reach and grasp,
which we have not modeled.

Commissural interneurons were excluded
from our model principally because the details
of their connectivity are largely unknown and
they appear not to be especially important for
the tasks that we are simulating. Their bilateral
projections in the spinal cord, mostly to other
segmental interneurons, suggest that they may
be primarily responsible for coordinating mo-
tion of contralateral limbs, such as in locomo-
tion (Jankowska, 2008).

All the supraspinal descending inputs pro-
jected only to the interneurons; the a motoneu-
rons received no direct descending commands,
but the integrative outputs of the interneurons
converged at the & motoneurons (Figs. 2, 3).
This is a key distinction compared to previous
models of spinal circuitry (Feldman, 1966; Bul-
lock and Grossberg, 1992; Bullock et al., 1993;
Bashor, 1998; van Heijst et al., 1998; Ostry and
Feldman, 2003; Lan et al., 2005; Maier et al.,
2005), but it is more consistent with the actual
neuroanatomy. This also appears to be the
first model of spinal cord circuitry to deal
with the shifting patterns of synergistic and
antagonistic muscle activity that necessarily
accompany multimuscle, multi-degree-of-
freedom systems.

Inhibitory Synapse

Selective Synapse

Figure 3.

Optimized control of the spinal cord model

We simulated four behavioral tasks for which human performance data
were available for comparison (literature references and rationales are
provided with the Results): (1) brief perturbing torque pulses (100 N X
10 ms) in various directions to the hand in the initial, neutral posture; (2)
rapid voluntary movement to a target posture (35° wrist extension) with
a perturbing torque pulse; (3) rapid development of isometric force to a
target level (either 60 N extension as a sustained step or 70 N extension as
a transient pulse); and (4) adaptation to viscous curl field (rapid volun-
tary wrist extension performed in the presence of perturbing radial
torque proportional to instantaneous velocity in extension).

We anticipated that it would be difficult to use random optimization
to solve such a complex, high-dimensional system, so initially we tried
setting various gains “by hand” according to our intuition as neurophysi-
ologists and control engineers. We found that it was surprisingly easy to
reproduce each of the experimental behaviors by adjusting a small subset
of descending controls (see examples in Fig. 4 described below). Further-
more, emergent details of stability and muscle recruitment were quite
realistic, even though we made little or no attempt to optimize the values
of the many other control signals and we did not modulate any of the
control signals. In fact, these behaviors appear to be robust emergent
properties of the complete set of spinal circuitry as modeled. We then
optimized all 184 control inputs (gains) using a custom gradient descent
algorithm based on a simple quadratic cost function (Eq. 2) that penal-
ized any deviation from the desired trajectory or state:

cost = f(Desired state — Actual state)?. (2)

The steps in the gradient descent algorithm are as follows: (1) Random
values were assigned to the control inputs initially (Monte Carlo
method). However, we avoided extreme values (less than —0.5 and
greater than 0.5) to prevent instability in the system. (2) A single control
input was picked at random from the pool and optimized individually.
(3) Two simulations were required to optimize each control input. The
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Spinal circuitry between partial synergists. The adjacent muscles are called partial synergists because they switch
form synergists to antagonists based on the task performed. There are four such circuits in the integrated model, each consisting of
five interneuronal pathways and their SET and GO controls (same abbreviations as Fig. 2).

first simulation perturbed the starting control input in the positive direc-
tion and the second perturbed it in the negative direction. The value of
the control input that produced the lowest cost was retained. (4). We
used an “annealing curve” strategy when perturbing the control inputs,
by starting with a higher value initially (A = #0.2) and then reducing it
for later iterations (usually by successive factors of 2 but see Discussion).
(5) One iteration of the model was said to be completed when all control
inputs in the model had been optimized once. (6) The whole model was
then iterated multiple times until the overall cost converged to a low
value.

A cocontraction index was computed for all the tasks using Equation 3,
in which cocontraction is quantified as the product of the activation
levels in the two pairs of true-antagonist muscles:

Cocontraction index = f[(EUa X FR,) + (ER, X FU,)] X dt.

(3)

This was used only to compare converged solutions, not as a component
of the cost function used during optimization.

