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The dopaminergic system is known to play a central role in reward-based learning (Schultz, 2006), yet it was also observed to be involved
when only cognitive feedback is given (Aron et al., 2004). Within the domain of information-integration category learning, in which
information from several stimulus dimensions has to be integrated predecisionally (Ashby and Maddox, 2005), the importance of
contingent feedback is well established (Maddox et al., 2003). We examined the common neural correlates of reward anticipation and
prediction error in this task. Sixteen subjects performed two parallel information-integration tasks within a single event-related func-
tional magnetic resonance imaging session but received a monetary reward only for one of them. Similar functional areas including basal
ganglia structures were activated in both task versions. In contrast, a single structure, the nucleus accumbens, showed higher activation
during monetary reward anticipation compared with the anticipation of cognitive feedback in information-integration learning. Addi-
tionally, this activation was predicted by measures of intrinsic motivation in the cognitive feedback task and by measures of extrinsic
motivation in the rewarded task. Our results indicate that, although all other structures implicated in category learning are not signifi-
cantly affected by altering the type of reward, the nucleus accumbens responds to the positive incentive properties of an expected reward
depending on the specific type of the reward.

Introduction
Learning which action leads to the most beneficial outcome in a
given situation is one of the central components of adaptive be-
havior. The dopaminergic system with its projections to striatal
and medial prefrontal areas is known to play a crucial role in
reward learning (O’Doherty, 2004; Schultz, 2006). In humans, it
is often studied by using gambling paradigms, in which subjects
learn probabilistic stimulus–reward contingencies by trial and
error, the reward being earnings in money (Abler et al., 2006;
Dreher et al., 2006; Smith et al., 2009). However, there are indi-
cations that the dopaminergic system is also involved in tasks in
which only cognitive feedback is provided (Aron et al., 2004;
Rodriguez et al., 2006).

Behavioral studies of category learning with cognitive feed-
back suggest that tasks, which force subjects to rely on gradually
acquired stimulus– outcome contingencies, are sensitive to the
nature and timing of feedback (Maddox et al., 2003, 2008). Dur-
ing trial and error learning in these tasks, striatal areas are acti-
vated (Poldrack et al., 2001; Cincotta and Seger, 2007) and
patients with Parkinson’s disease, which is characterized by the
loss of dopaminergic input to the striatum, are impaired (Filoteo

and Maddox, 2007). Results therefore indicate that the functional
neuronal substrates underlying learning based on reward and
cognitive feedback are very similar in certain task domains.

However, differences have to be expected because the dopa-
minergic system is known to respond differentially to rewards of
different magnitude and value in the insula, amygdala, orbito-
frontal cortex, and striatum (Gottfried et al., 2003; Tobler et al.,
2007; Smith et al., 2009). Also, subcomponents of the striatum
coding motivational aspects, such as the nucleus accumbens, are
assumed to respond to the modulation of reward characteristics,
whereas subcomponents involved in executive processes, such as
the caudate head, should be less affected.

To test these assumptions, we conducted a functional magnetic
resonance imaging (fMRI) experiment comparing the effects of cog-
nitive feedback and reward in an information-integration category
learning task (Ashby et al., 1998). Each subject performed two
parallel versions, in one of which correct answers were rewarded
with a monetary gain, whereas in the other, only information
about the correctness of the answer was given. Although there are
indications that both negative and positive feedback contribute
to information-integration learning (Ashby and O’Brien, 2007),
the dopaminergic substrates of reinforcement learning are well
established, whereas research on avoidance learning mainly fo-
cused on the amygdaloid– hippocampal basis of fear condition-
ing (LeDoux, 2003). Therefore, in the present study, no monetary
punishment was delivered. Because with training the dopaminer-
gic response is known to shift backwards in time (Schultz and
Dickinson, 2000), we expected to find an effect of the reward
manipulation already during stimulus presentation. If reward

Received May 11, 2009; revised July 9, 2009; accepted Aug. 10, 2009.
This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 779, TP A4). We

thank Angela A. Manginelli for support with the development of the experimental design and Jana Tegelbeckers for
assistance in acquiring the data.

Correspondence should be addressed to Reka Daniel, Otto-von-Guericke-Universität Magdeburg, Postfach 4120,
D-39016 Magdeburg, Germany. E-mail: rdaniel@ovgu.de.

