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Neural representation is pivotal in neuroscience. Yet, the large number and variance of underlying determinants make it difficult to distinguish
general physiologic constraints on representation. Here we offer a general approach to the issue, enabling a systematic and well controlled
experimental analysis of constraints and tradeoffs, imposed by the physiology of neuronal populations, on plausible representation schemes.
Using in vitro networks of rat cortical neurons as a model system, we compared the efficacy of different kinds of “neural codes” to represent both
spatial and temporal input features. Two rate-based representation schemes and two time-based representation schemes were considered. Our
results indicate that, by large, all representation schemes perform well in the various discrimination tasks tested, indicating the inherent
redundancy in neural population activity; Nevertheless, differences in representation efficacy are identified when unique aspects of input
features are considered. We discuss these differences in the context of neural population dynamics.

Introduction
While the notion that object representation is embedded in
sequences of action potentials is fairly well accepted among neu-
roscientists, there is less agreement concerning the actual repre-
sentation schemes (i.e., neuronal activity features) that carry
stimulus-relevant information at the assembly level. Attempts to
address this question range from in vivo measurements com-
bined with psychophysical procedures, to abstract mathematical
constructs that are realized (in most cases) in numerical simula-
tions. As it currently stands, in vivo research of neural represen-
tation has led to highly region and context-specific answers
(deCharms and Zador, 2000). The nature of neural representa-
tions in the brain is determined and affected by many factors:
anatomy and wiring of the region in interest, ongoing activity,
modulations from other brain regions, properties of the stimulus
itself and many others. It is difficult, given all these determinants,
to understand the origins of the relations obtained in vivo, and to
attribute a property of the “neural codes” to its cause. Not the least
of the factors that constrain the nature of the neural code is the
biophysics of the neural assembly itself: dynamical properties of its
elements and connections. This is a more fundamental and generic
aspect of the neural representation problem, which is less dependent
of the specific region, modality and functional context, and is the
primary focus of the present study.

So far, most studies of input representation by generic neural
assemblies, or of the input-output relations of such assemblies,

were mainly theoretically oriented, and were based on analytic or
numeric models of populations of neurons (Mazurek and
Shadlen, 2002; Sanger, 2003). While these approaches carry the
appealing advantage of reduced modeling, they also suffer from
serious shortcomings, resulting from exactly those simplifica-
tions and abstractions. By choosing a simplified model of a neu-
ron and a synapse, they leave out most of their internal processes
and dynamics, that might have a major impact on the results and
their interpretations.

The tradeoff then, is between limited control and multi-
plicity of intervening factors in in vivo experimental ap-
proaches, and unavoidable oversimplifications in theoretical
approaches. Here we have followed an intermediate path, that
allows considerable control over relevant variables and good
sampling capabilities, while maintaining the complexity of in-
dividual neurons and synaptic connections practically intact.
We describe experiments performed using large scale random
networks of cortical neurons, developing in vitro (Marom and
Shahaf, 2002; Morin et al., 2005) upon substrate-embedded
electrode arrays that allow stimulation at multiple spatial lo-
cations while monitoring the spiking activity of many individ-
ual neurons.

In this study we map the concepts of representation and
input-output relations to this system. Given the dynamics and
properties imposed by the biological assembly, we ask: Which
representation schemes are plausible and what are the constraints
and limitations involved? We compared a number of representa-
tion schemes in a series of discrimination tasks, to assess their
efficacy in revealing the differences between inputs—namely, the
spatial location of the input, and the time elapsed from the pre-
viously applied stimulus. Our results show that in general, all the
examined representation schemes perform well in these tasks,
while differences in their relative advantages become apparent
when different tasks are considered.
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Materials and Methods
Network preparation. Cortical neurons were obtained from newborn rats
(Sprague Dawley) within 24 h after birth using mechanical and enzy-
matic procedures described in earlier studies (Marom and Shahaf, 2002).
The neurons were plated directly onto substrate-integrated multielec-
trode arrays and allowed to develop functional and structural mature
networks over a time period of 2–3 weeks. The number of neurons in a
typical network is in the order of tens to hundreds of thousands; various
estimates of connectivity suggest that each neuron is monosynaptically
connected to 10 –30% of all other neurons in a radius of 600 �m, with
�20% of the synapses being inhibitory (see (Marom and Shahaf, 2002)
for a comprehensive review of the preparation). The preparations were
bathed in MEM supplemented with heat-inactivated horse serum (5%),
glutamine (0.5 mM), glucose (20 mM), and gentamycin (10 �g/ml), and
maintained in an atmosphere of 5% CO2 and 95% air at 37°C in an
incubator as well as during the recording phases. Multielectrode arrays
(MEAs) of 60 Ti/Au/TiN electrodes, 30 �m in diameter, and spaced 500
�m from each other (MultiChannel Systems) were used. The insulation
layer (silicon nitride) was pretreated with polyethyleneimine.

