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Sequentially Switching Cell Assemblies in Random
Inhibitory Networks of Spiking Neurons in the Striatum

Adam Ponzi and Jeff Wickens
Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna-Son, Okinawa 904-0412, Japan

The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network
and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal
network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons
that cells form assemblies that fire in sequential coherent episodes and display complex identity–temporal spiking patterns even when
cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally
relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies
show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly
irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are
consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchroniza-
tion is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random
connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold
during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal
anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network
underlying its information processing operations.

Introduction
The striatum is the main input structure of the basal ganglia (BG),
receiving excitatory glutamatergic inputs from the entire cerebral
cortex (McGeorge and Faull, 1989). Medium spiny neurons
(MSNs), which account for �90% of striatal neurons (Oorschot,
1996), form inhibitory synapses with each other. Many authors
have interpreted this anatomy as a winner-take-all (WTA) net-
work, the most strongly activated neuron-suppressing activity in
its neighbors (Groves, 1983; Wickens et al., 1991; Beiser and
Houk, 1998; Fukai, 1999; Suri and Schultz, 1999; Bar-Gad and
Bergman, 2001). However, several experimental findings argue
against this interpretation (Czubayko and Plenz, 2002; Tunstall
et al., 2002; Koos et al., 2004; Taverna et al., 2004). First, direct
testing for interactions among nearby MSNs showed sparse
connectivity, the probability of a connection being �10%.
Second, individual connections typically involve one or only a
few synapses, suggesting that weak interactions predominate.
Third, reciprocal interactions are rare, with the majority of MSN
pairs involved in only one-way connections. Finally, experimen-
tal observations show that highly irregular firing predominates
(Wilson, 1993) and that cells form assemblies that fire in coherent
episodes in vivo (Miller et al., 2008) and in vitro (Carrillo-Reid et
al., 2008).

These findings are inconsistent with the proposal that WTA
operations are a fundamental aspect of striatal information pro-
cessing, but the absence of a good alternative model raises the
question of what contribution lateral inhibition between MSNs
makes to striatal network dynamics. To address this question and
as a first step to understand the real function of lateral inhibition
between MSNs in the striatum, it is important to characterize the
dynamical behavior generated by the MSN network under the
realistic assumptions of sparse, weak and random connectivity
using a biophysically minimal spiking cell model representing
only relevant definitive in vivo up-state MSN characteristics.

We ask what quantitative predictions of up-state MSN firing
activity can be made based on this minimal network model and
how these predictions depend on connectivity. In particular, we
investigate whether the activity generated by the network at stri-
atal connectivities can account for the puzzling conundrum of
observations of broad but low MSN firing rate distributions,
highly irregular episodic firing but with only single peaked broad
interspike interval (ISI) distributions, and slowly varying cross-
correlation and autocorrelation but without precisely synchro-
nized spiking.

We first describe the network model of deterministically in-
teracting up-state MSNs. We describe spiking activity in large
500-cell networks demonstrating highly irregular episodic firing
and complex identity–temporal patterns. We find that the striatal
network itself endogenously generates episodically firing sequen-
tially switching coherent cell assemblies without the need for pat-
terned cortical excitation. We show how this activity arises from
dynamical metastable state switching and depends on network
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structure details. Finally, we investigate quantitatively how as-
sembly formation and MSN firing activity varies with network
connectivity. We suggest that the striatal network may be adapted
to generate episodically firing cell assemblies producing large
slow sequential fluctuations on behaviorally relevant timescales
for exploratory sequence generation.

Materials and Methods
The network (Fig. 1) is composed of model MSNs randomly connected.
In the simulations reported here, we use random networks in which cells
i and j are connected with fixed probability p, and there are no self-
connections. This produces random networks with binomial degree dis-
tributions for both incoming connections and outgoing connections,
which is the simplest type of network topology. Furthermore, if a pair of
cells i and j are connected, the synaptic conductance kij

syn has a random
strength given by kij

syn � (k syn/p)�ij, where �ij is a uniform quenched
random variable on [0.8, 1.2] independent in i and j, and k syn is a fixed
parameter that is rescaled by the connection probability p so that, when
the network connectivity is varied, the average total inhibition on each
cell is constant independent of p.

Striatal MSNs are likely to be contacted by of the order of �500 other
cells and similarly to contact �500 (Oorschot et al., 2002; Plenz, 2003;
Koos et al., 2004; Tepper et al., 2004; Wickens et al., 2007). Furthermore,
the probability of a connection between nearby MSNs is estimated to be
fairly sparse, between p � 0.1 and p � 0.2 (Oorschot et al., 2002; Plenz,
2003; Koos et al., 2004; Tepper et al., 2004; Wickens et al., 2007). To
simulate a striatal network that respects these two figures would require
a network of �500/0.15 � 3300 cells. However, this argument neglects
the fact that not all cells are cortically excited into the up state. Such cells
have no effect on striatal dynamics and can therefore be left out of net-
work simulations. We assume that �10 –30% of MSNs are cortically
excited at any time and accordingly simulate networks of 500 up-state
MSNs with connectivities of approximately p � 0.15. This translates into
each up-state MSN being inhibited by, and inhibiting around, 50 –150
cortically excited potentially spiking MSNs.

To describe the MSN cells, we use the INa,p � Ik model described by
Izhikevich (2005). The INa,p � Ik cell model is two-dimensional and
described by the following:

C
dVi

dt
� Ii�t� � gL�Vi � EL� � gNa

m��Vi��Vi � ENa� � gkni�Vi � Ek�

(1)

dni

dt
� �n��Vi� � ni�/�n,

having leak current IL, persistent Na � current INa,p with instantaneous
activation kinetic, and a relatively slower persistent K � current IK. Vi(t) is

the membrane potential of the ith cell, C the membrane capacitance,
EL,Na,k are the channel reversal potentials, and gL,Na,k are the maximal
conductances. ni(t) is K � channel activation variable of the ith cell. The
steady-state activation curves m� and n� are both described by the
following:

x��V� �
1

1 � exp��V�
x � V�/k�

x 	
, (2)

where x denotes m or n, and V�
x and k�

x are fixed parameters. �n is the fixed
timescale of the K � activation variable. The term Ii(t) is the input current
to the ith cell.

In this study, we ask how far network dynamics can account for ob-
servations of up-state in vivo MSN firing behavior. We have therefore
chosen a simple cell model and made no attempt to make a biophysically
detailed model including all the MSN ion channels or to reproduce rest-
ing state membrane potential values and other MSN characteristics such
as up– down-state transitions or long latencies to first spike. The impor-
tant point of the cell model is that the cell parameters are chosen so that
the cell is the vicinity of a saddle-node on invariant circle (SNIC) bifur-
cation. As the current Ii(t) in Equation 1 increases through the bifurca-
tion point, the stable node fixed point and the unstable saddle fixed point
annihilate each other, and a limit cycle having zero frequency is formed
(Izhikevich, 2005). Increasing current further increases the frequency of
the limit cycle. This models the dynamics when the cells are in the up state
receiving excitatory drive to firing threshold levels of depolarization.

The response of the model MSN cell to excitatory current is illustrated
in Figure 2a for four different values of injected current. For injected
currents below the SNIC bifurcation current of 4.51 �A/cm 2, the cell
depolarizes to a fixed membrane potential level that depends on the level
of the injected current. At injected current levels above the bifurcation,
the cell fires regularly at arbitrarily low frequency without spike fre-
quency adaptation.

The SNIC bifurcation is an appropriate bifurcation to use for a model
of an MSN in the up state, because its dynamics are in good qualitative
agreement with studies of MSN firing (Hikosaka et al., 1989; Wilson,
1993; Wilson and Kawaguchi, 1996; Wickens and Wilson, 1998; Kitano et
al., 2002). First, the SNIC bifurcation allows firing at arbitrarily low
frequencies (Izhikevich, 2005), which is important because MSNs are
known to fire with very low frequencies (Hikosaka et al., 1989; Wilson,
1993). Second, MSNs do not show subthreshold oscillations (Nisenbaum
and Wilson, 1995; Wilson and Kawaguchi, 1996) (as models based on
Hopf bifurcations do). Third, during the spike repolarization, the mem-
brane potential for the SNIC bifurcation can decrease below the spike
threshold potential, appropriately for MSNs (Plenz and Aertsen, 1996;
Wickens and Wilson, 1998). Fourth, the SNIC bifurcation does not allow
bistability between a spiking state and a quiescent state (Izhikevich,
2005), in agreement with studies of up-state MSNs (Nisenbaum and
Wilson, 1995; Wilson and Kawaguchi, 1996; Wickens and Wilson, 1998).
Finally, the membrane potential in the vicinity of an SNIC bifurcation
shows a point of inflection between successive spikes as observed in
MSNs (Wickens and Wilson, 1998). In contrast to integrate-and-fire
models, the cell can easily switch between limit cycle spiking and resting
behavior without the need for a dynamically discontinuous reset after
firing yet has only two variables making large-scale simulations tractable.
Neurocomputationally, the SNIC bifurcation is appropriate for cells that
may act as integrators and coincidence detectors of synaptic inputs,
which do not display resonance to inputs of a certain preferred fre-
quency, which fire well defined all-or-nothing spikes, and which can fire
arbitrarily slowly so that firing frequency varies gradually with input
current without a sudden transition from a quiescent state to a high-
frequency firing state (Izhikevich, 2005).