Results

Stabilizing response to external force perturbation

The nervous system has multiple mechanisms to counter external
perturbations to the limb. The impedance of the musculoskeletal
system itself created by inertial properties of the limb (force-
acceleration) plus spring-like (force-length) and viscous-like
(force-velocity) properties of the active muscles produces zero-
delay resistive forces against sudden perturbations called “pre-
flexes” (Loeb et al., 1999; Brown and Loeb, 2000). High levels of
muscle coactivation are energetically inefficient and likely to in-
terfere with rapid movement, so short-latency “reflexes” gener-
ated by proprioceptive sensors and transmitted through the



Raphael et al. @ SLR Facilitates Control of 2 DOF Wrist

J. Neurosci., July 14,2010 - 30(28):9431-9444 + 9435

Task: Stabilizing response to external force perturbation Task: Rapid y
Ext 50°— Ext 50°—
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o k Musclen
Output" Force ¥
Flex 0.5 -+ Flex 50N—--

Ext 50%-

to a position target

ms (Fig. 4d). Importantly, the solutions
produced by our model did not rely exces-
sively on cocontraction (see Fig. 9c below),
but rather agreed well with experiments in
which the opposing wrist muscles were
anesthetized to prevent any cocontraction
(Hore et al., 1990).

Rapid voluntary movement to a
~ position target

Ext 30N T
Muscle | TGN 9 7 Corticospinal trajectory generation for vol-
Force v untary reaching movements is assumed to
Flex 30N L Flex 501 shift from control of slow movements via
Ext 50" Ext 0.8 . . .
d h visual and proprioceptive feedback to con-
A o I, trol of rapid movements via a feedforward
ngle 0 Output 0 | . . .
\[ r trajectory generator with superimposed
Flex 50°-- . . . ‘ ‘ | Flex 08— . ‘ . . dynamic error compensation (Cisek et al.,
o o5 1 _ 15 2 25 3 o 05 1 _ 15 25 3 1998). To identify the potential contribu-
ime (sec) Time (sec) A .
tion of the spinal cord to fast movements,
Figure4. a-d,Stabilizing response to external force perturbation. a, Rotation of the hand from rest position (dotted blackline) ~ we simulated a rapid, stable wrist exten-

about flexion— extension direction in response to a force pulse perturbation in the flexion direction (magnitude 100 N, duration 10
ms) at 15 simulation time. The passive musculoskeletal model alone produced damped oscillations in response to the perturbation
(dashed line). With the hand-tuned SLR model attached, the hand stabilized back to the resting position in 600 ms (solid line). b,
Output from the extensor (red) and flexor (blue, plotted downward) motoneurons. ¢, Corresponding extensor (red) and flexor
(blue) muscle force modulation. d, Response to perturbation after optimizing the control inputs (SET inputs) using gradient
descent algorithm (solid black line). e~ h, The hand stabilized back to the resting position in 200 ms. Rapid voluntary movement to
a position target. e, Rotation of the hand to 35° extension and response to the same force pulse perturbation in the extended
position with minimal intuitive adjustments of the gains and step inputs to the propriospinal interneurons. f, Corresponding
extensor (red) and flexor (blue) muscle force modulation. g, Trajectory (solid black line) after optimizing the controlinputs (SET and
GO) to the desired trajectory (dotted black line) using gradient descentalgorithm. h, Corresponding extensor (red) and flexor (blue)

motoneuron outputs.

circuits in the spinal cord also play a major role in resisting un-
expected perturbations. Both “preflexes” and “reflexes” are un-
der the control of the nervous system, which can effectively
preprogram them to deal with expected perturbations. The “pre-
flexes” depend on the activation level of the muscles and “re-
flexes” are largely governed by the background activity in the
spinal cord and the levels of +y-static (bias control) and
v-dynamic (viscosity control) inputs to the muscle spindles.

We applied an external force pulse of magnitude 100 N and
duration 10 ms along the direction of wrist flexion to the isolated
biomechanical model detached from the spinal circuitry. The
passive model displayed damped oscillations about the wrist joint
typical of a spring-mass-damper system (Fig. 4a, dashed line).
The time period of oscillation increased when gravity was re-
moved from the system, indicating that gravity was a weak stabi-
lizing force.

The magnitude and efficacy of preflexes depends greatly on
the level of background activation (sometimes referred to as
“stiffness” or “tone”) in the musculoskeletal system. We applied
the same external force perturbation after attaching the spinal
circuitry and feedback sensors to the plant. The hand stabilized
back to the resting position in about 600 ms (Fig. 44, solid line),
demonstrating the stabilizing property of the spinal cord. The
gains in the spinal cord were mostly left at a low value and re-
quired only minimal intuitive adjustment to produce a physio-
logical response based on reciprocal muscle activation (Fig. 4b,c¢).
The model continued to provide a good response even after the
removal of gravity from the system.