Measurements and stimulation. A commercial 60-channel amplifier
(B-MEA-1060, MultiChannel Systems) with frequency limits of 150 –
5000 Hz and a gain of �1024 was used. The B-MEA-1060 was connected
to MCPPlus variable gain filter amplifiers (Alpha Omega) for further
amplification. Rectangular 200 �s biphasic 50 �A current stimulation
through chosen pairs of adjacent MEA electrodes was performed using a
dedicated stimulus generator (MultiChannel Systems). Data were digi-
tized using two parallel 5200a/526 A/D boards (Microstar Laboratories).
Each channel was sampled at a frequency of 24 Ksample/s and prepared
for analysis using the AlphaMap interface (Alpha Omega). Thresholds
(�8 RMS units; typically in the range of 10 –20 �V) were defined sepa-
rately for each of the recording channels before the beginning of the
experiment. All the activity recorded in the 60 electrodes was collected
and stored for analyses. The data presented here is not spike-sorted. Each
electrode in our setup senses �1–3 neurons and previous analyses on
sample datasets do not show qualitative differences in results between
spike sorted and nonsorted spike trains.

Data analysis. Mature networks (14 –21 days in vitro) were chosen for
experimentation based on their ability to reliably respond to more than
one source of low-frequency (0.1 Hz) stimulation. Reliability is defined
as above 50% success in evoking a synchronous population response,
denoted “network spike” (NS) as explained in Results (Eytan and
Marom, 2006; Thivierge and Cisek, 2008). The first 10 ms following each
stimulus were removed from the data, to exclude spikes that were directly
evoked by the stimulus itself; this point is further elaborated on in Re-
sults, General considerations. Response features were extracted from the
neural response, and were standardized before classification analysis. Of
the various available methods for estimating the information content of
a specific neural response feature with regard to a specific input feature
(each regraded as a random variable) (Paninski, 2003; Nelken and
Chechik, 2007), we chose the decoding approach, which put a lower limit
on the information content (in the sense that an optimal decoder can be
only approximated by a real one, hence resulting an underestimation of
the information). We use here a support vector machine (SVM) with a
nonlinear Gaussian kernel, a general-use state of the art supervised clas-
sification algorithm (Ben-Hur et al., 2008). In general, a SVM is an algo-
rithm designed to find an optimal separating hyperplane between two or
more groups of points in an Euclidean space. Eighty percent of the avail-
able data are used as a training set by the algorithm for the construction
of the hyperplane, while the remaining 20% are used for the generaliza-
tion error evaluation, which is quoted throughout this paper. Specifi-
cally, we have used MCSVM1.0 (webee.technion.ac.il/people/koby), a C
code package for multiclass SVM (Crammer and Singer, 2001) with
Gaussian radial-based function kernel. The kernel width parameter
was set to a value in the range [0,10] which gives the maximal accuracy
in 5 trials. Each classification was repeated 30 times (for confidence
interval estimation), each time with a different randomly selected
train and test sets.

Results
General considerations
Various measures of cell physiology, microscopic connectivity
statistics and activity dynamics, indicate that in vitro networks of
cortical neurons are reasonable models of in vivo neural assem-
blies, notwithstanding the absence of large-scale morphological
features (Marom and Shahaf, 2002; Morin et al., 2005). The main
mode of activity in these networks, both spontaneous (van Pelt et
al., 2004; Chiappalone et al., 2007) and in response to electrical
stimulation is the network spike (NS)—an event of synchronous
network activity (Eytan and Marom, 2006; Thivierge and Cisek,
2008; Thiagarajan et al., 2010) lasting tens to hundreds of milli-
seconds. At the system level (in vivo), the network spike is a
universal phenomenon that characterizes responses to sensory
objects, regardless of the stimulus modality, stimulus complexity
or cortical area involved (Meister et al., 1991; Riehle et al., 1997;
Usrey and Reid, 1999); behaviorally relevant objects are believed
to be represented by the activity of neurons within the network
spike time-amplitude envelope (Keysers et al., 2001; Wesson et
al., 2008; Foffani et al., 2009). In recent years, multiple studies
have shown that the biophysical nature of the in vivo network
spike, as well as its capacity to represent temporal and spatial input
features, are preserved in the reduced in vitro model system, enabling
well controlled analysis of the network spike’s properties in a single,
isolated neural network (Marom and Shahaf, 2002).