DOI:10.1523/JNEUROSCI.2205-09.2010
Copyright © 2010 the authors 0270-6474/10/300047-09$15.00/0

The Journal of Neuroscience, January 6, 2010 • 30(1):47–55 • 47



manipulation also has an influence on the prediction error signal
(Schultz, 2007), differential responses between the tasks to both
negative and positive feedback are predicted, as long as perfor-
mance is not perfect. Additionally, motivational states were
shown to modulate the fMRI response in the striatum (Mizuno et
al., 2008). We assessed the motivation of each subject (Ryan,
1982) and anticipated that the effect of monetary reward is pri-
marily predicted by measures of extrinsic motivation, whereas
the effect of cognitive feedback is more responsive to measures of
intrinsic motivation.

Materials and Methods
Participants. Sixteen subjects with an average � SD of 23.1 � 2.9 years
(range 18 –29) recruited from the Otto-von-Guericke University com-
munity participated in the experiment. None of them reported a
history of drug abuse, neurological or psychiatric diseases, or injuries,
and all were without pathological findings on a psychiatric screening
questionnaire [SCL-90-R (Franke, 1995)]. The participants were right-
handed as confirmed by the Edinburgh Handedness Inventory (Oldfield,
1971) and reported normal or corrected-to-normal vision. Informed
written consent was obtained in accordance with the protocols approved
by the local ethics committee before the experiment, and the participants
received a payment of an average � SD of €29.3 � €2.5 (range €26 –33)
based on their performance.

Materials. The perceptual categorization task used in this study was
developed by using the randomization technique introduced by Ashby
and Gott (1988). Two sets of stimuli were presented in the present exper-
iment, either circles with an opening of 30 width or two parallel lines,
both in white on black background. All stimuli varied on two dimen-
sions, line width and orientation, and categories were specified based on
the location of the stimuli within this two-dimensional perceptual space
(Fig. 1). Each category was based on a bivariate normal distribution from
which all category members were sampled. Two parallel category struc-
tures for each set of stimuli were specified by means of rotating the
category boundary by 90°, resulting in the same within-category scatter,
difference between category means, and absolute value of covariances of
the two dimensions in both category structures. The exact parameter
values for the resulting four categories are summarized in Table 1. From
each distribution, 25 ordered pairs (x, y) were randomly sampled for each
experimental block and linearly transformed so that the sample mean
vector and variance– covariance matrix equaled those of the population.
The x and y values obtained in this way were used to determine line width
(x/2 pixels) and orientation ( y � �/600 radians) of the stimuli. The scale
factors were chosen in an attempt to equalize the salience of both dimen-
sions. Because line width only increased to the center of the stimuli, the
overall dimensions of the images were not changed by the manipulation.
The optimal decision bound for both category structures is depicted
along with examples for both stimulus sets in Figure 1. A pilot study with
17 subjects confirmed that the resulting four task versions (2 sets of
stimuli � 2 category structures) do not differ significantly in terms of
learning speed and error rates.

Procedure. Each participant performed two tasks. In the first task, one
type of stimuli (lines or circles) was presented with one category structure
(positive or negative slope of the optimal decision bound), and in the
second task, the other type of stimuli was presented with the other cate-
gory structure. One of these two tasks was rewarded with €0.20 for each
percentage of right answers, resulting in eight possible task combinations
[2 (stimulus type) � 2 (category structure) � 2 (first or second task
rewarded)], each of which was presented to two of the 16 participants.
Subjects were instructed to learn about the two categories in each task by
relying on the feedback they would receive after each decision and were
informed that perfect performance was possible. Because we were not
interested in the early performance on this task, while subjects might still
use suboptimal verbal strategies, all participants were trained to criterion
(80% correct answers) on the day before the fMRI session. The training
was performed in a dimly lit room using the Presentation (Neurobehav-
ioral Systems) software. All participants were presented with the two
tasks alternatingly in blocks of 50 trials with equal base rates for both

categories. Each trial consisted of the presentation of a stimulus spanning
a visual angle of 12° at the center of the screen for 2 s. Subjects were
requested to make a decision about category membership during stimu-
lus presentation. After a random delay that was sampled from an expo-
nential distribution with a mean of 2 s (range of 0.5– 6 s), they received
both auditory and visual feedback. Auditory feedback was provided via a
tone of 0.25 s duration and had a frequency of 900 Hz for right and of 350
Hz for wrong answers, whereas visual feedback was presented for 1 s at a
visual angle of 10°. Positive visual feedback consisted of a filled green
circle in the cognitive feedback task and of a picture of a 20¢ coin in the
monetary reward task. Negative feedback was indicated in both tasks by a
filled red circle. When the subject failed to respond, a filled yellow circle

Figure 1. Category structures and sample stimuli. Each square denotes the orientation and
line width of a stimulus from category A, and each triangle denotes those of a stimulus from
category B. The lines represent the optimal decision bound. Two types of category structures
were presented, one with a positive slope of the optimal decision bound and one with a nega-
tive slope. For both types of stimuli used in the experiment (circles and lines), examples of three
stimuli from each category are shown. Both types of stimuli were used with both types of
decision bounds. Note that 0° does not correspond to a horizontal alignment of the stimuli to
make the verbalization of a categorization rule more difficult.