It is important to point out, however, that the particular form of the
bifurcation is not crucial for the formation of episodically firing cell
assemblies. As described below, the important factor the cell model must
have is simply proximity to an appropriate bifurcation between firing
and quiescent states. The SNIC bifurcation has been chosen for the above
described similarity to in vivo up-state MSN activity, in particular the low
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Figure 1. Schematic of network model. Non-MSN cortical and other inputs are modeled as
constant current that brings the cell into just suprathreshold range with no MSN network inhi-
bition. Inhibitory connections are established randomly and held constant throughout
simulation.
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firing rates and absence of subthreshold oscil-
lations. However, other bifurcations, such as a
saddle-homoclinic bifurcation (Izhikevich,
2005), may be used if one desires other cell
properties, such as bistability between a
strongly hyperpolarized resting state and a
depolarized firing state, under application of
NMDA for example. As will be described, it is
the appropriate network structure and at-
tributes that allow the formation of switch-
ing episodically firing assemblies, not the
particular cell model. However, the appro-
priate choice of bifurcation does allow
comparison with experimental studies of up-
state MSN spiking activity, such as ISI
distributions.

The input current Ii(t) in Equation1 is com-
posed of two parts and is given by the
following:

Ii�t� � Ii
c ��

j


 kij
syngj�t��Vi�t� � Vsyn�. (3)

The second term represents the inhibitory input from the MSN network
(see below). The first part, described by the term Ii

c represents all other
input from sources other than the MSN network. This predominantly
includes excitatory input from the cortex and thalamus but also inhibi-
tory input from the striatal interneurons. In general, this term would
include complex time-varying fluctuations patterned across cells, gener-
ated internally in the nervous system or by changes in the external envi-
ronment that would modulate MSN network dynamics. Here, however,
we want to understand the dynamics endogenously generated by the
MSN network itself before considering how the dynamical variation of
inputs further affect the network dynamics. In this paper, we therefore
restrict ourselves to the two simplest forms this input can take: (1) con-
stant and fixed or (2) fluctuating randomly. In the fixed input condition,
Ii
c has a fixed magnitude for the duration of a simulation but varying

across cells. This can also be considered an input varying very slowly on
the timescale of MSN internally generated network dynamics. In the
simulations reported here, the Ii

c are quenched random variables drawn
uniformly randomly once at the start of the simulation. They are drawn
from the interval [Ibif, Ibif � 1], where Ibif � 4.51�A/cm 2 is the current at
the firing threshold so that all cells receive net excitatory input. Indeed,
suppose that Ii

c for cell i were below the firing threshold Ibif (attributable,
for example, to strong input from inhibitory interneurons), then, be-
cause the MSN cell would never fire, it can be left out of the simulation
altogether. In the fluctuating input condition, the Ii

c are drawn randomly
in exactly the same way, but this random drawing is performed anew
every 10 ms throughout the duration of the simulation. Notice that this
second condition is a very stringent test of the tendency of the network to
form assemblies because, in this case, all cells receive the same average
levels of excitation. In both cases of fixed and fluctuating excitation, these
values of input current mean that all cells would be on limit cycles just
slightly above the firing threshold and firing with low rates if the MSN
network inhibition were not present. In the case of fixed input, all cells
would fire perfectly regularly with their own specific quenched random
rates, whereas, in the case of fluctuating input, all cells would fire with the
same average rate but not perfectly regularly. In fact, the MSN inhibitory
network causes some cells to become quiescent by reducing the total
input current to below the bifurcation point.

The assumption that the neurons would be depolarized above
threshold were it not for the synaptic inhibition is compatible with the
behavior of real striatal neurons in vitro and in vivo. Bernardi et al.
(1976), using intracellular recording in anesthetized whole animals,
showed that intravenous injections of the GABA antagonist bicuculline
led to repetitive action potential firing in response to stimulation of the
cerebral cortex. Also in anesthetized animals, West et al. (2002) showed
that local perfusion of bicuculline rapidly depolarized neurons and in-
creased spike activity. In cortex–striatum cocultures, Plenz and Aertsen

(1996) showed that local injection of bicuculline caused individual MSNs
to enter sustained periods of strong firing. In the more artificial condi-
tions of the NMDA-treated slice, GABAA antagonists increased the du-
ration of the up states (Vergara et al., 2003). These findings support the
assumption that striatal cells in the up state fire if GABA input is
removed.

Because the inhibitory current part is provided by the GABAergic
collaterals of the MSN striatal network, it is dynamically variable. These
synapses are described by Rall-type synapses (Rall, 1967; Destexhe et al.,
1968) in Equation 3, in which the current into postsynaptic neuron i is
summed over all inhibitory presynaptic neurons j, and Vsyn and kij

syn are
channel parameters. gj(t) is the quantity of postsynaptically bound neu-
rotransmitter given by the following:

�g

dgj

dt
� ��Vj�t� � Vth� � gj�t�, (4)

for the jth presynaptic cell. Here, Vth is a threshold, and �(x) is the
Heaviside function. gj is essentially a low-pass filter of presynaptic firing.
The timescale �g should be set relatively large so that the postsynaptic
conductance follows the exponentially decaying time average of many
preceding presynaptic high-frequency spikes.

Figure 2b illustrates how IPSPs elicited by presynaptic spikes depend
on the membrane potential of the postsynaptic cell. The synaptic
strength parameter k syn/p here has been set to the same low value as used
in the 500-cell network simulations at striatally relevant connectivities of
p � 0.2 connections per cell, described below. The presynaptic cell fires as
a result of current injected at 4.52 �A/cm 2 (as in one of the time series in
Fig. 2a) from t � 400. Its spike times are shown as dashed vertical lines.
Postsynaptic cells are depolarized to different membrane potentials by
excitatory current, and IPSPs are generated by neurotransmitter release
when the presynaptic membrane potential exceeds Vth � 
40 mV (Eq.
4). The bottom-most panel shows the PSPs for current injection of 0.
IPSPs are depolarizing in this case because the synaptic reversal potential
of Vsyn � 
65 mV (Eq. 3) exceeds the holding potential. At the larger
injected currents (but still below the firing threshold) of 4.1 and 4.5,
hyperpolarizing IPSPs are generated. Near the firing threshold at
�4.51, the effect of an inhibitory presynaptic spike is to very slightly
depress the membrane potential of the postsynaptic cell, in good
qualitative agreement with previous studies (Czubayko and Plenz,
2002; Tunstall et al., 2002; Plenz, 2003; Koos et al., 2004; Taverna et
al., 2004), and IPSPs have amplitudes of �200 �V, very similar to real
striatal IPSPs.

The top two panels of Figure 2b show examples in which the excitatory
current was high enough for the postsynaptic cell to be in the firing state
before activation of the presynaptic cell. The spiking of the presynaptic
cell after t � 400 ms is able to completely quench the firing of the postsyn-
aptic cell with current injection of 4.53 �A/cm 2, although the current
injected to the postsynaptic cell is greater than that to the presynaptic
one. When postsynaptic cell current injection is increased to 4.55, how-
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Figure 2. a, Response of model MSN to current pulse injection. Currents of 4.5, 4.51296, 4.514, and 4.52 �A/cm 2 (from bottom
to top) are injected from t � 400 to t � 1400 ms. (Note the different y-axis scale on the bottom graph.) b, Synaptic response.
Postsynaptic potentials elicited by inhibitory presynaptic spikes. Presynaptic cell with 4.52 �A/cm 2 current injected from t � 400
ms fires spikes at times shown by dotted vertical lines. Current injection to postsynaptic cells are, from top to bottom, 4.55, 4.53,
4.5, 4.1, and 0.0 �A/cm 2. (Note the different y-axis scales.)
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ever, the presynaptic spikes cannot quench the postsynaptic activity be-
cause of the weak strength of the inhibitory connection. However, the
presynaptic spikes do lower the average postsynaptic firing rate and
also cause the postsynaptic spiking to become irregular. This is because
the presynaptic spike can sometimes alter the timing after the postsyn-
aptic spike (for example, the second, fourth, and fifth spikes in Fig. 2b,
top panel), whereas at other times, a presynaptic spike has little effect.
Indeed, depending on the phase relationship of the membrane potentials
of presynaptic and postsynaptic cells, presynaptic spikes delay or even
hasten the next postsynaptic spike (Rinzel and Ermentrout, 1989; Van
Vreeswijk et al., 1994; Ermentrout, 1998; Izhikevich, 2005), which is
consistent with observations of MSNs (Plenz, 2003, his Fig. 5a).

It should be noted that the effect an inhibitory connection has on the
postsynaptic cell depends on both the connection strength and the prox-
imity of the postsynaptic cell to the bifurcation. The results do not re-
quire an unrealistically strong synaptic current.

The network model we present here is minimal and contains only the
minimal requirements needed to produce the desired dynamical activity
of coherent episodically firing cell assemblies. This choice of minimal
requirements allows us to maximize model generality and robustness
while elucidating pertinent and poorly understood basic facts of striatal
anatomy. Providing the basic assumptions of the model, i.e., proximity
to a bifurcation (of appropriate type) produced by weak excitation and
weak lateral inhibition and sparse to intermediate random connectivity,
are not violated, the model may be applicable to understand the forma-
tion of coherent episodically firing assemblies in several different types of
in vivo and in vitro striatal preparations, although specific details of the
spiking may differ.

All simulations were performed with fourth-order Runge–Kutta.