An electrical stimulation of an in vitro network (a current
pulse between a pair of electrodes—see Materials and Methods)
induces an action potential in a subgroup of neurons (Jimbo et
al., 2000). This so-called “immediate response” (or “receptive
sheath”) is very precise and reproducible (i.e., repeats itself with
low jitter in consecutive trials) (Fig. 1c), involves �5–10% of the
neurons in the network (estimated by the number of neurons that
respond immediately out of the total recorded neurons), and
does not involve synaptic transmission; indeed, immediate spikes
persist also under total synaptic blockade (data not shown).
While the subset of neurons that responds directly to stimulation
depends on the identity of the stimulating electrodes, overlap
between these subsets does exist.

Following the immediate response, activity is propagated into
the rest of the network by synaptic transmission, and eventually
recruits the vast majority of neurons (the so-called “recruitment
phase” of the NS). Activity then reverberates across the network
and eventually dies out (Eytan and Marom, 2006; Thivierge and
Cisek, 2008), creating the characteristic shape of the network
spike. An example of a stimulus-evoked NS, with the immediate
response, the recruitment phase, followed by a reverberating
phase that lasts a couple hundreds of milliseconds (Jimbo et al.,
2000; Eytan and Marom, 2006), is provided in Figure 1.

This study focuses on the ways stimulation features affect syn-
aptically mediated activity, beyond the immediate response. The
immediate response may last for up to 25 ms following a stimu-
lus, however more then 95% of its spikes are confined to the first
10 ms (Bakkum et al., 2008; Shahaf et al., 2008; supplemental
Item 1, available at www.jneurosci.org as supplemental material);
therefore, the first 10 ms following each stimulus were excluded
from the data. While data beyond this limit might contain, in a
very low probability, a small fraction of spikes that were directly
activated by the stimulus, we chose not to exclude spikes beyond
10 ms since the data there is made of mostly synaptically medi-
ated response.

In what follows we will denote different stimulating electrodes
(that evoke immediate response in different subsets of neurons)
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as different “spatial sources” represent-
ing different input identities. The “out-
put” of the assembly is defined as the
spatiotemporal pattern of individual ac-
tion potentials in the NS (i.e., all the
downstream spikes, excluding the imme-
diate response). The questions asked here
concern the capacity of this output activ-
ity to represent different stimulus fea-
tures. To that end, our general approach is
as follows: network spikes are evoked us-
ing stimuli that differ from each other in
their spatiotemporal features (i.e., differ-
ent positions of stimulation, or different
temporal patterns from the same input
position); population responses to these
stimuli are recorded and analyzed with
the aim of extracting activity features that
may be mapped to the different spatio-
temporal features of the input. To avoid
trivialization of the results, we only con-
sider the activity of neurons that are
broadly tuned—that is, neurons that par-
ticipate in responses to all of the input
sources.

We adhere to an operational inter-
pretation of the “representation scheme”
concept—that is, reducing it to the ques-
tion of transformations that maintain suf-
ficient statistics to allow for categorization
of input features. In this respect, a com-
parison between efficacies of representa-
tional schemes is a comparison between
different reducing transformations. In
search of a common ground for such a
comparison, one approach is to use information-theoretic mea-
sures to quantify the relation between stimulus and response fea-
tures. Such methods, however, are impractical when data are
limited and large populations of neurons are concerned (Petersen
et al., 2002; Sanger, 2003; Nelken et al., 2005). The alternative
chosen here is the use of a decoder (Quian Quiroga and Panzeri,
2009) that places a lower limit on the information content of the
response by the performance of a supervised classifier, which
attempts to determine the stimulus that caused the neural re-
sponse. In the decoding paradigm, the responses are labeled with
a few distinct classes that correspond to specific features of the
input (spatial location, interstimulus interval, etc.). Different
features of the response are then extracted using predefined re-
ducing transformations (see below), to produce the feature (rep-
resentation) vectors. The dataset is divided to training and test
sets that are used to train and evaluate the decoder (see methods).
Here we chose to use as a decoder a general-purpose support
vector machine (SVM, see Materials and Methods). The perfor-
mance of the decoder on the test set (the classification accuracy)
places a lower limit on the “real” information content of the
representation scheme (feature of the neural response) about the
stimulus feature used to label the data.