When the gradient descent algorithm was used to adjust the
background activity in the spinal cord (by optimizing the SET
commands), it converged rapidly and stabilized the hand in 200

sion from neutral to 35° in our model (Fig.
4e). The behavior was further tested for
stability by applying a brief torque pertur-
bation (100 N, 10 ms) during the hold
phase of the movement (at 2.3 s simulation
time). It was easy to obtain physiologically
realistic performance by adjusting indi-
vidually the feedback gains (SET) and
simple step inputs (GO) to the proprio-
spinal interneurons (Fig. 4e). When the
complete set of gains was optimized using
the gradient descent algorithm, perfor-
mance converged rapidly and tracked the desired trajectory (dot-
ted line) even more closely (Fig. 4¢). The optimized solution also
displayed a faster response to perturbation (Fig. 4¢).

Voluntary isometric force to a target level

While the first burst in the agonist muscle is present under both
isometric and anisometric conditions, the second burst in the
antagonist and the third again in the agonist (so-called triphasic
burst pattern) were reported to be missing under isometric con-
ditions in early experiments on cats (Ghez and Martin, 1982). A
few years later, the same laboratory (Ghez and Gordon, 1987)
studied the role of opposing muscles in the production of isomet-
ric force trajectories in human subjects and found that for brief
force rise times (<120 ms), reciprocal activation of the antago-
nist muscle occurred consistently. In the experiment, the subjects
had their arm immobilized, and they were asked to produce force
to a specified target level. The authors interpreted this muscle
activity as indicative of similar preprogrammed phasic drive from
the motor cortex. We replicated the experiment in our model by
constraining the wrist joint using a viscoelastic restrictor with
that permitted 2 mm of motion at peak force, similar to what
seemed likely to be present between the bones and the apparatus
through skin and padding. This results in small but potentially
important departures from the purely isometric assumptions un-
derlying this interpretation.

Gradient descent was used to optimize the SET and GO inputs
to the force trajectory for rapid force steps (Fig. 5a) and force
pulses (Fig. 5b). Rapid modulation of agonist activity (Fig. 5¢,d)
could be explained by modulation of spindle afferent activity (not
illustrated) as a result of stretch of their elastic tendons. Antago-
nist bursts were produced for rapid force modulations (Fig. 5¢)
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Task: Voluntary isometric force to a target level
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Figure 5.  Voluntary isometric force to a target level. a, The net reaction force (solid black
line) produced by the isometric muscles after optimizing the control inputs to the desired force
(dashed black line) using gradient descent algorithm. b, Pulse force trajectory (solid black line)
produced after optimizing the control inputs using gradient descent algorithm. ¢, Agonist (red)
and antagonist (blue) motoneuron output for brief rise time (100 ms) pulse-force trajectory.
Tasks replicating brief rise time force trajectories (<120 ms) consistently produced antagonis-
tic pulses in both pulse and step force trajectory tasks. d, Agonist (red) and antagonist (blue)
motoneuron output for long rise time (250 ms) step-force trajectory task. The antagonist pulse
was distinctively absent for intermediate (120200 ms) and long (=200 ms) rise time force
trajectory tasks.

but were absent for slower force trajectories (Fig. 5d), as was
reported experimentally (Ghez and Gordon, 1987). These were
associated with the smaller modulations of their homonymous
spindle afferents as a result of the compliance of the viscoelastic
restrictor.

Adaptation to viscous curl force fields

The adaptation of human reaching to novel dynamic environ-
ments, such as an opposing curl field, has been widely accepted as
one of the most valuable testbeds for the notion of internal mod-
els and the learning process involved in their development and
adaptation [see Kluzik et al. (2008) for recent examples of this
extensive literature]. In the experiment, the subject makes reach-
ing movements with a robot that generates a perturbing force
proportional to the velocity of the actual movement and perpen-
dicular to the direction of intended movement. The trajectories
are initially skewed in the direction of the perturbation but grad-
ually straighten with adaptation. When the field is unexpectedly
removed, the trajectories show mirror-image aftereffects.

In an attempt to find the limits of the spinal cord’s potential
role in motor adaptation, we replicated the experiment in our
model. We defined the intended direction of movement of the
hand about the x-axis (flexion—extension) and applied viscous
perturbing force about the z-axis (radial-ulnar deviation) in pro-
portion to the velocity in the x-axis. Figure 6 illustrates the sur-
prisingly good performance obtained using a simple gradient
descent solution with unmodulated SET and GO descending
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Task: Adaptation to Viscous Curl Force Fields
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Figure6. Adaptation to viscous curl force fields. a, Tracking a desired trajectory (dotted

black line) in the presence of viscous force field perturbations. The gradient descent
algorithm optimized the control inputs to produce extension (solid black line) that closely
tracked the desired trajectory. b, Radio-ulnar deviation in the presence of viscous curl
force fields reduced from 35° to nearly 0° (solid black line) after optimization. ¢, d, After-
effects when the curl force field was removed. e, Primary afferent response from the
muscle spindles in each of the four muscles after adaptation (two extensor muscles in red
plotted upward; 2 flexor muscles in blue plotted downward). f, Responses from the four
Golgi tendon organs after adaptation. g, Output of motoneurons exciting the extensor
muscles (red) and flexor muscles (blue), after adaptation. h, Extensor (red) and flexor
(blue) muscle force modulation after adaptation.