Results
Below in Episodic firing in striatal network, we describe the typical
episodic firing of MSN cells in the network. In Sequentially firing
cell assemblies and metastable state switching, we describe sequen-
tially switching cell assembly formation and show how it arises
from metastable state switching depending on network structure
details. In MSN firing statistics predicted by the network model with
striatal connectivity, we use model simulations at striatal connec-
tivities to derive quantitative predictions of MSN firing and also
to address how closely our model accounts for known MSN firing
patterns. Finally, in Connectivity variation, we study how predic-
tions of MSN firing derived from network simulations vary with
network connectivity.

Episodic firing in striatal network
Sparsely connected networks produced irregular switching be-
tween firing and quiescent states. This occurs even when excita-
tory input is fixed and network dynamics is therefore completely

deterministic. Figure 3a shows a time se-
ries segment of membrane potentials Vi(t)
for some randomly selected cells from
such an N � 500-cell network with con-
nectivity 0.2 under the fixed excitatory in-
put condition. Irregular switching
between firing and quiescent states can
clearly be seen. Even when cells are in the
firing state, they do not fire spikes regu-
larly, and average frequencies vary be-
tween cells and between firing episodes in
the same cell. The periods of time cells
spend in firing episodes or quiescent
states also appears to vary randomly.
However, the network simulation has no
stochastic variables, and therefore this ir-
regular episodic firing is caused by a type
of deterministic chaos. The small chaotic

fluctuations in membrane potential can be seen in the top two
panels of Figure 3a, which show cells that do not fire spikes at all
during the period shown. Notice that the membrane potential of
these quiescent cells fluctuates a few millivolts below spiking
threshold in agreement with studies of up-state MSNs (Wilson
and Groves, 1981; Wilson, 1993; Wilson and Kawaguchi, 1996;
Stern et al., 1998; Wickens and Wilson, 1998).

The corresponding time series segment of gj(t), the quantity of
postsynaptically bound inhibitory transmitter contributed to
postsynaptic cell i by presynaptic cell j, is shown in Figure 3b.
During firing episodes, gj(t) slowly rises to a stable value reflecting
the presynaptic firing rate (always below 0.1 for the parameter
settings here), decorated by oscillations that reflect the individual
spikes of the presynaptic cell. Between firing episodes, gj(t) decays
exponentially to zero on a slow timescale of several hundred mil-
liseconds. The inhibitory current (Eq. 3) to postsynaptic cell i is
made up of a sum over a subset of gj(t), such as the ones shown in
Figure 3b.

MSNs show relatively low firing rates with long irregular pe-
riods of quiescence between episodes of irregular spike firing,
despite the fact that individual MSN cells do not show burst firing
intrinsically (DeLong, 1973; Hikosaka et al., 1989; Wilson, 1993;
Jaeger et al., 1995; Jog et al., 1999; Barnes et al., 2005). Firing
episodes last on the order of many hundreds of milliseconds
(Plenz and Aertsen, 1996; Miller et al., 2008). This is usually
attributed to episodic excitation from cerebral cortex, which
gives rise to large-amplitude subthreshold membrane potential
fluctuations. However, our results show that this activity may also
arise as a network property in the absence of cortical fluctuations.
This occurs for several reasons.

First, the proximity of the parameters to the bifurcation, as
explained in Materials and Methods, in the presence of excitatory
driving maintains the cells in the up state just above the firing
threshold permitting low firing rates. The inhibitory MSN net-
work connections are weak, and individual cells do not quench
postsynaptic cells but produce irregular spiking. However, fluc-
tuations in network inhibition as a result of simultaneous activa-
tion of many presynaptic MSN cells can produce prolonged
periods of quiescence in the postsynaptic cell. Network inhibition is
never strong enough to depress the membrane potential more than a
few millivolts below the up-state firing threshold, however, and
therefore episodes of spiking appear repeatedly from time to time.

Second, the slow synaptic timescale �g (Eq. 4) facilitates epi-
sodic firing. In the simulations reported here, we have set the
synaptic timescale �g � 50, which means that postsynaptically
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Figure 3. a, Membrane potential Vi(t) time series segment for a few cells from a N � 500-cell network simulation with
connectivity 0.2 under fixed excitation. Each cell is in a different panel. Note the different y-axes scales of the top two panels.
b, Time series of postsynaptically bound transmitter quantity gi(t) corresponding to a, including the same cells. This is a low-pass
filter of presynaptic firing rate. Each cell time series is in a different color corresponding to a.
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bound transmitter exponentially decays
to half its value in time �gln(2) � 34 ms.
While sufficient presynaptic cells remain
in firing states, the postsynaptic cell will
remain quiescent, and only when suffi-
cient presynaptic cells cease to fire will the
postsynaptic cell slowly revert to its firing
state as a result of weak excitation and slow
decay of postsynaptic neurotransmitter.

Third, the other important ingredient
to produce network burst firing is to have
the appropriate sparse network connec-
tivity, as will be described in detail below.

Sequentially firing cell assemblies and
metastable state switching
In Episodic firing in striatal network, we
showed that cells fire in irregular episodes
in striatal network simulations, but do
cells tend to fire cooperatively in assem-
blies or more individually? Here we study
raster plots of cell spiking that illustrate
the formation of sequentially switching
assemblies in which cells fire in coherent
episodes with complex identity–temporal
structure through metastable state switch-
ing. Subsequently, we describe how cell
assemblies depend on the details of the
network structure.

Complex identity–temporal patterns
Figure 4a shows a spike raster plot from a
500-cell network simulation with stria-
tally realistic connectivity of 0.1 (so that
each cell is inhibited by �50 others) under
fluctuating excitatory input. Because our network model has no
intrinsic cell ordering, the cells in the raster plot have been or-
dered in a special way to reveal the presence of cell assemblies
varying on slow timescales. To produce this cell ordering, we first
calculate firing rate time series Ri(t) for each cell i. The calculation
of a firing rate depends on the bin size used to count spikes. Here
we use a sliding bin of 2000 ms to extract assemblies on this long
timescale. Next the zero time lag cross-correlation matrix Cij is
calculated from the rate time series for all pairs of cells i and j (see
Appendix). Finally, a clustering algorithm, k-means, (see Appen-
dix), is applied to the cross-correlation matrix to group the cells
into clusters. The cells in the raster plot in Figure 4a and the
corresponding cross-correlation matrix in Figure 4b are then or-
dered according to these clusters.

Although the excitatory input to the network is noisy and
fluctuates rapidly, the spike raster plot (Fig. 4a) demonstrates
slowly evolving dynamical structure with complex “identity–
temporal” patterns. Identity–temporal patterns are the analog of
spatial–temporal patterns in systems without a real spatial di-
mension. The patterns occur not in real space but in the space
defined by the labeling of the cells ordered by the clustering algo-
rithm. The complex patterns are produced by switching cell as-
semblies in which many cells switch between firing and quiescent
states together.

To demonstrate the emergence of switching cell assemblies in
more detail, it is instructive to use smaller networks. Figures 5 and
6 show examples of “metastable state switching” in randomly
connected 100 cell networks with connectivity of 0.2 so that each

cell is inhibited by, and inhibits, 20 cells on average. Figure 5
shows an example in which excitatory input is constant, and Fig-
ure 6 shows an example in which excitatory input is noisy and
fluctuating rapidly. Again the cells in the spike raster plots (Figs.
5a, 6a) and cross-correlation matrices (Figs. 5b, 6b) have been
ordered by the clustering algorithm. To visualize the assemblies
further, the cells in the spike raster plots have also been colored
according to their assigned clusters. We have also calculated
“cluster firing rate time series,” shown in Figures 5c and 6c. These
are produced by merging the spikes from all cells in a given cluster
together, preserving the timing of each spike, and then calculat-
ing rate time series from these cluster spike time series.

The spike raster plots and the cluster firing rate time series
demonstrate that sequentially switching episodically firing cell
assemblies are the normal dynamical mode in these networks for
both constant excitatory input (Fig. 5) and noisy fluctuating ex-
citatory input (Fig. 6). This is particularly evident from the large
oscillatory type switches between dominant assemblies in the
cluster firing rate time series (Figs. 5c, 6c). The example with fixed
excitatory input shows more precisely patterned repetitive activ-
ity than the example with fluctuating input, but noisy fluctuation
in input does not destroy the tendency of the network to form
assemblies. This is because the patterned activity is structured
endogenously in the striatal MSN network by metastable state
switching of the underlying deterministic dynamical system. In
both examples, assemblies are made up of many cells firing epi-
sodes of multiple irregular spikes, not single spikes, so that the
cells are not, in general, synchronized at the spiking level even
when excitatory input is fixed and the system is therefore com-
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Figure 4. Five hundred-cell network simulations under fluctuating excitatory input. a, Spike raster time series from a simula-
tion with connectivity 0.1. Cells are ordered by k-means clustering algorithm with 30 clusters. This simulation corresponds to the
point labeled A in Figure 9c. b, Cell– cell zero time lag cross-correlation matrix Cij corresponding to a with same cell ordering.
Correlations are calculated using a long 2 s time bin and colored in 11 equal-sized bins as shown on the scale where the (approx-
imate) midpoint value of the color bin is also shown. c, Spike raster time series from a simulation with connectivity 0.82. Cells are
ordered by k-means clustering algorithm with 30 clusters. This simulation corresponds to the point labeled B in Figure 9c. d,
Cell– cell zero time lag cross-correlation matrix Cij corresponding to c with same cell ordering. Same conventions as b.
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pletely deterministic. Variability in the timing of individual
spikes does not interfere with the tendency of the cells to form
assemblies. Different cell assemblies sometimes seem to enter firing
episodes simultaneously in a positively correlated way, but, at
other times, this correlation seems to be broken (Fig. 6a,c, orange
and green assemblies). Any particular assembly can go through
spells of periodically switching between firing episodes and qui-
escence before becoming quiescent for longer periods, (Fig. 5a,c,
orange assembly). Other cell assemblies fire very occasionally in
isolated episodes (Fig. 5a,c, red assembly). The division of cells
into assemblies is not perfect, however, and some cells can seem
to fire with one assembly at some times and a different assembly
at other times.