Table 1. Category distribution

Slope a

Category A Category B

�x �y �x �y covxy �x �y �x �y covxy

Positive 500 700 44,100 44,100 43,500 700 500 4410 44,100 43,500
Negative 500 500 44,100 44,100 �43,500 700 700 4410 44,100 �43500

�, Mean for each dimension; �, variance for each dimension; cov, covariance between dimensions.
aOf the optimal decision bound.
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was presented. Except for the intertrial interval (ITI), which was sampled
from an exponential distribution with a mean of 3.5 s (range of 0.5– 8 s),
all parameters were equivalent to the fMRI session (Fig. 2). Training
ended independently for each task after the criterion of 80% correct
answers in a single block was reached. Two subjects did not reach the
criterion after 5 blocks and were therefore not included in the study.
Training was followed by the fMRI experiment on the next day. During
the fMRI experiment, subjects completed the two tasks they had trained
alternatingly in four blocks. Each block incorporated 50 trials and lasted
�11 min. All stimuli originated from the same bivariate distributions as
the training stimuli but were sampled independently of them. To exclude
the possibility that activation differences between the rewarded and un-
rewarded task are exclusively attributable to differing visual stimulation,
for half of the subjects, the 20¢ coin signaling a correct answer in the
rewarded task was replaced by a green circle with the instruction they
would nevertheless gain e 0.20 for each correct answer. The single trials

were separated by a variable ITI sampled from
an exponential distribution with a mean of 6 s
(range of 1–12 s). An overview of the experi-
mental procedure is given in Figure 3. After
completing the testing session, all subjects
filled out a questionnaire based on the postex-
perimental scale of the Intrinsic Motivation In-
ventory (Ryan, 1982; McAuley et al., 1989) for
both tasks. The included subscales were interest/
enjoyment, perceived competence, perceived
choice, pressure/tension, effort/importance,
and value/usefulness.

fMRI image acquisition. Functional mag-
netic resonance imaging data was acquired on a
Siemens MAGNETOM Trio whole-body 3T
MRI scanner equipped with an eight-channel
head coil. First, structural images of the brain
were recorded using a T1-weighted magneti-
zation-prepared rapid acquisition gradient echo
(MP-RAGE) sequence with a 256 � 256 matrix, a
field of view (FOV) of 256 mm, and 192 sagittal
slices of 1 mm thickness. A total of 1360 func-
tional volumes were obtained in a single session
using a whole-brain T2*-weighted echo planar
imaging (EPI) sequence. The parameters for the
functional measurements were as follows: echo
time, 30 ms; repetition time, 2000 ms; slice thick-
ness, 3 mm; slice gap thickness, 0.3 mm; number
of slices, 30 (interleaved order); flip angle, 80°;
FOV, 192 � 192 mm; and a matrix size of 64 �
64, resulting in an in-plane resolution of 3�3 mm.

Image processing. The functional images
were preprocessed with the statistical paramet-
ric mapping software SPM5 (Wellcome De-
partment of Cognitive Neurology, London,
UK). Preprocessing included slice timing cor-
rection using the first slice as reference and
three-dimensional motion correction, i.e.,
rigid body realignment to the mean of all im-
ages. The six estimated movement parameters
were saved to be included in the statistical anal-
ysis. It was ensured that head movement was
below 3 mm and 3° for each participant. Im-
ages were normalized to Montreal Neurologi-
cal Institute (MNI) space (Evans et al., 1993)
using the standard EPI template of SPM5. The
data were spatially smoothed using a Gaussian
filter of 6 mm full-width at half-maximum,
and a temporal high-pass filter of 1⁄128 Hz was
applied to remove low-frequency confounds.

Statistical analysis. The regressors for within-
subject modeling were convolved with a model
of the hemodynamic response function and
represented right and wrong answers of each

subject for both the period of categorization (i.e., stimulus presentation
and response) and feedback presentation. An additional regressor for
delay between categorization and feedback was included, and all regres-
sors were fit to the data separately for the rewarded and not rewarded
condition using the general linear model. Contrast images of the
condition-specific estimates for each subject were then submitted to the
second-level group analyses with subject as the random-effect variable. A
2 � 2 � 2 ANOVA was conducted with the factors trial part (stimulus or
feedback), condition (rewarded or nonrewarded), and success (right or
wrong answer). All fMRI activation maps were thresholded at p � 0.05
(spatial extent of more than five contiguous voxels), and all reported
clusters survived correction for multiple comparisons at the whole-brain
level using familywise error rate (FWE) correction (Worsley et al., 1996).
Because an analysis comparing the group of subjects receiving visual
positive feedback in the rewarded condition in the form of a coin with