commands for gains. The extension movement (Fig. 6a) follows
the desired trajectory almost as well as for the unopposed exten-
sion solution in Figure 4g; the initial radio-ulnar deviation of
about 35° before training has been reduced to almost zero (Fig.
6b). The mechanisms that underlie this performance appear to
involve a combination of asymmetrical fusimotor gains (Fig. 6e)
and asymmetrical activation of propriospinal neurons (Fig. 6g)
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Figure 7.  Analysis of gain values. a, Learning curves for 10 solutions of rapid ramp-hold
movements all initialized to different random settings. Even though the initial cost values were
considerably different, all curves converged rapidly to stable solutions. b, The final values (or-
dinate axis) for 54 of the gains from each of two solutions (red and blue circles) from a that
achieved very similar cost and kinematic details. They differ substantially in many details, often
including both magnitude and sign. ¢, Distance between the starting and final positions in the
high-dimensional state space of gains (square root of the sum of squared distances in all 200
gain axes). The 45 possible pairwise comparisons, ordered according to their distances from
each other after optimization.

and resulting muscle force (Fig. 6h). The aftereffects are also
surprisingly physiological when the curl field is removed from a
system that has adapted to it (Fig. 6¢,d).

To explore the variability of adaptation across subjects, we
took advantage of the fact that the SLR generally produces many
“good enough” solutions for any given task when started with
random initialization gains (see Fig. 7 below). We used several
such solutions for unperturbed, rapid wrist extension as starting
points for adapting to the curl fields. This resulted in generally
adequate but substantially different performance for these func-
tionally equivalent starting points, in terms of speed of conver-
gence to a solution, quality of the solution, and the magnitude of
aftereffects. This would be consistent with the general observa-
tion that subjects differ in how quickly they learn to compensate
for unusual and complex loads such as curl fields [e.g., Shadmehr
and Mussa-Ivaldi (1994), their Fig. 11].
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Figure 8. Typical learning curve for each task. All tasks started with random starting values
for the control inputs, which were then optimized using gradient descent algorithm. One iter-
ation of the model was said to be completed when all control inputs in the model had been
optimized once. The common feature across all tasks was that almost all of the cost reduction
was obtained in the first iteration with little improvement in subsequent iterations.

The subjects in force-field experiments showed aftereffects of
force adaptation even though they had explicit knowledge that no
external force would be applied to the reaching hand (Kluzik et
al., 2008). This suggests that force adaptation cannot be switched
on or off by cognitive cues alone but may also involve a spinal
level adaptation that takes time to readjust. In the SLR, the errors
produced due to the unexpected dynamic changes were trans-
duced by the proprioceptive sensors, which in turn evoked re-
flexes to reduce the error. Our results suggest that the gains in the
regulator circuitry can be readjusted to eliminate these trajectory
deviations almost completely. We acknowledge that the model does
not account for various other observations in the experiments, such
as the generalization of adaptation across arms that appears to be in
the extrinsic coordinates of the task (Criscimagna-Hemminger et al.,
2003). There are substantial interhemispheral connections as well as
uncrossed descending circuits and bilateral commissural spinal in-
terneurons (which we have not modeled) that may contribute to
such generalization, even without an explicit internal model in ex-
trinsic coordinates.

Multiple local minima
Figure 7a shows learning curves for 10 solutions of rapid ramp-
hold movements, all initialized to different random settings. Cost
reflects the deviation from the desired trajectory as defined in
Equation 2. Even though the initial cost values were considerably
different, all converged rapidly to stable solutions. The final val-
ues were distinctly different from each other but were all within
typical variability of experimental performance (note log scale of
cost function). We further examined the solutions themselves to
see how they differed from each other. Figure 7b compares the
final values (ordinate axis) for 54 of the gains from two of the
solutions from Figure 7a that achieved very similar cost and ki-
nematic details. They differ substantially in many details, often
including both magnitude and sign. This suggests that the state
space consists of many, widely separated local minima that can be
used to perform the task successfully.