Sequential state switching between different active assemblies
can be behaviorally relevant because it occurs repetitively on the
typical behavioral timescales of seconds. Furthermore, multiple
different timescales can be represented together. For example, in
Figure 5, a and c, during the period from approximately t �
13,000 to t � 17,500, the pink and black assemblies are dominant
and display approximately periodic firing episodes with a period
of �650 ms, whereas the other cell assemblies are primarily qui-
escent. However, this approximate periodic state is interrupted
from time to time (e.g., from t � 17,500 to t � 22,000) on a longer
timescale by the orange and blue assemblies, which also fire epi-
sodes rhythmically, whereas the pink assembly is suppressed.

This assembly structure can be confirmed from the corre-
sponding cross-correlation matrices shown in Figures 5b and 6b.

Cells in the same cluster are positively
correlated (see scale bars) with each
other, which produces the violet and
pink colored squares on the main diag-
onal. Cells in different clusters are neg-
atively correlated, as can be seen by the
cyan and yellow regions off the main di-
agonal. The scale bars show that both pos-
itive correlations within assemblies and
negative correlations between assemblies
can reach large highly significant values.
The cross-correlation matrix for the case
of fluctuating input (Fig. 6) exhibits sim-
ilar structure to the case of constant
excitatory input (Fig. 5), further demon-
strating the resilience of the network gen-
erated assemblies to noisy input. When
networks are larger, the number of cell as-
semblies and the complexity of the rela-
tionships between them increases, as is
shown by the checkerboard appearance of
the cross-correlation matrix for the 500-
cell simulation at striatal connectivity
shown in Figure 4b. Again, cells within an
assembly on the main diagonal show
strong positive correlation, but cells in
different clusters may show strong posi-
tive or negative correlation. Although
some cell assemblies show positive cor-
relation between them, they differ in
their correlations to other assemblies, so
that no two assemblies have an identi-
cal pattern of positive and negative
relationships.

To demonstrate metastable state switch-
ing in the network in a different and

striking way, we also calculated network state transition ma-
trices, D(t1,t2) (Schreiber et al., 2003; Sasaki et al., 2006b, 2007;
Carrillo-Reid et al., 2008). These are shown in Figures 5d and 6d
for the same two network simulations. To construct these plots,
the scalar products of vectors R(t�1) and R(t�2) made from the
firing rates of all cells, Ri(t) (where now a small 40 ms time bin size
is used), are taken at all different times t1 and t2 (see Appendix).
The square blocks of violet and pink colors persisting for sev-
eral seconds indicate that the network is in a certain persistent
firing state, R(t�) � R(t� � 1) � R(t� � 2) . . .. This persistent state
repeats periodically separated by green and blue epochs in which
the network visits a different dissimilar state. For example, the
large solid block of violet from t � 13 s to t � 17 s in Figure 5d
indicates a persistent approximately fixed network state that is
then revisited at later times, at approximately t � 22 s and t � 25
s. This provides clear demonstration of abrupt transitions be-
tween metastable states in the network that are then revisited
later, and it occurs despite rapid noisy fluctuation in the excita-
tory input (Fig. 6d).

The off-diagonal streaks of violet R(t� � n) � R(t�), (n 
 1)
(Fig. 5d, near t1 � 20 s, t2 � 12.5 s, for example) demonstrate
another interesting dynamical phenomenon. They indicate that
the network travels through a sequence of different metastable
assembly states, in which the same sequence recurs later, demon-
strating the sequential repetitive nature of assembly switching
dynamics. Furthermore, these switching state sequences last for
periods of seconds and may therefore be behaviorally relevant.
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Figure 5. a, Spike time series segment from all 67 cells in a 100-cell network that fire at least one spike. The cells are ordered by
the k-means clustering algorithm with six clusters and colored according to their assigned cluster. Numbers of cells assigned to
each cluster vary. This network has connectivity 0.2 and fixed excitatory input. b, Cell– cell zero time lag cross-correlation matrix Cij

corresponding to a with cells ordered the same way as a with conventions as in Figure 4b. Cross-correlations are calculated using
a long 2 s time bin. The black circles are the network connections between the cells. All connections are shown regardless of
strength. c, Firing rates for the six clusters discovered by the k-means algorithm corresponding to the spike time series in a and
colored the same way. Cluster firing rates are divided by the amount of cells in the cluster. d, Network state transition matrix D(t1,
t2) matrix corresponding to a with 40 ms time bins. Similarity values are colored in 11 equal-sized bins as shown on the scale where
the (approximate) midpoint value of the color bin is shown.
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Sequential assembly dynamics in this
network may be consistent with the
prototype of deterministic metastable
state switching in inhibitory networks
(Rabinovich et al., 2000; Nowotny and
Rabinovich, 2007) known as winner-less
competition (WLC) (see Discussion) and
more generally is type of transient (not
fixed point) dynamical activity suggested
by theoretical and experimental studies
to be broadly relevant in neural infor-
mation processing (Buonomano and
Merzenich, 1995; Maass et al., 2002;
Mazor and Laurent, 2005; Rabinovich
et al., 2008a).

Sequentially switching episodically
firing assemblies are not a consequence
simply of weak lateral inhibition, how-
ever; the network also requires the sparse
to intermediate connectivity observed in
the striatum. The episodically firing as-
sembly behavior at striatally realistic con-
nectivities of 0.1 in 500-cell networks
under fluctuating excitatory input shown
in Figure 4, a and b, is contrasted with the
dynamical behavior of the 500-cell net-
work simulation shown in Figure 4, c and
d, at the much higher connectivity of
0.82, which is much higher than the stria-
tally realistic connectivity regime. In this
simulation, all cells can be seen to be fir-
ing very independently and randomly,
and few assemblies or interesting identi-
ty–temporal patterns can be discerned in
either the raster plot or the cross-correlation matrix. The absolute
values of the cross-correlations at high connectivity in Figure 4d
can also be seen to be generally smaller than those at lower con-
nectivity in Figure 4b. Simulations at high connectivities under
fixed excitatory input also show independent randomly firing
cells without assembly formation.

There is evidence that cell assemblies fire in coherent episodes
in the in vivo striatum during periods of behavior and rest. Miller
et al. (2008) found episodic firing activity in MSNs correspond-
ing to periods of high-frequency firing was common in striatum
in mice, and firing was correlated between pairs of MSNs. Coin-
cident firing episodes, which the authors defined as bursts be-
tween pairs of neurons that overlap in time, occurred more often
in pairs of MSNs that exhibited correlated firing. The appearance
of episodically firing cell assemblies in our model is in good
agreement with this study.

Effect of detailed network structure
We have demonstrated that episodically firing cell assemblies
exist in random networks of inhibitory neurons at appropriate
connectivities, but how do the cell assemblies depend on the
details of the network structure? The network structure is shown
by the black circles superimposed on the two 100 cell network
cross-correlation matrices in Figures 5b and 6b. A black circle is
shown if two cells are connected regardless of the variable con-
nection strength. The violet–pink squares of positive correlation
have few connections between their members. For example, the
cluster of cells with index numbers from 0 to 10 in Figure 5b
corresponding to the black assembly in Figure 5a have only a few

connections between themselves. It is this that allows this set of
cells to fire together continuously as a result of the external exci-
tation if the rest of the MSN network that inhibits them is quies-
cent for a period. Other areas in which there are strong positive
correlations also display few network connections, whereas areas
of weak and negative correlation show many network connections.

How switching cell assemblies depend on the details of the
network structure is further illustrated using a simple small net-
work example. Figure 7a shows a spike raster plot from a very
small nine-cell network under fixed excitatory input, which has
been ordered, as above, by the clustering algorithm. This network
is similar to the example described by Rabinovich et al. (2000) in
their study of WLC. The individual spikes can be seen in this
raster plot, demonstrating that all cells fire many spikes in an
firing episode and that the cells have different firing rates during
the firing episodes. Figure 7b shows the correspondingly ordered
cross-correlation matrix with network connections superim-
posed. Three clusters are shown, two of four cells and one of one
cell. The clusters switch perfectly periodically in this small net-
work. Between the member cells of each cluster, strong positive
cross-correlation exists, whereas between cells of different clus-
ters, strong negative correlation is seen. In fact, every member of
each cluster is inhibited by at least one member of the cluster that
inhibits it. The feedforward inhibitory loop this produces is de-
picted more simply in Figure 7c.