We have tested and compared four typical examples of reduc-
ing transformations that are referred to in the neurophysiology
literature (Fig. 2), as follows. (1) Population-count-histogram:
Here, the individual identities of spiking neurons is omitted, and
only the temporal profile of the total spike count, throughout the
network, is considered (Schwartz, 1993; Hupé et al., 2001; Fiorillo

Figure 1. The network spike. All the panels are examples from a singe experiment. a, An example of a single, stimulus-evoked
NS. Each line is a raster plot of a single electrode. b, Population firing rate profiles of NS (population-count-histogram—PCH). Each
thin line is the histogram of a single evoked NS, binned with a 5 ms bin size, the thick black line is the average of 120 responses. All
NS are evoked by the same stimulating electrode. c, d, A raster of the first three spikes of two example neurons. Here also it can be
seen that while the immediate first spike is very precise, later spikes suffer from a large jitter. c, The raster is elicited from a neuron
participating in the immediate response. d, The raster is created from a neuron first firing in the recruitment phase.

Figure 2. An illustration of the data reduction process. Neurons (a–f) responding to a single
stimulation event by evoked spikes (dots). The first 10 ms after stimulus were discarded. The TFS
(time-to-first-spike) representation is the precise time of the first spike at each electrode. The rank
representation is derived from latencies to first spikes (ta–tf). Neurons that fired within the same time
bin were ranked according to their alphabet. The count representation is the number of spikes in each
electrode in a given time window following the stimulation. The PCH (population-count-histogram)
representation is the temporal profile of spike counts of the all neuron in a defined time window.
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et al., 2003). (2) Spike-count: The timing of individual spikes is
omitted, and only the number of spikes evoked by each (iden-
tified) neuron in a predefined time interval is considered
(Arabzadeh et al., 2006; Foffani et al., 2009; Jacobs et al., 2009).
(3) Time-to-first-spike: The precise time delay from the stimulus
to the first spike evoked by each (identified) neuron is considered
(Petersen et al., 2001; Foffani et al., 2004; Johasson and Birznieks,
2004; Gollisch and Meister, 2008; Gollisch and Meister, 2008). (4)
Rank-order: A vector of recruitment rank order, constructed
from time-to-first-spike (Thorpe et al., 2001; Van Rullen and
Thorpe, 2001; VanRullen et al., 2005; Shahaf et al., 2008).

Of course, other types of representation
schemes do exist (e.g., correlation-based, or
general spike patterns); however, the above
four types seem to cover a wide enough
range of response features. The general
approach presented here may be extended
to include more specific types of schemes.
Note that these four reducing transforma-
tions may generally be designated as time
based (time-to-first-spike and rank-order)
or rate based (population-count histogram
and spike-count). These transformations
are parameterized by a number of parame-
ters (e.g., temporal resolution, temporal
window length, number of neurons etc.).
The dependence of classifier performance
on some of those parameters will also be
described.

Representation of stimulus identity
As a first experiment, five spatial input
sources (stimulating electrode pairs)
were chosen randomly and the efficacy of
the four schemes described above in dis-
criminating between the responses was
compared. The stimuli were ordered ran-
domly, once every 15 s; a total of 850 stim-
uli per experiment were applied. Six
experiments, performed on six different
cultured network preparations, were ana-
lyzed. Ideally, one would like to compare
the efficacy of the reduced representation
schemes to the ability of the decoder to
classify the input sources given the entire
dataset, before any reducing transforma-
tion is applied. Obviously, the dimension-
ally of the entire data—that is, all spikes
that were recorded during the response
(lasting �300 ms) from all the electrodes
(60 electrodes), is too high to be consid-
ered. However, even if the spiking activity
of 20 neurons, binned at a 5 ms time res-
olution, is used, the average test set classi-
fication accuracy is �0.9 (�0.07 SD). In
the analysis that follows, we will see that
reduction of the data by the various trans-
formations, can maintain similar classifi-
cation accuracies.