We further tested the distribution of local minima by exam-
ining the distances between the starting and final positions in the
high-dimensional state space of gains (square root of the sum of
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squared distances in all 184 gain axes), il-
lustrated in the bar graph in Figure 7¢ for
the 45 possible pairwise comparisons, or-
dered according to their distances from
each other after optimization. There was a
weak tendency for solutions that were
close to each other in space to have started
closer to each other initially, consistent
with the expected properties of gradient
descent. There was no tendency for the
normalized cost differences of the start-
ing positions or optimized solutions to
correlate with separation of the solu-
tions in state space, consistent with the
notion that the local minima are widely
distributed throughout the state space
and not greatly different in actual values
or local steepness.

gamma-dynamic

gamma-static

Viscous Curl

. Force Pulse
Learning rate

Across all the simulated tasks, we noticed
a consistent and prominent characteristic
in the gradient descent process, regardless
of task complexity, random starting posi-
tions, or initial performance: The vast
majority of the reduction in cost was ob-
tained in the first iteration, which used the
biggest step change in gain. In all our sim-
ulations, we used a fairly shallow “anneal-
ing curve” strategy, starting with a larger
change in gain in the first iteration (A =
+0.2) to escape from poor local minima
and then reducing the change to smaller
values (typically 0.1, 0.05, =0.01) in
subsequent iterations. Figure 8 shows one
illustrative solution for each of the five
tasks that we have modeled. Further opti-
mization from this point produced only
very small reductions in the cost even
though there were substantial changes in
the gains, indicating broad local minima.
We have tried several different annealing
curves (patterns of decreasing gain steps
explored in successive iterations), but this
finding appears to be robust, suggesting
that most local minima are well separated
from nearby local minima. Clearly, under
some circumstance it may be desirable to
force systems out of local minima to find
the global minimum for truly optimal
performance, as opposed to “good enough”
performance. That may require more
complex gradient descent strategies in
which more than one gain is varied at a
time. This notion seems to have some sub-
jective resonance with the strategies used by coaches to force
athletes out of “bad habits” (Lyndon, 1989).
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similar to b; see text.

Comparison with servo control

To compare the performance of our model with a sufficiently
complex model with the same sensors and actuators but without
the specific interneuronal types, we developed a classical servo-
control model and replicated the same five tasks. The motoneu-
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Servo-control model. a, Circuit diagram of a classical servo-control model. The motoneurons received direct feedfor-
ward commands plus homonymous positive feedback from the muscle spindle primary afferents and negative feedback from the
Golgi tendon organs. They also received negative feedback from true-antagonist muscle spindle primary afferents. Al of these
commands and gains and fusimotor biases were adjusted by random gradient descent as for the SLR model. b, Cost comparison
between the servo-control model, SLR model, and experimental performance (Liles, 1985; Ghez and Gordon, 1987; Wierzbicka et
al., 1991) is shown for each of the tasks we modeled. The shaded box with the dotted outline represents performance levels for
those subjects who adopted muscle coactivation rather than the more typical triphasic burst pattern. ¢, Cocontraction comparison

rons received direct feedforward commands plus homonymous
positive and negative feedback from the muscle spindle and Golgi
tendon organs, respectively (Fig. 9a), similar to the “autogenetic
stiffness servoregulator” proposed by Houk (1979). The only
non-homonymous projection to the motoneuron was the nega-
tive feedback from the true-antagonist muscle spindle. The mean
performance cost produced by the new model was significantly
higher in all the tasks compared to the SLR model (Fig. 9b). Even
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for relatively good performances, servo control produced un-
physiological levels of cocontraction in muscles (note log scale in
Fig. 9¢), a strategy that is highly inefficient because it requires high
metabolic energy. The optimized performance of the servo con-
troller was highly sensitive to the starting values of the gains and
some solutions had large deviations from the desired behavior.
The local minima in the solution space appeared to be very broad
and it was often difficult to escape from poor minima even with
multiple iterations. In contrast, the SLR model produced perfor-
mance costs that were always within observed experimental vari-
ability regardless of initialization conditions, and the mean and
SDs of the costs across similar tasks were considerably lower. The
SLR model relied heavily on proprioceptive feedback to improve
performance in all the tasks with little cocontraction (Fig. 9¢).
The local minima in the solution space were quite robust and in
all cases were adequate to produce physiologically realistic
performance.