At higher striatally realistic connectivities, such as the example
whose time series is shown Figure 4a, connections are much more
numerous and much weaker than the nine-cell example shown in
Figure 7, a and b, and “net excess” connection effects, rather than
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Figure 6. a, Spike time series segment from all 97 cells in a 100-cell network that fire at least one spike during the period
shown. The cells are ordered by the k-means algorithm with seven clusters and colored according to their assigned cluster.
This network has connectivity of 0.2 and fluctuating excitatory input. b, Cell– cell zero time lag cross-correlation matrix Cij

corresponding to a with cells ordered the same way as a. The black circles are the network connections between the cells.
Same conventions as Figure 5b. c, Firing rates for the seven clusters discovered by the k-means algorithm corresponding to
the spike time series in a and colored the same way. Cluster firing rates are divided by the amount of cells in the cluster. d,
Network state transition matrix D(t1, t2) corresponding to a with 40 ms time bins. Same conventions as Figure 5d.
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individual connections, are the relevant quantities. This is de-
picted schematically in Figure 7d. Cells can fire together as an
assembly even if there are connections between them, as can be
seen in the network connections superimposed in Figures 5b and
6b. This is because, as described above, connections have weak
strength, and the presynaptic firing rate is low because of the low
level of excitatory drive to the cell. Such a weak presynaptic cell
only lowers the firing rate of the postsynaptic cell and causes it to
fire irregularly without quenching it completely. Furthermore,
switching cell assemblies are actually a multiple timescale phe-
nomenon. The cross-correlation matrix calculation based on a
2000 ms time bin has extracted assemblies on this 2000 ms time-
scale. However, within an assembly at this timescale, there can be
smaller subassemblies that switch on faster timescales, and inhib-
itory connections can exist between these smaller subassemblies.
In general, assemblies are arranged in the hierarchical structure
illustrated in Figure 7d, and the assembly scale we focus on de-
pends on the timescale. Another factor is that, during metasta-
ble states, cells can also occasionally transiently entrain at the
spiking level and become synchronized with fixed phase rela-
tionship for a short spell, thereby continuing to fire despite
active inhibitory connections (Ponzi and Wickens, 2009). This
is possible in cells with close firing rates because the effect an
inhibitory spike has on a postsynaptic cell depends on the
postsynaptic membrane potential (Van Vreeswijk et al., 1994;
Ermentrout, 1998; Izhikevich, 2005). Therefore, in general sparse

random networks sets of cells with suffi-
ciently few or sufficiently weak connec-
tions between themselves exist, and these
cells can fire together as an assembly if the
inhibition exerted by the rest of the net-
work is sufficiently weak for a period.
Roughly speaking, feedforward chains of
assemblies, such as those described in Fig-
ure 7d, occur when the total inhibition ex-
erted by all members of an upstream
assembly on individual members of a
downstream assembly is greater than the
total inhibition exerted by all members of
the downstream assembly on individual
members of the upstream assembly.
When the upstream assembly ceases fir-
ing, the downstream assembly will start
firing after the postsynaptically bound
neurotransmitter has decayed. The mem-
ber assemblies of such circuits slowly
switch between quiescence and episodic
firing in sequence. In contrast to the sim-
ple feedforward loop described in Figure
7c for the small nine-cell network, when
networks are larger, assembly chains be-
come interlocked so that the slow
switching of one circuit interferes with
the dynamical switching of another.
Furthermore, as depicted in Figure 7d,
any given cell can be a member of sev-
eral such sets of weakly connected cells.
This role for sets of unconnected cells in
inhibitory network clustering has also
been noticed by Assisi and Bazhenov
(2007). Such interlocked assembly chains
with partially shared members produce se-
quentially switching episodically firing as-

sembly dynamics at striatally relevant connectivities, as exemplified
by the complex identity–temporal patterns in the spike raster plot
in Figure 4a and the checkerboard relationship of assemblies in
the cross-correlation matrix in Figure 4b.

Statistically, networks with sparser connectivities are most fa-
vorable for the formation of cell assemblies. This is because, at
high connectivities, the total inhibition on all cells takes a uni-
form value across cells as a result of the law of large numbers, and
fluctuations in cell connectivities are weak. In effect, all cells are in
the same environment because they are all connected to the same
set of cells that becomes an inhibitory “pool” of constant inhibi-
tion. Active cells therefore have similar dynamics without large
fluctuations, as shown in Figure 4c at high connectivity.

MSN firing statistics predicted by the network model with
striatal connectivity
Studies of in vivo MSN firing have displayed a puzzling conun-
drum of observations. In general, cells fire with very low rates, but
firing rate distributions are very broad. Cells exhibit episodic
firing, but ISI distributions are only single peaked. Firing is highly
irregular, showing very high coefficients of variation (CVs) of the
ISI distributions and also very broad CV distributions. Further-
more, cells show cross-correlations and autocorrelations slowly
varying on the timescales of hundreds of milliseconds, but pre-
cisely synchronized spiking is absent. We asked what precise
quantitative predictions our network model at striatal connectiv-
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Figure 7. a, Spike raster plot from a nine-cell network under fixed excitatory input. The cells are ordered by the k-means
clustering algorithm with three clusters and colored according to their assigned cluster. b, Cell– cell zero time lag cross-correlation
matrix Cij corresponding to a with cells ordered the same way as a; conventions same as in Figure 4. The circles denote network
connections, regardless of connection strength. c, Feedforward network of assemblies corresponding to a and b. Thick black lines
denote net excess inhibitory connections. Within an assembly, depicted by dashed lines, there are few and/or weak connections.
Between successive assemblies, connections are asymmetric, strong in the forward direction and weak in the reverse. Each
member of a downstream assembly is inhibited by a sufficient amount of the cells in the immediately upstream assembly, to
quench its firing if the upstream assembly becomes active. Between nonsuccessive assemblies, connections are weak. d, In more
connected networks, assemblies formed from weakly connected members, which episodically fire together, are connected in
interlocked chains. Some cells (shown orange) may be members of multiple assemblies. For example, one of the two such cells
shown has weak or few connections with members of the blue group and also with members of the red group. However, other
members of the blue group may be strongly connected to members of the red group and vice versa. Assemblies can also be
combined hierarchically. The magenta colored assembly is actually made up of three smaller assemblies which have their own
switching timescale.

Ponzi and Wickens • Sequentially Switching Cell Assemblies in the Striatal Network J. Neurosci., April 28, 2010 • 30(17):5894 –5911 • 5901



ity makes for these MSN statistical charac-
teristics and how well our model can
account for the existing observations.
Could the striatal MSN network itself,
based on only the simplest assumptions of
weak sparse lateral inhibition driven by only
weak incoherent excitation and without a
biophysically detailed MSN cell model, pro-
duce these nontrivial statistical observables?
We wondered whether this collection of
MSN firing observations could in fact derive
from the tendency of the network to endo-
genously generate episodically firing
assemblies.

First, we study firing rate and ISI dis-
tributions. Next, we investigate irregular-
ity. Subsequently, we address coherent
firing between cells, and, finally, we di-
rectly measure the quantity of episodically
firing assemblies. We concentrate on the
case of randomly fluctuating excitatory
input because it is the most biologically
relevant but also describe results for fixed
input when it is instructive.

Highly variable low firing rates
Figure 8a shows the distribution of mean
firing rates for each active cell for three
different 500-cell network simulations
with striatally relevant connectivities of
0.06, 0.1, and 0.2 in the fixed excitatory
input condition and in the inset for con-
nectivities 0.1 and 0.15 in the fluctuating
input condition. These distributions are
calculated from time series with a long
time period of 10 min. The distributions
are shown in log-log scale because they are
very broad and, especially in the fixed in-
put condition, are consistent with a power law. This broad distri-
bution implies that cells have very variable firing rates, and there
are many more cells firing very slowly than would be expected from a
normal (Gaussian) distribution. In a single network simulation,
most of the cells fire very slowly at �0.1 Hz, but there are also
significant amounts of cells firing at 1 Hz and a few firing as fast as
10 Hz.

The mean firing rates of �3.5 Hz here are quite realistic
(Miller et al., 2008). Very broad distributions of MSN firing rates
have been observed by Wilson (1993) and in WT mice by Miller
et al. (2008). Broad firing rate distributions are also observed in
many other brain regions (Lee et al., 1998; Nevet et al., 2007)
and predicted by modeling studies of balanced random net-
works (Van Vreeswijk and Sompolinsky, 1996; Amit and
Brunel, 1997).

ISI distributions for some individual cells from the 10 min
network simulation with striatally relevant connectivity 0.15 un-
der fluctuating excitatory input whose firing rate distribution is
shown in Figure 8a are shown in Figure 8b. The two insets show
different magnifications of the same results. Although individual
cells have very broad power-law-distributed firing rates the ISI
distributions at large ISIs are consistent with exponential distri-
butions, as can be seen from the linear relationships when plotted
in log-linear axes (Fig. 8b, main, left inset). This indicates that the
cells in this simulation obey Poisson processes for large ISIs, al-

beit with very different rates. However, Figure 8b shows that the
ISI distributions at small ISIs deviate strongly from exponential.
First, ISIs cannot be shorter than a fixed value determined by the
excitation level. Network inhibition will only decrease this max-
imal firing rate, and therefore we expect a minimum ISI. Second,
above this minimum ISI, there are many more short ISIs than
would be expected for a Poisson process. This reflects the fact that
cells fire in short episodes of relatively high-frequency spikes,
between longer and very variable periods of quiescence. The dis-
tribution of these short ISIs is consistent with a power law across
two orders of magnitude as can be seen from their approximately
linear relationships when plotted in log-log axes (Fig. 8b, right
inset). Power-law ISI distributions (Usher et al., 1994; Baddeley
et al., 1997; Tsubo et al., 2009) indicate self-similarity of spike
trains and can be formed from summation over many exponen-
tial distributions with different rate parameters. These ISI distri-
butions are obtained from network cells under fluctuating
excitatory input, but ISI distributions obtained from network
simulations under fixed excitatory input display very similar
structure.