Figure 2. Trial structure. Each trial started with the presentation of a stimulus for 2 s. Subjects were instructed to respond during
this period by the pressing of one of two buttons. The stimulus was followed by a delay that was randomly sampled from an
exponential distribution with a mean of 2 s (range of 0.5– 6 s), after which feedback was presented for 1.5 s. Positive feedback was
given by showing a green circle, or, in the rewarded condition by a 20¢ coin, and a high tone. Negative feedback consisted of a red
circle and a low tone. If the subject failed to respond, a yellow circle was presented together with the low tone. Trials were
separated by an interval that was randomly sampled from an exponential distribution with a mean of 6 s (range of 1–12 s).

Figure 3. Session structure. Each subject was trained on both tasks on the day before the fMRI session. Whether the first task
was rewarded or not, whether it contained circle or line stimuli, and whether the optimal decision bound had a positive or negative
slope was randomized across subjects. Training ended independently for both tasks after the subject reached an accuracy rate of
80% within a single block. During the fMRI session, the two trained tasks were presented alternatingly in four blocks of 50
trials each.
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those receiving it in the form of a green circle did not reveal any signifi-
cant differences, the data of both groups were collapsed.

Results
Behavioral results
Accuracy measures
Subjects fulfilled the criterion of 80% correct answers after an
average � SE of 131.25 � 20.09 training trials in the rewarded
task and after an average of 129.69 � 17.56 training trials in the
unrewarded task. An ANOVA of the behavioral data collected
during the fMRI session with repeated measures on condition
(rewarded/not rewarded) and block (first vs second block of the
experiment) showed a significant main effect of block (F(1,15) �
5.5, p � 0.05) and a significant interaction of block by reward
(F(1,15) � 5.5, p � 0.05). Paired samples t tests revealed that the
interaction was attributable to the fact that, for the rewarded
condition, error rates significantly decreased from the first to the
second block (t(15) � 3.3, p � 0.05), although they did not change
in the unrewarded condition (t(15) � 0.5, NS). The average � SE
error rates were 23.7 � 1.6% in the monetary reward condition
and 23.4 � 1.4% in the cognitive feedback condition.

Model-based analysis
Because previous experiments have shown that tasks that can be
solved by applying a simple verbal rule do not recruit the dopa-
minergic system, it is crucial for the interpretation of the results
of the current experiment to determine which strategies subjects
used to solve the task, information that cannot be provided by
measures of overall performance. Therefore, based on the loca-
tion of each subject’s responses in the two-dimensional stimulus
space, four rule-based models and an information-integration
model were separately fit to each of the 32 datasets (two tasks for
each of the 16 subjects) using model-fitting procedures as estab-
lished by Maddox and Ashby (1993). Two of the estimated rule-
based models build on the assumption that subjects based their
decisions on either only the orientation or only the line width of
the stimuli. The other two rule-based models assume that sub-
jects separately evaluated the stimuli against each of the two di-
mensions and then combined the result of these decisions in a
conjunctive rule like “Respond A if the circles are open to the
right and are thick, otherwise respond B” (or, respectively, “Re-
spond B if the circles are open to the left and are thin, otherwise
respond A”). Results suggest that, for 9 of the 16 subjects, at least
one dataset is best fit by the information-integration model,
which assumes that the subject applied the optimal decision
bound depicted in Figure 1, and they therefore integrated the
information of both dimensions. Given the few data points the
model fits are based on, these results have to be interpreted with
care. Nevertheless, the modeling results might indicate that not
all subjects engaged the procedural-learning-based system medi-
ated by subcortical structures. The influence of individual strat-
egies on brain activation is addressed below (see Functional
imaging results). Additional details on model fitting and results
are provided in supplemental material (available at www.
jneurosci.org).

Questionnaire data
ANOVAs were performed with repeated measures on condition
(rewarded/not rewarded) with the subscales of the postexperi-
mental motivation inventory as dependent measures. No signif-
icant effects were observed.

Functional imaging results
Effect of monetary reward versus cognitive feedback
Comparing the effect of monetary reward and cognitive feedback
revealed a significantly higher activation for monetary reward
bilaterally in the nucleus accumbens (MNI: x � 9, y � 6, z � �9;
maximum T, 6.59; and x � �6, y � 0, z � 6; maximum T, 5.52)
during categorization (Fig. 4A). No areas were significantly more
activated during categorization in the cognitive feedback task nor
were any differences observed during the receipt of feedback in
both tasks. When the effects of feedback in the rewarded and the
cognitive feedback task were compared separately for positive
and negative feedback, no significant differences were observed.