Sensitivity of optimized solutions

The tendency of the learning curves to plateau rapidly at low costs
regardless of annealing curve (Figs. 7, 8) suggests that the opti-
mized solutions of the SLR model were relatively robust to
changes in individual gains. A more systematic test of this was
generated for a typical converged solution for the rapid voluntary
extension task. After three iterations with A = 0.1 for all gains, the
cost had plateaued to the low level indicated at A = 0 in the center
of Figure 10a. From that starting gain set, each gain was system-
atically varied by steps of +0.05, +0.1, or 0.2, resulting in a
family of changes to the cost. The introduction of the finer steps
of 0.05 resulted in small improvements for some gains, as ex-
pected. Some of the gains had little effect on this task; those same
gains were often more critical for other tasks (e.g., gains related to
force feedback tended to be more important for the isometric
force tasks). A few of the gains (thick lines with symbols; key in
legend) had steeper effects on performance, often for changes in
one direction but not the other. Because the starting values of
these gains could vary from 0 to *1, the fractional value repre-
sented by these A values varied widely and might be more rele-
vant to their sensitivity to neural noise. The values for A = =0.05
were replotted as percentage change in Figure 10b, with infinity
denoting starting gains of zero. Two of the gains were still quite
sensitive in both directions, but their effects were reciprocal, so
that an increase in one could be cancelled by a decrease in the
other. Interestingly, the synergistic extensor muscle that must
work symmetrically in this task did not exhibit a similar pattern
of sensitivity. After deliberately fixing either of these most sensi-
tive gains to a value that produced high cost, running one itera-
tion to adjust the remaining gains was able to reduce the cost back
down to the human performance range (dashed lines). This was
accomplished by changing a large number of gains depending on
the random order in which they were tested, not necessarily the
gain exhibiting the reciprocal relationship noted above. These
findings are consistent with the low costs after the initial itera-
tions with the relatively coarse A = 0.1 and the broadly different
gain solutions with similar performance (e.g., Fig. 7b).

Generalization of optimized solutions

One important property of motor strategies learned under one
set of conditions is that they generalize to other, similar condi-
tions that were not part of the training set. We tested whether this
was a property of the SLR strategies to resist brief force perturba-
tions such as that illustrated in Figure 4d. Initially we trained the
SLR to resist force perturbations in the four perpendicular ana-
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Figure 10.  Sensitivity analysis. a, Starting with a set of converged gains after three itera-

tions with A = 0.1, each gain was individually adjusted up and down by A values of 0.05, 0.1,
and 0.2 and the resulting cost plotted on the ordinate; dashed lines indicate range of normal
human performance. Traces exhibiting high sensitivity in at least one A direction are high-
lighted in color (key: red down arrow = GO drive to propriospinal interneuron to EU muscle;
green up arrow = SET drive to same; mauve circle = GO drive to propriospinal interneuron to
FR; purple square = SET drive to same; green star = b feedback to FU). b, Cost values for A =
=0.05 replotted as percentage gain change on abscissa (“inf” denotes starting value = 0).

tomical axes of the wrist, i.e., flexion, extension, radial, and ulnar
directions (Fig. 11, red axis lines). The algorithm thus optimized
the gains to reduce the sum of the costs calculated from pertur-
bations in all four anatomical axes, delivered sequentially, one
after the other. After training the converged solution set provided
good response to perturbation in all four trained directions. We
then tested the ability of the converged solution to resist similar
perturbation in new untrained directions, such as pulling direc-
tions of the individual muscles, i.e., rotated 45° from the anatom-
ical axes (Fig. 11, blue axis lines). The responses were almost
equally rapid and accurate as for the trained directions (Fig. 11).
Thus one solution set was able to generalize and resist perturba-
tion in any direction in the workspace.

Discussion

Limitations of the model

The selection and design of the modeled components entailed
many omissions and simplifications from the known physiology
and mechanics of this neuromusculoskeletal system. Despite
these limitations, it was relatively easy for a simple gradient de-
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scent learning algorithm to achieve realis-
tic performance in terms of both the
performance goals of the task and realistic
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Figure 11.

The general utility of regulators

The SLR has alarge number of control points, but it turned out
to be surprisingly easy to find simple patterns of descending
inputs that caused it to replicate actual performance details of
a wide range of motor behaviors. This appears to be a conse-
quence of the state space defined by the SLR, which has many
local, “good enough” minima for each of the tasks we simu-
lated. Importantly, regardless of starting gains, the SLR never
became trapped in a local minimum that produced less than
satisfactory performance. Against common intuition, we
found that the larger the number of inputs that were opti-
mized by the algorithm, the faster it converged to better per-
formance. This is in contrast to the servo-control model,
which converged more slowly and often to poor solutions.
Poor performance, but not slow convergence, might reflect
the substantially fewer interneurons and adjustable gains in
the servo controller compared to the SLR.
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Ability of SLR strategy to generalize to new task conditions. a, Response to brief force perturbation along the
extension direction (black arrow) before (dotted red line) and after (solid red line) training the SLR to resist in the anatomical axes
of the wrist, i.e., flexion, extension, radial, and ulnar directions (red axes lines). b, Rotation of the wrist along ext-flex and rad-uln
axes in response to the same force perturbation along untrained axes (blue axes lines), the pulling direction of the ECR muscle. ¢,
Response of the SLR due to perturbation along the pulling direction of FCU muscle.