Although burst firing is typical of striatal MSNs (Wilson,
1993; Miller et al., 2008), ISI histograms of MSNs do not generally
show the bimodal distribution one might expect for burst firing,
i.e., one mode corresponding to intraburst intervals and one to
intervals between bursts (Wilson, 1993). It has been suggested
that this is because interburst intervals are much longer and very
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Figure 8. a, Power-law distribution of single-cell firing rate for different network simulations in log-log scale. Main, Constant
excitatory input, with connectivities of 0.06 (red squares), 0.1 (black circles), and 0.2 (green diamonds). Inset, Fluctuating excita-
tory input, connectivities of 0.15 (blue up triangle) and 0.1 (brown down triangle). The time series all have very long length of 10
min. b, Exponential tailed power-law cumulative ISI distributions for some of the individual cells for the long 10 min network
simulation with connectivity p � 0.15 and fluctuating excitatory inputs whose firing rate distribution is shown in a (inset), in
log-linear scale (main, left inset) and log-log scale (right inset). Cells are shown by different colors. The two insets show different
magnifications of the same simulation. c, Solid colored lines, Several time-lagged cross-correlation coefficients for randomly
chosen cells from the same simulation studied in b with fluctuating excitatory inputs. Dashed black line, Autocorrelation coefficient
for a single randomly chosen cell. The main figure shows results calculated with 1000 ms bin size and the inset with 20 ms bins.
d, Solid colored lines, Several time-lagged cross-correlation coefficients for randomly chosen cells from the long 10 min network
simulation with connectivity p � 0.2 and constant excitatory inputs whose firing rate distribution is shown in a. Dashed black line,
Autocorrelation coefficient for a single randomly chosen cell. The main figure shows results calculated with 1000 ms bin size and
the inset with 20 ms bins.
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variable compared with ISIs within bursts and so make a much
smaller contribution to the ISI histogram (Wilson, 1993). The
ISI distributions shown here are consistent with these observa-
tions. Poisson-like exponential tailed ISI distributions are also
consistent with many experimental and modeling studies of
neuronal firing patterns (Tomko and Crapper, 1974; Softky
and Koch, 1993; Holt et al., 1996; Van Vreeswijk and
Sompolinsky, 1996; Amit and Brunel, 1997; Shadlen and Newsome,
1998; Compte et al., 2003; Miura et al., 2007; Renart et al., 2007;
Barbieri and Brunel, 2008).

Highly irregular firing
The firing rate distributions for individual cells shown in Figure
8a are the mean rates calculated over a long time period. This
masks the fact that firing rates of individual cells can vary greatly
within the time period.

The CV of the ISI distribution of a cell is a useful quantity to
characterize firing irregularity. This quantity is defined to be the
ISI SD normalized by the mean ISI (see Appendix). It is unity for
Poisson processes and greater than unity for processes more vari-
able than Poisson. The distribution of this quantity across the
cells for the connectivity 0.15 network simulation under fluctu-

ating excitatory input studied above is
plotted in Figure 9a (black circles), de-
noted CVcell. The cells have CVs that are
broadly distributed around 1.7. This is a
high value, indicating a high degree of fir-
ing variability. The distribution is also
very broad, with some cells acquiring CV
values as high as 2.1. Miller et al. (2008)
show that MSNs in WT mice display high
ISI CVs, with broad CV distributions cen-
tered around 2 or 3, very similar to our
CVcell distribution at striatally relevant
connectivity. Our model is therefore in
good agreement with this study. Such CV
values, somewhat larger than unity, are
also often observed in experimental
(Tomko and Crapper, 1974; Softky and
Koch, 1993; Holt et al., 1996; Lee et al.,
1998; Compte et al., 2003) and modeling
(Van Vreeswijk and Sompolinsky, 1996;
Amit and Brunel, 1997; Shadlen and New-
some, 1998; Renart et al., 2007; Barbieri
and Brunel, 2008) studies in various brain
regions.

The high cell coefficients of variation
tell us that cells have highly irregular fir-
ing. To discover whether cells are actually
firing in distinct episodes or not, it is use-
ful to measure a related quantity, CV2.
This local coefficient of variation (see Ap-
pendix) is defined for a cell through CV2

n

� �ISIn�1 
 ISIn�/(ISIn�1 � ISIn), where
ISIn is the nth ISI in a spike train (Holt et
al., 1996; Compte et al., 2003). For Pois-
son processes, the distribution of this
quantity is uniform and flat across the in-
terval from zero to one. Bursty processes,
conversely, show CV2 distributions with
peaks near zero, produced by episodes of
similar successive ISIs, and peaks near
one, produced by the very different suc-
cessive ISIs (occurring at the starts and

ends of periods of quiescence), with depletion at intermediate
values. The inset of Figure 9a shows the distribution of CV2 for all
cells combined for the same connectivity 0.15, 10 min network
simulation under fluctuating excitatory input. The distribution
has a peak near zero, depletion at intermediate values and a peak
near one. The distribution is characteristic of episodically firing
cells, and the simulation therefore contains many cells firing ep-
isodically. Such CV2 distributions are often observed in neuronal
studies (Compte et al., 2003), but unfortunately there is no rele-
vant striatal study and this result is a prediction of our model.

Slowly varying cell correlation
We might expect that the simultaneous cross-correlation be-
tween cells in a network would provide an indication of the
amount of coherent assembly formation in the network. Wang
and Buzsáki (1996) in their study of interneuron networks mea-
sure a similar quantity (Wang and Buzsáki, 1996; Buzsáki et al.,
2004). In that study, the authors were mainly interested in spike
synchronization and therefore used a small timescale for the cal-
culation of cross-correlation. In this study, we focus on the for-
mation of episodically firing assemblies, in which episodes can
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Figure 9. a, Distribution of CV for the same network simulation studied in Figure 8, b and c, with fluctuating inputs. Black circles,
CVcell. Red squares, CVassem, coefficients of variation for cluster spike time series generated by k-means algorithm with 30 clusters,
performed 100 times (see Appendix). Green diamonds, CVrand, coefficients of variation for cluster spike time series generated by
k-means algorithm with 30 clusters, performed 100 times but in which cells are associated randomly to clusters. Blue triangles,
CVscram, coefficients of variation for cluster spike time series generated by k-means algorithm with 30 clusters, performed 100
times, but in which cell ISI time series are initially scrambled. Inset, Distribution of local coefficients of variation CV2. b, Network
activity versus connectivity for 500-cell networks under fluctuating excitatory input. Black circles, Number of active cells that fire at
least once during the 50,000 ms observation period. Red squares, Mean firing rate of active cells during the observation period
rescaled by a factor of 10. Left inset, Detail. Right inset, Number of active cells versus connectivity for 500-cell networks under fixed
excitatory input. c, Coefficient of variation of ISI distribution versus connectivity for 500-cell network simulations under fluctuating
excitatory input. Each point is calculated from a different simulation with length 50,000 ms. Black, Mean CV of all cells, �CVcell�. Red,
Mean CV of k-means algorithm-generated clusters with 30 clusters, performed 20 times, �CVassem�. Green, Same as red but in which
cells are associated to clusters randomly, �CVrand�. Blue, Same as red but in which the ISIs of each cell are initially scrambled,
�CVscram�. Inset shows detail. Error bars show SEM. The labeled arrows indicate simulations whose time series are shown in Figure
4. A, Connectivity 0.1; B, connectivity 0.82. d, Distribution of CVcell for various 500-cell network simulations with different connec-
tivities shown in legend under fluctuating excitatory input. Inset, Corresponding distribution of local coefficients of variation (CV2),
in log scale for clarity. All 500 cells are combined in each simulation result. Each simulation time series had length of 50,000 ms.
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last several hundreds of milliseconds and use a longer bin size of
2000 ms for the extraction of assemblies. If cells form coherent
assemblies, there should be some large positive cross-correlations
between members of an assembly and possibly large negative
correlations between members of different assemblies. That this
is indeed the case can be seen for the cross-correlation matrix
shown in Figure 4b.

Figure 8c shows time-lagged cross-correlation coefficients
(see Appendix) between some pairs of randomly selected cells
calculated from rate time series with a 1000 ms bin size for the
same connectivity 0.15, 10 min simulation under fluctuating ex-
citatory input studied in the preceding section.

The large positive or negative zero time lag cross-correlation
coefficients confirm the results already shown in the matrix in
Figure 4b, but, as can be seen, large highly significant slowly vary-
ing “oscillatory” fluctuations with magnitudes of approximately
�0.1 also extend for long time lags of many tens of seconds.
These oscillatory fluctuations typically have a timescale of many
hundreds of milliseconds, but cross-correlation can also be sig-
nificantly persistently above or below baseline on longer time-
scales of many seconds. This demonstrates that the network
displays coherent oscillations across cells on multiple long behav-
iorally relevant timescales even when excitatory input rapidly
fluctuates.

The inset in Figure 8c shows the same results calculated with a
20 ms bin size. Cross-correlation is now much weaker with mag-
nitudes of only �0.01 and lacking large slow fluctuations. Of
course, Figure 8c only shows a few cell pairs of the 499 2 in the
simulation, but the absence of narrow strong peaks or troughs at
distinct time lags in the 20 ms bin results indicates that cells do
not show strong spiking synchronization on average.