Indeed, as seen in Figure 3a, all four
data reduction schemes maintain a suffi-
cient amount of information to allow the
classifier to perform well above chance

(which is 0.2 for a five input sources). However, it is clear from
Figure 3a that time-based schemes outperform rate-based
schemes. Of the two time-based schemes, rank-order (which is a
further reduction of the time-to-first-spike scheme) captures
practically all the information carried by the time-to-first-spike
scheme. This is consistent with recently published results (Shahaf
et al., 2008). A table of all the results used for construction of
Figure 3a is presented in supplemental Item 2 (available at www.
jneurosci.org as supplemental material), together with general
response statistics of the networks. The better performance of the
time-based schemes, that take into account only the first spikes

Figure 3. Representation of stimulus identity. Classification accuracy of each representation scheme in spatial experiments.
Support vector machine (SVM) algorithm with a Gaussian radial-based function kernel was applied to vectors of training sets (see
Materials and Methods). The resulting classifiers were validated using test sets vectors. Confidence interval are calculated over 30
train-test cycles. Horizontal dashed line represents chance level. a, Analysis results on all (n � 6) spatial categorization task
experiments. Each color represents a different experiment. Results with response window of length 100 ms which starts 10 ms
following the stimulation. b, The classification accuracy of precise time for the first spike in each neuron, the second spike and so on.
Each color represents a different experiment. c, An example from one specific spatial experiment, that shows the sensitivity of
classification accuracy to the window start time after the stimulus. d, Results with response window of length 100 ms which starts
25 ms following the stimulation. e, Results with response window of length 100 ms which starts 50 ms following the stimulation.
f, An example from one specific experiment, that shows the sensitivity of classification accuracy to response window size.
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recorded by each electrode, suggests that timing (be it absolute or
ranked) of spikes is an informative feature of the response. Inter-
estingly, as shown in Figure 3b, the timing of later spikes (second,
third, etc.), recorded as the response progresses, becomes much
less informative, suggesting that the significance of exact timing
reduces as the temporal duration from stimulation increases.

Is this true also for rate-based schemes (meaning, do first
spikes contribute more information than subsequent ones)? The
analysis of Figure 3a was performed on spikes recorded during a
window of 100 ms from stimulation (excluding, as always, the
immediate response spikes). We checked how performance is
affected when the window’s start-time is delayed (keeping its
total length fixed), to obtain insights as to the “temporal loca-
tion” of the information embedded in the network spike. As can
be seen in Figure 3c (an example from one experiment), classifi-
cation accuracy of time-based representation schemes is signifi-
cantly reduced when only spikes recorded beyond 25 ms from
stimulus are considered (in accordance with the previous analy-
sis). Under such conditions, the efficacy of time-based schemes
approaches the efficacy of rate-based schemes. Beyond 50 ms,
classification accuracy becomes quite low in all schemes. Results
from all experiments are summarized in Figure 3e. We have also
analyzed the effect of the window size on classification accuracy
(Fig. 3f). This analysis shows that there exists an optimal window
size, beyond which additional spikes do not improve the perfor-
mance, and, in the case of rate-based schemes, even reduce it.

Altogether, the results of this section suggest that information
about the spatial location of the stimulus (“stimulus identity”) is
largely concentrated in the first tens of milliseconds following the
stimulation, within the recruitment phase of the NS. As the ob-
servation duration increases, the signal becomes contaminated
by factors irrelevant to this task. These additional contributions
to the response might contain information about other features
of the stimulus, the state and ongoing processes of the network,
history of input and activity, etc.

Dependency on the physical distance between
stimulating electrodes
We have seen that different stimulating electrodes elicit neural
responses that differ enough from each other to enable input
discrimination. What can be said about the relation between this
discrimination capacity and the physical distance between the
stimulating electrodes? In other words, is stimulation from elec-
trodes far away from each other is more easily discriminated
compared with electrodes that are near to each other? To evaluate
this issue we compared the source separation performance for
different pairs of stimulation sources in the same preparation. As
Figure 4a shows, discrimination is indeed better when spatially
remote stimulation sources are used. This can arguably be attrib-
uted to a smaller overlap between the groups of immediate-
responding neurons (closely located sources entail larger
overlaps between immediate responding neuron groups— data
not shown). This property can be used to demonstrate a very
simplified generalization-like task in our model system. General-
ization, that is the capacity to tell that a hitherto unobserved
object belongs to a familiar category, is one of the most ubiqui-
tous features of neural systems (Thompson, 1962; Wilson, 2001;
Hampton and Murray, 2002). While risking oversimplification
of this broad concept, we offer the somewhat naive reduction of
the concept to “spatial proximity” of input coordinates, the logic
being that objects belonging to the same category activate groups
of neurons that overlap. The idea, in our reduced system, is to see
how a classifier that was trained to categorize responses to two

distant stimuli (A and B) will classify a response from a third
source C (Fig. 4b), that can be at various distances from A and B.
This (possibly expected) result shows that the classifier tends to
classify the responses to the new stimuli as belonging to the closer
known source, thus supporting this mapping of the generaliza-
tion concept.