One obvious complexity that we have avoided concerns the
temporal modulation of descending commands during tasks. We
were surprised by the range of dynamic behaviors that the model
could reproduce using simple SET and GO step functions, but we
expect this to break down for more complex tasks. Recordings of
cortical activity during even simple tasks often show substantial
temporal modulation that is more complex than a step function
centered on the task initiation (Churchland and Shenoy, 2007).
In fact, these patterns seem to have more in common with the
wide variety of patterns described for spinal interneurons (Maier
et al., 1998; Perlmutter et al., 1998) than with the canonical pa-
rameters describing the task kinematics (e.g., direction, distance,
velocity) or kinetics (e.g., individual muscle activity). Interest-
ingly, complex EMG patterns in monkey arm muscles were sur-
prisingly well predicted from cortical single-unit activity using
nonlinear combinatorial functions such as might be embodied in
spinal interneurons (Song et al., 2008) rather than more simple
combinations (Westwick et al., 2006).
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Itis also important to consider the effects of intertrial variabil-
ity in the descending commands. Churchland et al. (2006) deter-
mined that ~50% of the variance in performance was already
present in these cortical neural signals rather than arising from
the “motor noise” that has been attributed to discrete recruit-
ment of size-ordered motor units (Jones et al., 2002). It is also
likely that the cortical variability is itself correlated among mul-
tiple units (Maynard et al., 1999). Churchland et al. (2006) inter-
preted this variability as noise, but it may be indicative of
purposeful exploration of the complex solution space afforded by
an SLR to which these neurons project. Such exploration might
be useful to free up the limited computational capacity of cortex
so that other tasks can be learned. Doyon and Benali (2005) at-
tributed the later stages of motor consolidation to redistribution
via the corticostriatal or cortical-cerebellar systems, but it may
also depend on the solution space of the SLR. Adding noise or
purposeful variability to the command signals that are responsi-
ble for setting the SLR gains during iterative adjustment seems
likely to prevent the solution from settling into local minima for
which any individual gain has a steep cost function (see Fig. 10
and related Results regarding sensitivity).

Interpretation of deafferentation experiments
Many researchers attribute a dominant role to descending com-
mands rather than segmental feedback because studies have
shown that both chronically and acutely deafferented subjects
can produce some temporal details of normal muscle activation,
specifically a triphasic burst pattern during rapid movements that
is similar to that produced by normal subjects (Hallett et al., 1975;
Rothwell et al., 1982; Sanes and Jennings, 1984; Forget and
Lamarre, 1987; Berardelli et al., 1996). These results, however, do
not prove that the behavior is normally achieved via open loop
commands. It is possible that in the absence of sensory feedback
to the regulator, the brain could have learned to produce a similar
motor program, given that it is a necessary strategy of muscle
recruitment for performing the task successfully. Interestingly, a
deafferented patient exhibited a triphasic burst pattern in a study
by Forget and Lamarre (1987) but was unable to produce it two
years prior. Furthermore, chronically deafferented patients ex-
hibit significantly different EMG timing and worse kinematic
performance (Rothwell et al., 1982; Forget and Lamarre, 1987;
Gordon et al., 1987), which could mean that the brain is intrin-
sically an inferior source of such rapidly modulated motor com-
mands compared to a regulator with phasic afferent feedback.
The acutely deafferented patients in the study by Sanes and
Jennings (1984) were able to produce remarkably crisp EMG
patterns and relatively better kinematic performance than the
chronically deafferented patients of the other studies. However,
the ischemic block that they imposed affected afferent activity
from muscles below the elbow, leaving intact both the efference
copy from their motoneurons via the Renshaw interneurons and
all proprioceptive feedback from all proximal muscles. The wide-
spread extent of such feedback circuitry (Cavallari et al., 1992)
and the strong modulation of proximal muscles to stabilize pos-
ture during phasic distal movements was fully appreciated only
subsequently (Massion, 1992). Only a small portion of the actual
feedback to a spinal regulator would have been removed as a
result of the ischemic block. This might account for the relatively
minor effects on EMG amplitudes and kinematic trajectories that
were actually observed. For the multiarticular model of elbow
and shoulder muscles now under development (Tsianos et al.,
2009), it should be possible to simulate such partial deafferenta-
tion on a converged control scheme for an SLR.