Because the cross-correlation results shown in Figure 8c are
calculated from a network under fluctuating excitatory input, in
which the input is randomly changed every 10 ms, it is perhaps
unsurprising that the 20 ms bin results do not show strong cross-
correlation. However, this result is not a consequence of fluctu-
ating excitatory input, as can be seen in Figure 8d, which shows
cross-correlation coefficients for some randomly selected cells
from a long 10 min connectivity 0.2 simulation under constant
excitatory input. The 1000 ms bin size results again show persis-
tent large slow oscillatory fluctuations with magnitude of approx-
imately �0.1, whereas the 20 ms bin size results again show much
lower magnitude, �0.02, fluctuations. In fact, in completely de-
terministic simulations under fixed excitatory input, certain cell
pairs do show transient phase-locked synchronization (as men-
tioned above), but this occurs in short transient bursts and the
effect is averaged out over long time periods. The slowly varying
cross-correlation justifies our use of the long 2000 ms timescale
for the extraction of episodically firing assemblies.

Our results in good qualitative agreement with studies of
cross-correlation in MSNs (Stern et al., 1998), which show that
correlation is apparent between up-state MSNs on broad time-
scales of tens to hundreds of milliseconds but not between spikes
on a millisecond timescale.

Autocorrelograms of MSNs have been observed to show
rhythmic low-frequency (0.5–3 Hz) patterns on long timescales
but exponentially decaying autocorrelograms on short timescales
of hundreds of milliseconds (Wilson, 1993; Stern et al., 1998).
Plenz and Aertsen (1996) show autocorrelograms decaying on a
timescale of seconds. The black dashed lines in Figure 8, c and d,
show the time-lagged autocorrelation coefficient of a single cell.
Consistent with observations, the autocorrelation decays from
unity to near zero on the order of 1 s and subsequently shows

strong fluctuations of magnitude at approximately �0.1 on slow
timescales. The smaller bin size shows the same initial decay over
the first several hundred milliseconds but much weaker correla-
tion (�0.01) at longer time lags. Again, these effects are not de-
pendent on the fluctuating excitatory input, as can be seen in
Figure 8d (inset) for fixed excitatory input.

Episodically firing assemblies
Finally, we asked whether we could directly quantify the amount
of episodically firing assemblies. Two quantities are important
for the formation of slowly switching episodically firing assem-
blies. First, individual cells must fire episodically, and second,
there must be sets of cells that show excess cross-correlation on
long timescales. The above results show that, at striatally relevant
connectivities, both these conditions occur. To demonstrate this
more explicitly, we combine the coefficient of variation analysis
with the clustering analysis based on cross-correlation matrices.
We apply the clustering algorithm to the cross-correlation
matrices to find cell assemblies and then merge the spike time
series of the individual cells to form a cell assembly spike time
series, preserving the timing of each spike (see Appendix). We
then measure the coefficient of variation of the cell assembly
ISI distribution.

Figure 9a shows the distribution of cell assembly coefficients
of variation for the connectivity 0.15, long 10 min network sim-
ulation under fluctuating excitatory input studied above, de-
noted CVassem (red squares). CVassem shows a broad distribution
similar to CVcell, with a peak at relatively high CV near 1.3,
indicating the presence of episodically firing cell assemblies.
Some assemblies have CV values as high as 2.0 like the indi-
vidual cells do.

Figure 9a also shows the distribution of two control measures,
denoted CVrand (green diamonds) and CVscram (blue triangles)
(see Appendix). Both measures are calculated exactly the same
way as CVassem except that, in CVrand, the cells are randomly
collected in clusters, whereas in CVscram, the ISIs of the individual
cell are all initially scrambled before the clustering algorithm is
applied (this procedure does not change the coefficients of vari-
ation or ISI distributions of the individual cells but does destroy
the cell– cell cross-correlation). Both control distributions are
quite similar, peak near one, and are much narrower than the
k-means algorithm-generated cluster distribution CVassem. This
indicates than randomly assigning cells to clusters or scrambling
ISIs reduces the formation of episodically firing assemblies and
produces assemblies that fire in a Poisson-like way. This shows
that this long 10 min network simulation at striatally relevant
connectivity produces significant episodically firing assemblies.

Coefficients of variation averaged over their distributions,
�CV�, provide a useful single valued measure of the quantity of
episodically firing assemblies in a given network simulation. The
time series from a simulation at realistic connectivity of 0.1 plot-
ted in Figure 4a has an average cell coefficient of variation �CVcell�
of 1.7, confirming the observed highly variable firing. Its average
cluster coefficient of variation �CVassem� of 1.47 is significantly
higher than unity and the two controls �CVscram� of 1.06 and
�CVrand� of 1.14, confirming the presence of significant episodi-
cally firing assembly formation. This is in contrast to the network
simulation shown in Figure 4c at much higher connectivity of
0.82. Its �CVcell� of 0.97 is close to unity, confirming the random
Poisson-like firing patterns. It has a much lower �CVassem� of 0.99,
close to unity, not significantly higher than the two controls
�CVrand� of 0.97 and �CVscram� of 0.96, confirming the absence of
episodically firing assemblies at high connectivity.
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Connectivity variation
We now address the question asked above: why does the MSN
network have the particular sparse connectivity it does? Can the
striatal MSN network subserve a WTA function, or is this partic-
ular connectivity more appropriate for the formation of sequen-
tially switching cell assemblies and promotion of episodic firing
and dynamical network coherence? Does variation in connectiv-
ity strongly affect the predictions of MSN firing patterns we ob-
served in the previous section?

To investigate this, we perform many 500-cell network simu-
lations while varying the connectivity. For each simulated net-
work, we observe the spiking for a period of 50,000 ms after
discarding a transient of 10,000 ms and calculate relevant
quantities.

Increasing connectivity with fixed synaptic strength ki,j
syn (Eq.

3) would also increase the total inhibition on a cell. As explained
in the Materials and Methods section, to isolate effects strictly
relating to network structure, i.e., connectivity, we keep the total
inhibition on each cell fixed on average and scale the synaptic
strength parameter. This synaptic rescaling is also performed in
the network simulations of Wang and Buzsáki (1996) in their
study of random interneuron networks.

First, we investigate how the quantity of cells firing varies with
the network connectivity. We next study how firing rates depend
on connectivity. Subsequently, we study how firing irregularity
varies with connectivity. Finally, we investigate directly how the
formation of episodically firing assemblies depends on the net-
work connectivity. Again, we concentrate on the case of fluctuat-
ing excitatory input because it is the most biologically relevant,
but we also describe results for fixed input when it is instructive.

Connectivity regimes and WTA behavior
The striatum network has often been considered to subserve a
WTA function, with the most strongly activated neuron sup-
pressing activity in its neighbors (Groves, 1983; Wickens et al.,
1991; Beiser and Houk, 1998; Fukai, 1999; Suri and Schultz, 1999;
Bar-Gad and Bergman, 2001). However, the sparse structure of
the MSN network and the fact that the inhibition exerted by a
single MSN is too weak to suppress other MSNs has led several
workers to conclude that this notion cannot be feasible (Tunstall
et al., 2002; Plenz, 2003; Koos et al., 2004; Tepper et al., 2004;
Wickens et al., 2007). Accordingly, we first investigate this ques-
tion by studying how the number of cells firing varies with the
network connectivity.

In Figure 9b (main and left inset), we show that, under fluc-
tuating excitatory input as the connectivity increases from zero,
the number of cells that fire at least once during the period of
observation decreases to a minimum of �200 at connectivity of
�0.01 (five connections per cell) before increasing to a plateau
level, where all cells in the network fire at least once, at higher
connectivities. In fact, below the transition at connectivity 0.01,
connectivity is so low that the cells are divided into two types: those
that have no inhibitory input from active cells at all, which therefore
fire continuously without quiescent periods, and those that have
at least one strong inhibitory input from an active cell that causes
them to be completely quiescent for the duration of the simula-
tion. Above the transition, inhibitory connections increase in
number but have weaker strength (because of the connection
strength rescaling), and it is possible for cells to fire in irregular
episodes from time to time even with inhibitions from other
active cells.

In the following, we concentrate on the behavior of networks
under fluctuating excitatory input, but in Figure 9b (right inset),

we digress to show that, when excitatory input is fixed, the num-
ber of active cells varies in a more complex way with connectivity.
The low connectivity minimum is preserved but, rather than pla-
teau out at a high level as connectivity increases, as in the case of
fluctuating excitatory input, the number of active cells decreases
from its low connectivity peak, when almost all the network cells
are firing, to reach a plateau of �75 active cells above connectivity
of �0.4. The reason for the difference in behavior is that, when
excitatory input fluctuates rapidly, all cells experience the same
average excitation when averaged on the slower timescale of
changes in network inhibition. In contrast, when excitatory input
is fixed, some cells receive permanently higher levels of excitation
and some permanently lower. At high connectivities, the network
behavior is consistent with k-winners-take-all (Fukai and
Tanaka, 1997) model in which the active cells will generally be the
ones most strongly excited, suppressing the more weakly acti-
vated ones. This WTA-type behavior at high connectivities can-
not occur when all cells receive the same average levels of
excitation and input fluctuates rapidly.

This also demonstrates that, at striatally relevant sparse con-
nectivities, WTA behavior does not occur under weak fluctuating
or weak constant excitatory input because, in both cases, most of
the network is active. Indeed, we have chosen the excitation to be
random across cells within a fixed range [Ibif, Ibif � Itop], where
the input gain Itop � 1. At striatal connectivities, these weak ex-
citation levels do not allow the network to find a permanent state
of regularly firing active cells and permanently quiescent cells,
but almost all cells fire episodically from time to time regardless
of whether the excitatory input is fixed or fluctuating randomly.
However, if excitatory input is fixed and Itop is strongly increased
(Itop � 100) it is possible, even in sparse asymmetric networks of
striatally realistic connectivity with weak lateral inhibition, to
find permanent states with some permanently active cells and
some permanently quiescent cells (data not shown). However,
because of the sparse asymmetric structure, it is usually not true
that the k cells with the strongest excitations will be the k winners
[as in a k-winner-take-all model (Fukai and Tanaka, 1997)], and
therefore the striatal network cannot perform an unbiased WTA
function even when excitation is fixed but varying across cells and
strong.