Examining the nucleus accumbens activation
Predicting the blood oxygenation level-dependent signal by ques-
tionnaire data. To assess the effect of individual motivation on
dopaminergic activations, the estimated signal change (percent-
age) within the nucleus accumbens was extracted to both mone-
tary reward and cognitive feedback during categorization using
MarsBar (http://marsbar.sourceforge.net) and an anatomical re-
gion of interest (ROI) of the nucleus accumbens from the Har-
vard–Oxford subcortical structural atlas as implemented in the
Oxford University Centre for Functional MRI of the Brain Soft-
ware Library (http://www.fmrib.ox.ac.uk). For each subject, in-
dividual functional ROIs within this anatomical ROI were
defined based on the areas in which the main effect of stimulus
presentation exceeded an uncorrected threshold of p � 0.1. These
data were then submitted as dependent variable to a multiple
stepwise regression with backward elimination of the individual
scores on the six motivation questionnaire subscales. In each task,
two predictors were left in the final model (cognitive feedback:
R2 � 0.06; monetary reward: R2 � 0.37): in the cognitive feed-
back task, perceived competence best predicted activation within
the nucleus accumbens (� � 0.077, p � 0.05), whereas in the
monetary reward task, it was predicted by pressure/tension (� �
0.055, p � 0.05).

Influence of individual strategies. Because the model-based
analyses indicate that not all subjects used the optimal information-
integration decision bound, the dataset was split into subjects whose
data was fit best by an information-integration model in at least
one task and those subjects for whom this was not the case. A
stronger blood oxygenation level-dependent (BOLD) signal in
response to the expectation of monetary reward compared with
cognitive feedback in the nucleus accumbens was only present in
the group of subjects using an information-integration rule (T �
2.93, df � 8, p � 0.05). For subjects putatively using a rule-
based strategy (i.e., a conjunctive rule), peak activations in the
nucleus accumbens did not differ between the expectation of
monetary reward and cognitive feedback (T � 1.67, df � 6,
p � 0.15) (Fig. 4 A).

Successful and unsuccessful categorization versus fixation
To ensure that the lack of differential activation in response to
cognitive feedback and monetary reward in areas other than the
nucleus accumbens was not attributable to a general failure of our
paradigm to activate dopaminergic structures, we compared both
successful and unsuccessful categorization separately to fixation.
We observed widespread common bilateral cortical activations
extending from the visual cortices [Brodmann area (BA) 17/18/
19] ventrally to the posterior temporal cortex (BA 37), as well as
dorsally to the posterior parietal cortex (BA 39/40/7). Also, supe-
rior frontal (BA 6), ventrolateral prefrontal (BA 45), medial pre-
frontal (BA 24/32), and anterior insular activations were
observed in both contrasts. Signal decreases were found for both
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contrasts in medial orbitofrontal areas (BA 9/10/11), in the an-
gular gyrus (BA 39), and in the middle temporal gyrus (BA 21).

Activations during successful categorization were observed in
the parahippocampi, the thalamus, the head of the caudate, and

the anterior pallidum. Moreover, a cluster of activation was
found bilaterally in the midbrain (MNI: x � 9/�9, y � �15, z �
15) at or near the substantia nigra, for both successful and
unsuccessful categorization. Additional activations detected

A

B

C

D

E

F

G

Figure 4. fMRI results. A, Activation in the contrast of monetary reward minus cognitive feedback during stimulus presentation. The time course represents the finite impulse response (FIR) to both monetary
reward and cognitive feedback during stimulus presentation, extracted using MarsBar and an anatomical ROI of the nucleus accumbens from the Harvard–Oxford subcortical structural atlas. For each subject,
individual functional ROIs within this anatomical ROI were defined based on the areas in which the main effect of stimulus presentation exceeded an uncorrected threshold of p � 0.1. Error bars represent the
SEM. Results of this analysis are also plotted separately for subjects with use of the optimal decision bound in at least one condition and those with no information-integration use (no II use). A significant peak
activation difference between the task conditions is only observed in the group of subjects with information-integration use (II use). B, C, E, F, Activations (yellow to red) and deactivations (white to blue) for
contrasts against fixation. B, Successful categorization minus fixation. Activations are observed in occipital and parietal cortices, as well as in subcortical areas. C, Unsuccessful categorization minus fixation.
Activations are mainly observed in occipital and parietal cortices. D, Activations in the contrast of successful minus unsuccessful categorization. No voxel showed higher activations for unsuccessful categorization,
whereas bilateral clusters of higher activation during successful categorization were observed in the putamen. E, Positive feedback minus fixation. Both the caudate nuclei and the hippocampi are activated. F,
Negative feedback minus fixation. Activations include the rostral cingulate zone and right prefrontal areas. G, Activations in the contrast of positive minus negative feedback. Voxels that were more activated
duringtheprocessingofnegativefeedbackincludetheRCZandanterior insula,whereasvoxelsmoreactivatedduringtheprocessingofpositivefeedbackareobservedinthenucleusaccumbensandrightcaudate
body. All maps are thresholded at a level of pFWE � 0.05. Left hemisphere is presented at the left.
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when comparing unsuccessful categorization with baseline
were located bilaterally within the parahippocampi, the thal-
amus, and a cluster in the left anterior pallidum but not the
caudate (Fig. 4 B, C).