Representation of interstimulus intervals
A neural response to a given stimulus is affected not only by the
spatial identity of the stimulus, but also by the history of the
stimulation sequence: the temporal pattern of stimulation pre-
ceding the current stimulus. How good are the four different
representation schemes in distinguishing between temporal in-
put features? We have narrowed this question and operationally
phrased it as follows: Given two consecutive stimuli that excite
the network from a single identified location, can one tell, based
on neuronal responses to the second stimulus, the time interval
between the first and the second stimuli? To answer this question,
one spatial input source was chosen and the time intervals be-
tween subsequent stimuli were randomly varied (2, 5, 10 and
15 s). The classifier in these experiments was trained to distin-
guish between the different interstimulus intervals. Each interval
occurred 200 times; a total of 800 stimuli were delivered in each
experiment and 10 experiments in six different preparations were
performed. The range of interstimulus intervals (ISI) used re-

Figure 4. Dependency on the physical distance between stimulating electrodes. a, The clas-
sification accuracy between the responses of pairs of stimulation sources as function of the
distance between the sources. All spatial discrimination experiments are included in the anal-
ysis. Horizontal dashed line represents chance level. b, Inset, An illustration of electrodes selec-
tion. The decoder was trained to classify between stimulations given at sites A and B. In the
testing phase, it was given responses to stimulation from sites C asking to which site (A or B) the
response is classified. Main panel, The average percentage of the responses that were elicited
from stimulus of each source C that the SVM was classified as B. Error bars represent SD.
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flects the relevant regimes: The lower limit (�1 s) was dictated by
our need to guarantee a reasonable level of network responsive-
ness to any given stimulus in the series. The upper ISI limit (�20
s), reflects our attempt to entrain the network and thus avoid
interference of spontaneous activity.

Our analysis revealed that the responses to 10 and 15 s inter-
vals were practically indistinguishable (data not shown), there-
fore the analysis below pertains only to interval sizes 2, 5 and 10 s.

This analysis showed that overall perfor-
mance in this task was quite low as com-
pared classifier performance in spatial
categorization tasks, and the variance be-
tween different experiments was substan-
tial. Nevertheless, in all the experiments,
in contrast to spatial categorization tasks,
rate-based schemes performed slightly
better (Fig. 5a). A table of all the results
used for construction of Figure 5a is pre-
sented in supplemental item 2 (available at
www.jneurosci.org as supplemental mate-
rial), together with general response sta-
tistics of the networks. The advantage of
rate-based schemes in temporal categori-
zation remains stable even when the data
are extracted from relatively late re-
sponses to the stimulus (Fig. 5b,e). Figure
5c provides some intuition as to this effect:
there seems to be an overall reduction in
the network response for shorter inter-
stimulus intervals. This effect lasts for tens
of milliseconds following response onset,
and is not present when responses from
different spatial sources are compared. It
complies with a well established result re-
garding the adaptation of the network re-
sponse to stimulation frequency (Eytan et
al., 2003). Note that the time duration
within which firing rates are integrated,
considerably affects the quality of catego-
rization: The longer the duration, the bet-
ter the performance, indicating that, in
contrast to discrimination of the stimulus
spatial identity, the late phases of the re-
sponse clearly contains information about
the stimulation interval. The classification
accuracy also depends on the size of the
difference between the intervals: the larger
the difference, the better the discrimina-
tion becomes. This is shown in Figure 5d,
where the discrimination performance for
time intervals of 15 s and all the other in-
tervals (2, 5 and 10 s) is compared.

Long-term dynamics of representations
In the experiments described so far (last-
ing several hours), all responses were
lumped and analyzed together, regardless
of when they were recorded during the ex-
periment. But neural responses, both in
vivo and in vitro, tend to change over long-
time scales (Sterna et al., 2001; Wagenaar
et al., 2006). How are these dynamics
manifested in the classification ability of

each of the analyzed schemes? Are there response features which
are stable enough to maintain representations over long-
durations? To answer these questions, we repeated the spatial
categorization experiments with four spatial input sources, over a
48 h period. To study the temporal stability of a given represen-
tation, the classifiers were trained on data taken from the first 2 h
of the experiment, then tested on the entire dataset. As shown in
Figure 6a, the performance of all schemes deteriorated over time