J. Neurosci., July 14, 2010 - 30(28):9431-9444 - 9441

| ??

Hierarchical v
Control [”premotor" Cx
Updated 2

\ 4
[ “motor” Cx

control _______|transcortical
function & reflexes
regulatory /[ spinal cord
function
segmental
reflexes

feedback
function

Figure 12.  Generalizing the concept of hierarchical control. Each level of the hierarchy from
cerebral cortex (Cx) to spinal cord to musculoskeletal plant performs a regulatory function for
the level above and acts as a controller for the level below. The label inside each feedback loop
indicates a typical manifestation of the function at each level. See Discussion.

Deafferentation and ablation experiments provide informa-
tion about what structures are necessary to perform a task only
when the task fails; they never provide information about what
structures are sufficient. Conversely, models can demonstrate
whether a mechanism is sufficient to perform a task when they
succeed, but will never prove what is necessary. Our general hy-
pothesis is that the spinal cord (together with other regulatory
circuits with similar connectivity; see below) plays a major role
that facilitates learning and performing voluntary tasks. Models
cannot prove that this is the case, but they can demonstrate the
extent to which this hypothesis is consistent with observed behav-
ior and should be considered when interpreting neural activity
during such behavior.

Hierarchical architecture

The random gradient descent algorithm appears to be at least
qualitatively similar to the manner in which the infantile brain
learns to use the spinal cord or individual subjects acquire and
refine any new motor skill. The important question is where do
the signals being adjusted during this learning process actually go.
If those signals project to something like our SLR model, that
entity must substantially define and may generally simplify the
learning of motor tasks by the brain. Neurophysiologists record-
ing neural activity in motor cortex have looked for correlations
with task kinematics or kinetics and inevitably find them, but this
sheds no light on the long-standing debate over which parame-
ters of motor behavior are commanded and encoded by the mo-
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tor cortex (Fetz, 1992; Loeb et al., 1996; Scott, 2000; Churchland
and Shenoy, 2007).

Previous formulations of hierarchical control (Loeb et al.,
1999) have associated the regulator with the spinal cord alone,
leaving the motor cortex to function only as a source of the feed-
forward commands as described herein. In fact, it is more likely
that many, if not all, centers in the sensorimotor system integrate
sensory feedback from lower centers with command input from
higher centers, accounting for the observed temporal complexity
at all levels. Furthermore, some of the functionality attributed to
the SLR in the present model may actually occur in similar cir-
cuitry residing in other structures in the CNS [e.g., rubromo-
toneuronal system included in premotoneuronal model by Maier
et al. (2005)]. Experiments that apply brief perturbations while
recording from single units (e.g., Weber and He, 2004) can help
to identify such functionality, but they need to be interpreted in
the light of a more general theory of computation.

A general notion of “regulation” is illustrated in Figure 12, in
which a regulator is any structure whose outputs depend on mul-
tiple sources of feedback from the lower level according to pro-
grammable gains (control signals) set by a higher level. This
concept extends down the hierarchy to account for muscle phys-
iology and musculoskeletal mechanics. For example, the force
output of muscles is highly dependent on kinematic conditions
imposed by the motion of the limb according to the state of
activation of the muscles [preflexes as defined by Brown and Loeb
(2000)]; similarly, the interaction of limbs with objects is highly
dependent on the mechanical impedance of the limb according to
its posture and stiffness as set by muscles (Hogan et al., 1987). For
simple systems that are invertible or locally linearizable, analyti-
cal methods can be used to compute optimal solutions for regu-
lator settings (He et al., 1991; Todorov and Jordan, 2002).
However, the brain is unlikely to employ such methods, making
itimportant to demonstrate that realistic systems are amenable to
trial-and-error learning as demonstrated herein.

Industrial robots are meticulously programmed to perform
desired tasks and then carefully insulated from the vicissitudes of
human operators and changing circumstances. In contrast, the
brain delights in exploring new ways to perform old tasks, secure
in the knowledge that the emergent behavior will be at least ac-
ceptable and stable. Muscles, proprioceptors, and interneurons
are complex, but such biological systems have properties that
appear to simplify the tasks of learning and producing complex
movements. That alone would provide a basis for their evolution
and retention. The functional connectivity that justifies extend-
ing this notion up the hierarchy from the spinal cord (where it
was originally formulated) to the rest of the brain has long been
known to exist [e.g., proprioceptive fields and transcortical re-
flexes (Lee and Tatton, 1975; Evarts and Tanji, 1976)], but it has
yet to be described in sufficient detail to permit the type of mod-
eling presented here.
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