Successful versus unsuccessful categorization
When comparing successful and unsuccessful categorization
with fixation, we observed different activation patterns in our
areas of interest, i.e., subcortical dopaminergic projection sites.
We therefore directly compared the two. Bilateral activations
within the putamen were observed along with a cluster in the left
posterior parietal cortex (BA 40) to show significantly higher
activations during successful compared with unsuccessful cate-
gorization. No areas showed significantly higher activations for
unsuccessful compared with successful categorization (Table 2,
Fig. 4D).

Positive and negative feedback versus fixation
Because performance on the task was not perfect, even after train-
ing, both positive and negative feedback are not fully predicted
and are therefore expected to elicit a prediction error signal. To
examine this effect, we compared both events separately to fixa-
tion. Positive feedback significantly activated cortical areas in the
(pre-)cuneus, middle temporal gyrus (BA 20/21), angular gyrus
(BA 39), posterior parietal cortex (BA 7/40), and superior frontal
areas (BA 9/10). Deactivations were detected bilaterally in the
anterior insula. Activations in this contrast included bilaterally all
parts of the caudate (head, body, and tail), as well as both hip-
pocampi. When comparing negative feedback with fixation, no
subcortical activations were found at the chosen threshold. Cor-
tical activations included left prefrontal cortex extending from
dorsolateral to frontopolar areas (BA 9/10/45/46), the precuneus,
bilaterally the middle/superior temporal gyri (BA 21/22), as
well as a cluster in the right the posterior parietal cortex (BA
40). Also, both anterior insulae, the right supplementary mo-
tor area, and the dorsal anterior cingulate cortex (BA 32) were
activated (Fig. 4 E, F ).

Positive versus negative feedback
The direct comparison of positive with negative feedback allows a
differential assessment of positive versus negative prediction er-
rors. Areas activated significantly more by positive than negative

feedback included bilaterally the nucleus accumbens, the body of
the caudate and paracentral areas (BA 4/6), as well as the right
parahippocampus and a medial orbitofrontal focus (BA 11). Ar-
eas activated significantly more by negative than by positive feed-
back included the rostral cingulate zone (RCZ) (BA 32/8) and
bilaterally the anterior insula, as well as a locus in the right middle
temporal gyrus (BA 21) (Table 2, Fig. 4G)

Effects of training
Because the behavioral data indicated significant effects for the
main effect of block (first vs second block of the task) and the
interaction between block and condition (cognitive feedback vs
monetary reward), we ran the first-level fMRI analysis again with
separate regressors for the first versus second block to check for
neuronal substrates of the behavioral effect. No training effect or
block � condition interaction was observed in the functional
data.

Discussion
Differential activations during categorization
We compared monetary reward with cognitive feedback in
information-integration learning. The anticipation of monetary
reward led to higher activation than the anticipation of cognitive
feedback in a single structure, the nucleus accumbens. Activation
in the nucleus accumbens has been shown previously to increase
with both reward magnitude and reward probability (Knutson et
al., 2001; Abler et al., 2006) during reward expectation and was
therefore suggested to code for expected reward value, which is
defined as the product of these (Knutson et al., 2005). Because in
our experiment error rates between the rewarded and cognitive
feedback task did not differ, probability of reward was constant
across the tasks, and the differential activation in the nucleus
accumbens is likely to represent an effect of reward magnitude.