Figure 5. Representation of interstimulus intervals. Classification accuracy of each representation scheme in temporal experi-
ments. Support vector machine (SVM) algorithm with a Gaussian radial-based function kernel was applied to vectors of training
sets (see Materials and Methods). Horizontal dashed line represents chance level. a, Analysis results on all (n � 10) spatial
categorization task experiments. Each color represents a different experiment. Results with response window of length 100 ms
which starts 10 ms following the stimulation. The black line is the mean � SD of the classification accuracy in all the experiments.
b, An example from one specific temporal experiment, that shows the sensitivity of classification accuracy to the window start time
after the stimulus. c, The response envelope. An example from one specific experiment. The average network spikes of all the
responses of specific interval as a function of the time after the stimulus (5 ms time bin). Color represents interstimulus interval,
error bars represent SEM. Shorter intervals result lower population responses. d, The sensitivity of classification accuracy to the size
of the difference between the interstimulus intervals. The average of the classification accuracy between 15 s interstimulus interval
and all the remaining intervals (2, 5 and 10) in all of the experiments. Error bars represent SD. The response window is of length 100
ms and starts 10 ms following the stimulation. e, Results with response window of length 100 ms which starts 25 ms following the
stimulation. The black line is the mean � SD of the classification accuracy in all the experiments. f, An example from one specific
experiment, that shows the sensitivity of classification accuracy to response window size.
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(with a timescale of �10 h) up to the point
where discrimination power vanished. In
other words, the distribution of responses
changed over time and as it did the sepa-
rating hyperplane was no longer discrim-
inative between the inputs. This does not
indicate however, whether a hyperplane
that separates the responses recorded over
long-time periods, could be found. To
check this, we compared the efficacy of the
different representation schemes on ex-
periment segments of different durations.
One hundred fifty responses from each
source were randomly chosen from the
first 2 h, the first 4 h and so on. The efficacy
of population-count-histogram, spike-
count, time-to-first-spike, and rank-order
transformations over each of those datasets
(divided as usual to train and test sets) is
compared. As shown in Figure 6b, while
classification accuracy gradually degraded
with longer durations, time-based represen-
tation schemes degraded only moderately,
maintaining high classification accuracy
even after 2 d. In contrast, the classification
accuracy of rate-based schemes deteriorated
significantly, implying that these response
features are less stable and more susceptible
to long-term dynamical changes. This result
is in accord with the result of the previous
sections, showing that rate-based features
are more informative with regard to the
history of the input, while time-based fea-
tures are more time invariant and hence
more reliable in representing the spatial
location (or identity) of the input.

Discussion
In this study, using generic networks of cortical neurons as a model
system, we follow the path of a stimulus–reconstruction approach to
compare the representational efficacy of four types of popular
schemes, two rate-base and two time-based: population-count-
histogram (Schwartz, 1993; Hupé et al., 2001; Fiorillo et al., 2003),
spike-count (Arabzadeh et al., 2006; Foffani et al., 2009; Jacobs et
al., 2009), time-to-first-spike (Petersen et al., 2001; Foffani et
al., 2004; Johasson and Birznieks, 2004; Gollisch and Meister,
2008; Gollisch and Meister, 2008), and rank-order (Thorpe et
al., 2001; Van Rullen and Thorpe, 2001; VanRullen et al., 2005;
Shahaf et al., 2008). Notwithstanding limitations associated
with the stimulus–reconstruction approach in relation to
brain function, it served us well in the present context as a
mean for estimating the total information content, embedded
in a given response feature, about an input. This is a statistical
question; our choice to use a nonlinear classifier subserved the
need to extract as much information as possible from the data.
Simpler classifiers might be more suitable when one is interested in
the decoding procedure itself (simplicity, plausibility, cost, etc.), but
this is not the case here.

We found that the nature of response in neural populations
dictates strong correlations between different response features,
which are a priori independent [e.g., rank order of first events and
population time histogram are completely orthogonal features of

a set of general spike trains (Marom et al., 2009), resulting in high
redundancy in response features. This can give an observer the
freedom to choose between different “schemes,” without loosing
much information. Having said that, we have shown that while
rate-based schemes do perform well, their efficacy is significantly
reduced compared with time-based measures in classifying the
spatial location of a stimulus. We have also found that overlap
between groups of receptive sheath neurons (neurons that di-
rectly respond to the stimulus and serve as a source for the assem-
bly excitation) is translated to similarity in response pattern, and
can be thought of as a form of generalization. Time-based repre-
sentation schemes are also more stable over long-periods of
time, under changes induced by the long-term dynamics of the
neural assembly. On the other hand, when classification be-
tween temporal features of a given stimulus source is sought,
there is an advantage to rate-based representation schemes,
which are more sensitive to adaptation processes, and hence
contain information with regard to the history of stimulation.