Previous results indicate that subcortical dopaminergic struc-
tures are implicated in implicit but not explicit category learning
(Nomura and Reber, 2008). Although in the current study the
task was designed so that optimal performance is only possible
when information from both stimulus dimensions is integrated
predecisionally, this cannot ensure that subjects did not use ex-
plicit rules nevertheless. Therefore, a series of models describing
the location of responses in the two-dimensional stimulus space

Table 2. Areas of activation when comparing successful and unsuccessful classification and positive and negative feedback

Region L/R BA k Maximum T

MNI

x y z

Successful classification– unsuccessful classification
Putamen L 10 5.35 �27 �6 �3

R 6 5.32 30 �12 12
Posterior parietal cortex L 40 7 4.89 �54 �54 39

Unsuccessful classification–successful classification – – – – – – –
Positive–negative feedback

Nucleus accumbens L 21 8.05 �12 6 �12
R 7 6.74 15 �6 �15

Caudate body R 9 5.54 21 �12 27
Parahippocampal gyrus R 8 5.37 36 �42 �6
Medial orbitofrontal cortex M 9/10/11 13 5.80 �3 33 69

M 10 5.39 0 51 �6
Precentral gyrus L 4/6 11 5.57 �15 �33 69

Negative–positive feedback
Dorsal anterior cingulate M 32/8 262 7.09 6 21 42
Anterior insula R 121 7.15 33 21 �15

L 70 6.92 �33 21 �15
Middle temporal gyrus R 21 8 5.67 54 �36 �3

Included regions exceeded an extent threshold of five continguous voxels and p � 0.05 (FWE-corrected). For each region, the voxel with the maximum T value is described. The voxel coordinates refer to the MNI template. The laterality (L/R)
of the clusters is described [left (L), right (R), medial (M)] and corresponding anatomical labels (Region), BAs, and cluster sizes (k) are listed.
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was fit to each subject’s behavioral data (Maddox and Ashby,
1993). The anticipation of monetary reward compared with cog-
nitive feedback led to higher activation in the nucleus accumbens
only in the group of subjects whose behavioral data were better fit
by the information-integration model than by the rule-based
models, a result that further underscores the dissociation be-
tween verbal and implicit systems for category learning.

We did not observe any additional significant differences dur-
ing reward expectation between the two task versions. This was
not attributable to a lack of activation in the dopaminergic path-
ways and their cortical target structures. Activations against base-
line within the head of the caudate nucleus, the pallidum, and
midbrain were observed for categorization. Also, differential ac-
tivations were present in a dopaminergic target structure, the
putamen. It was significantly more activated during successful
compared with unsuccessful categorization. This fits in well with
previous studies on classification learning, which reported acti-
vation within the putamen (Cincotta and Seger, 2007) that cor-
related with accuracy and increased with training (Seger and
Cincotta, 2005). With its connections to premotor areas, the pu-
tamen has been suggested to be central to action selection (Seger,
2008) and to be implicated in the skilled performance of a task
(Poldrack et al., 2005).

Differential activations during feedback processing
Next to reward expectation, we also investigated activation re-
lated to another central aspect of learning, the prediction error.
Two areas implicated previously in processing reward prediction
errors were differentially activated during the processing of neg-
ative and positive feedback: the RCZ was more active during the
processing of negative feedback, whereas the nucleus accumbens
was more active during the processing of positive feedback. The
finding of an RCZ activation in response to negative feedback is
in accordance with a large body of research (for an overview, see
Ridderinkhof et al., 2004a). This activation is often interpreted as
reflecting the transmission of a prediction error signal conveyed
by the mesencephalic dopaminergic system (Holroyd and Coles,
2002), which in turn signals other brain areas the increased need
for control to induce behavioral adjustments and thereby maxi-
mize performance (Ridderinkhof et al., 2004b). Activation within
the nucleus accumbens was shown previously to reflect the pos-
itive prediction error depending on both the probability (Abler et
al., 2006) and the magnitude (Breiter et al., 2001) of reward. The
observed activations both within the RCZ and the nucleus ac-
cumbens only reflected reward valence and were not further
modulated by the different types of reward presented. Concern-
ing the RCZ activation, this is in line with studies on the error- or
feedback-related negativity, an event-related EEG component,
which is thought to be generated in the RCZ (Debener et al.,
2005) and has been shown to be only modulated by feedback
valence but not by the magnitude of the (not received) reward
(Yeung and Sanfey, 2004; Hajcak et al., 2006). Previous experi-
ments on reward in humans showed increasing activation in the
ventral striatum during the anticipation of increasing monetary
rewards (Knutson et al., 2001; Tobler et al., 2007), whereas effects
of reward magnitude on the processing of actual reward are less
clear. In studies in which the height of the reward was subject to a
prediction error, a positive relationship between the magnitude of
outcome was observed in the ventral striatum (Breiter et al., 2001),
whereas Delgado et al. (2003) only observed dorsal striatal responses.

During the processing of feedback, we also observed differen-
tial activation in the body of the caudate nucleus. This structure

is part of the visual corticostriatal loop and receives both
highly compressed input from visual cortices and a dopami-
nergic learning signal. Therefore, the caudate body and tail are
regarded as the central structures for the establishment of
stimulus–response contingencies in information-integration
category learning (Ashby and Maddox, 2005; Nomura and
Reber, 2008; Seger, 2008). This interpretation is supported by
our finding that the caudate body is significantly more acti-
vated during the processing of positive than during the pro-
cessing of negative feedback. Again, the activation within the
body of the caudate nucleus was not significantly modulated
by the type of reward, i.e., if monetary reward or cognitive
feedback was presented.

Additionally, we observed an activation in the right posterior
parahippocampus that was stronger for positive compared with
negative feedback. No differential medial temporal lobe activa-
tions were observed for successful compared with unsuccessful
task performance. This result is in line with Seger and Cincotta
(2005), who reported hippocampal and parahippocampal activa-
tion during implicit category learning associated with the pro-
cessing of positive feedback but not with correct classification. In
summary, we observed several differential activations in dopami-
nergic projection areas during the processing of feedback, but
none of those was modulated by our reward manipulation. The
reward magnitude within a given condition of our paradigm was
fixed, leaving no prediction error concerning the reward magni-
tude during feedback but only the question if reward is delivered
or not.

Commonalities of reward and cognitive
feedback-based learning
The idea that reward and cognitive feedback-based information-
integration learning share similar functional substrates first came
up a decade ago (Ashby et al., 1998). It has received considerable
support (Ashby and Valentin, 2005; Nomura and Reber, 2008)
since then, but no study has directly compared the processes
within a single fMRI experiment. In this comparison, we observed
several differential activations within dopaminergic projection areas
in the striatum during information-integration learning, including
activation in the putamen for successful compared with unsuccessful
categorization, in the nucleus accumbens and in the body of the
caudate nucleus for positive compared with negative feedback.
However, none of these activations was significantly modulated
by the type of feedback, whether cognitive or monetary. The only
difference between monetary reward and cognitive feedback we
observed was a quantitative effect within the nucleus accumbens
during categorization, i.e., while subjects anticipated the reward.
Similarly, previous experiments on monetary rewards showed
that activation in the nucleus accumbens during reward antici-
pation increases with the magnitude of potential gains (Knutson
et al., 2001, 2005). Together with our results, this may, on first
sight, indicate that cognitive feedback and monetary reward are
processed very similarly, with the subjective incentive magnitude
as only difference. This interpretation would predict that, when
parametrically varying the magnitude of the monetary reward,
the anticipation of low monetary gains elicits a very similar reac-
tion as the anticipation of cognitive feedback. However, when
correlating the individual motivation with the BOLD signal
change, we observed that the activation within the nucleus ac-
cumbens increased with the subject’s perceived competence dur-
ing the expectation of cognitive feedback and with the subjective
pressure/tension during the expectation of monetary reward.
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Perceived competence is presumed to be a predictor of intrinsic
motivation, whereas pressure and tension are predictors of ex-
trinsic motivation (Deci et al., 1994; Ryan and Deci, 2000). Ob-
serving this distinct pattern within the same subjects suggests
that, although the accumbens parametrically codes for the
incentive value of a potential reward, it does so distinctly for
different kinds of motivation. Following this line of argumen-
tation, it is expected that even small monetary rewards may
alter motivational processes. It may be an interesting topic for
additional studies whether these motivation changes are asso-
ciated with different neural activation patterns within dopa-
minergic structures.

Conclusions
Cognitive feedback and monetary reward activated dopaminergic
structures in a very similar way during information-integration
category learning. This result supports the assumption that forms
of learning that depend on response contingent feedback rely
on related neuronal substrates as reward learning (Ashby and
Maddox, 2005; Nomura and Reber, 2008; Seger, 2008). However,
one structure, the nucleus accumbens, showed pronouncedly
higher activations in expectation of monetary reward compared
with the expectation of cognitive feedback in the group of sub-
jects who did use implicit strategies. Moreover, the activation
strength in the nucleus accumbens was predicted by intrinsic
motivation when cognitive feedback was expected and by extrin-
sic motivation when monetary reward was expected. Previous
findings on monetary rewards suggest that the nucleus accum-
bens codes for the expected positive incentive properties of a
reward (Knutson et al., 2001; Cooper and Knutson, 2008). Our
observations complement these findings by showing that the ac-
cumbens also responds differentially when comparing different
types of reward, i.e., cognitive feedback and monetary reward.
Additional studies may investigate whether the activation
strength in the nucleus accumbens represents only the common
strength of (intrinsic or extrinsic) reward expectation or whether
it is modulated differentially by different forms of motivation.
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