This study offers a unique approach to the issue of neural
representation in the model system chosen. Networks of cortical
neurons developing in vitro (Marom and Shahaf, 2002; Morin et
al., 2005) can provide insights to the well studied field of neural
representation, insights that cannot be derived using numerical
simulations or data from in vivo experiments. In its essence, this
approach is closest to simulation models, where generic ques-

Figure 6. Long-term dynamics of representations. The classification accuracy of each representation scheme over 48 h. An
example from a single experiment. Horizontal dashed line represents chance level. a, The SVM classifier was trained to classify
between responses taken from the first 2 h of the experiment. In the testing phase, responses from every following 2 h were
classified according to the separation hyperplane elicited in the training phase. b, Mean � SD classification accuracy of 10
train-test cycles of 150 responses from each sources chosen randomly from the first 2 h, then from the first 4 h and so on. c, Network
response dynamics over a 48 h long-experiment. The number of spikes (mean � SD) in the responses of the entire network every
hour. d, The response envelope. The experiment was divided into four 12 h periods. The figure depicts the average network spikes
of all the responses of a specific period as a function of the time after the stimulus (5 ms time bin). Color represents different period.
Error bars represent SEM. It is evident that while not identical, the response envelope and the spike count in the entire network do
not differ significantly. In particular, there is no significant “drift” in the mean spike count.
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tions are asked, but with the advantage of using real neurons and
connections instead of reduced computational models. This is an
advantage when addressing questions regarding constraints im-
posed by cellular and synaptic physiology on the plausibility of
different neural representation schemes, and the tradeoffs in-
volved when one chooses which features to extract from neural
responses. For example, “real” responses to stimulation are
highly variable (Arieli et al., 1996), partly due to noise and inter-
vening input, but also due to the intrinsic complex dynamics of
multiple processes at all levels (Marom, 2010). This variability is
difficult to reproduce in simulation, yet it is critical to the under-
standing of neural representation. We show here that while time-
based schemes are more invariant under these long-term
changes, and better represent stimulus identity (spatial localiza-
tion), rate-based schemes can use regularities in this variability to
represent history-dependent features.

While the constraints imposed by the “real” biological com-
ponents are evidently present in vivo, there are several drawbacks
to this level: the ability to stably record from multiple neurons
and to stimulate at arbitrary patterns is reduced, and anatomical
and region-specific effects are considerable making it difficult to
derive general insights. Furthermore, the on-going neural activ-
ity, inputs from other brain regions and the changing chemical
milieu, confound and interfere with the ability to study the effects
of the input parameters on representation, as was done here.

It is important to emphasize that the in vitro system suffers
from several drawbacks and limitations, and the conclusions
drawn here must be kept in the correct context. The most severe
of these are the bias that arises from the free and unconstrained
development, which may lead to topological and activity features
that do not necessarily represent those that exist in the brain
(Quartz and Sejnowski, 1997). The in vitro system is offered here
as a complementary model to the more conventional approaches,
which may contribute unique insights, and be used to study as-
pects and questions that are mostly inaccessible using standard
methods.

While it would be interesting to see how the results presented
here regarding the redundancy of representation schemes and the
differential effect of adaptation processes can be extrapolated to
in vivo models and incorporated into simulation studies, this
research opens the door for studying intriguing questions using
the in vitro system that were mostly unachievable until now. One
of the main advantages of the in vitro system is the ability to
perform long, practically open ended experiments (Potter and
DeMarse, 2001). We expect that systematic study of the dynamics
of different response features, the dependency between features,
and the timescales of change can give valuable insights that are
mostly unavailable by standard methods.

Long-experiments can also be used to study developmental
effects on neural representation. Specifically it would be interest-
ing to study the effect of stimulation patterns during develop-
ment on the ability to distinguish between them at later times,
and the time course of the efficacy in discrimination. It would
also be possible to study the effect of stimulation history more
systematically and further into the past. Finally, perhaps the most
intriguing aspects of the representation question is its plasticity
(Recanzone et al., 1993; King et al., 2000), and the way it is mod-
ulated by neural signals external to the assembly. In vitro studies
may include modulation and plasticity (Chiappalone et al., 2008)
of representation by various methods, such as closed loop elec-
trical stimulation and selective application of neuromodulators.
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