Mean firing rate weakly depends on connectivity
Figure 9b (main and left inset) also shows how the mean firing
rate varies with connectivity for the active cells that fire at least
one spike during the course of the simulation under fluctuating
excitatory input. Below the transition at connectivity �0.01, the
cells that fire all do so with high frequency, �65 Hz, because of
the lack of inhibitory inputs. Above the transition, the mean fir-
ing rate drops off rapidly with connectivity increase, reaching a
plateau level of �3 Hz. The mean firing rate is fairly constant
throughout the striatally relevant connectivity regime and up to
high connectivities.

Firing becomes Poisson-like at higher connectivity
We now investigate how this observed firing irregularity varies
with network connectivity. The black line in Figure 9c shows the
mean single-cell coefficient of variation �CVcell� obtained by cal-
culating the coefficient of variation for each active cell separately
and then averaging, versus network connectivity, in 500-cell net-
work simulations under fluctuating excitatory input. As can be
seen in the inset, this quantity also shows the transition at con-
nectivity �0.01 from a regime of low CV to a high CV regime.
Below this connectivity, almost all of the active cells are firing
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fairly regularly because they do not have inhibitory input from
other active network cells, and they therefore have CVs close to
zero. Notice that, although excitatory input fluctuates noisily,
this does not produce high mean CVs when network inhibition is
absent. Just above the transition, however, mean CVs get very
large, indicating that most cells are firing highly irregularly. As
connectivities increase further, mean CVs decrease until they ap-
proach and drop slightly below unity when the network is almost
fully connected. This implies that, at high connectivity, active
cells are firing in a Poisson-like way without episodes of firing and
quiescence. This variation of CV with connectivity is confirmed
in Figure 9d, which plots the CV distributions for cells for various
500-cell network simulations with varying connectivity under
fluctuating excitatory input. At low connectivity, distributions
are broad and have high mean CV, whereas as connectivity in-
creases, distributions become increasingly concentrated around
unity. At connectivities relevant for the striatum, average CVs
range from �2 to 1.

The distribution of the local coefficient of variation CV2 for all
successive ISIs of all cells combined in several 500-cell network
simulations of various connectivity under fluctuating excitatory
input is also plotted in Figure 9d (inset). At lower striatally rele-
vant connectivities, the CV2 distribution is bimodal, with a peak
near zero and a peak near unity characteristic of episodically
firing cells. For higher connectivities, however, the distribution
changes over to one resembling that of Poisson processes with an
absolute refractory period (Holt et al., 1996; Compte et al., 2003).
As explained above, each cell is driven by an excitation level with
fixed upper limit that limits the rate at which a cell can fire, and
the network inhibition will decrease the rate in general. It is this
limitation that enforces the absolute refractory period in these
simulations.

Episodically firing assemblies occur at sparse to
intermediate connectivities
Finally, we investigate quantitatively how episodically firing as-
semblies depend on connectivity. The mean values across clusters
for the measure of episodically firing assemblies described above
and the two controls are plotted versus network connectivity in
Figure 9c for 500-cell network simulations under fluctuating ex-
citatory input. All three measures show a similar profile that is
also similar to the profile for �CVcell�. There is a peak around
connectivities of �0.01 and then a decrease as connectivity in-
creases. However, �CVassem� is significantly higher than either
�CVrand� or �CVscram�, from low connectivity up until connectivi-
ties of �0.3. Above this connectivity, all measures are quite close.
Furthermore, in the low connectivity region in which the mea-
sures are significantly different, all measures are below �CVcell�,
although �CVassem� approaches close to it. At high connectivities
exceeding �0.7, however, all the measures similarly exceed �CVcell�,
which drops below unity. The fact that �CVassem� is significantly
higher than unity and the two controls up to �150 connections
per cell indicates that cells tend to fire in episodic assemblies
throughout this neurophysiologically plausible region for the
striatum. In this region, individual cells also show high CV values
(�CVcell�) far above unity, suggesting that the irregular firing often
observed in neural studies may facilitate the formation of episod-
ically firing assemblies.

The time series from a simulation at striatally realistic connec-
tivity of 0.1 plotted in Figure 4a is indicated by the point A in
Figure 9c, and the network simulation shown in Figure 4c is in-
dicated by point B in Figure 9c at much higher connectivity.

Discussion
We propose a new view of the dynamical behavior of the striatum
based on simulation of networks with realistic connectivity. Re-
cently, the GABAergic synaptic connectivity among MSNs has
been shown to mediate functional inhibition. However, the in-
hibitory interactions are relatively sparse, weak, and predomi-
nantly asymmetrical (Stern et al., 1998; Czubayko and Plenz,
2002; Tunstall et al., 2002; Koos et al., 2004; Taverna et al., 2004).
This has led to rejection of a simple WTA model of network
dynamics, leaving the role of lateral inhibition between MSNs in
striatal network dynamics unexplained. We here show that ran-
dom inhibitory networks of deterministic spiking neurons with
sparse weak connections appropriate for the striatum exhibit a
rich dynamical behavior characterized by firing in irregular co-
herent episodes, the formation of slowly sequentially switching
cell assemblies, and complex identity–temporal patterns.

The dynamically interesting behavior is caused by lateral in-
hibition, which generates chaotic switching between metastable
states and occurs because the cells are just above the firing thresh-
old and because network connections are weak. This allows even
sets of cells that inhibit each other to fire simultaneously but
irregularly, whereas stronger fluctuations in network inhibition
can cause cells to become quiescent for extended periods. This
occurs despite the fact that excitatory drive is simply constant or
fluctuating randomly, providing only that it is weak.

This network model is not intended to simulate detailed cell
properties. The SNIC bifurcation used here allows the spiking
frequency to be arbitrarily low without subthreshold oscillations,
appropriately for up-state MSNs, permitting comparison with
experimental studies of up-state MSN activity. However, similar
coherent assembly switching dynamics could be observed with
other bifurcations if connections are appropriate to allow the
generation of large slow network fluctuations.

We studied how network activity depends on connectivity and
found interesting transitions around realistic connectivities. Be-
low the low connectivity transition, the small proportion of active
cells all fire fairly regularly with high rates, whereas above the
transition, almost all the cells fire highly irregularly. Firing be-
comes more Poisson-like and incoherent across cells as connec-
tivity increases. The quantity of coherent episodically firing
assemblies in the network also shows a sudden increase at low
connectivity and then gradually decreases as connectivity in-
creases. The quantity of assemblies is large at striatally relevant
connectivities, suggesting that the striatum may have adapted to
be in this regime.

We found that, at striatally realistic connectivities, cell firing
rates are very broadly distributed, consistent with a power law,
and the distribution of individual cell ISIs demonstrates irregular
episodic firing with exponential tailed distributions. Striatal
MSNs show strong firing irregularity (Wilson, 1993) with long
periods of quiescence and high coefficients of variation (Miller et
al., 2008), and such ISI distributions are often observed through-
out the brain. We found that cells do not show spiking synchro-
nization, except for short transient spells, but firing rates
fluctuate coherently on long timescales of tens to hundreds of
milliseconds in agreement with studies of up-state MSNs (Stern
et al., 1998; Miller et al., 2008).

There have been many studies of cell assemblies throughout
the brain (Cossart et al., 2003; Ikegaya et al., 2004; Brown et al.,
2005; Sasaki et al., 2006b, 2007; Jones et al., 2007; Plenz and
Thiagarajan, 2007; Carrillo-Reid et al., 2008; Miller et al., 2008;
Pastalkova et al., 2008). Jones et al. (2007) recently observed in
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vivo sequentially switching cell assemblies involved in the repre-
sentation of taste. In some studies, cells were observed to show
precise spiking relationships, but in others, including in vivo
(Miller et al., 2008) and in vitro (Carrillo-Reid et al., 2008) striatal
studies, cells did not synchronize on precise timescales but fired
episodically in assemblies on slower timescales, as in the present
model.

Many theoretical studies have addressed population synchro-
nization of coincident spiking in random inhibitory networks
throughout the brain under variation of connectivity (Golomb
and Rinzel, 1993, 1994; Wang and Buzsáki, 1996; Tiesinga and
Jose, 1999; Golomb and Hansel, 2000). Our study complements
these works, but, rather than find spiking synchronization, we
have found that, in the striatum, cell assemblies in which individ-
ual cells spike irregularly but in coherent episodes on slower
timescales are common. In fact, cell assemblies in which many
cells fire in episodes coherently rather than synchronizing pre-
cisely may be just as (or more) effective at driving downstream
targets. Carrillo-Reid et al. (2008) recently investigated the for-
mation of striatal cell assemblies in NMDA-treated slices. The
neurons fired in recurrent sequential coherent episodes, and gen-
erated spatiotemporal patterns and network transition matrices
displayed abrupt transitions between different active cell assem-
blies. Caution should be exercised when drawing comparisons
with in vitro NMDA-treated preparations as a result of the effects
on the dynamics of the individual cells. However, by virtue of the
fact that our model is minimal, in which switching cell assembly
formation depends only on the assumptions of sparse weak ran-
dom connectivity, proximity of cells to an appropriate bifurca-
tion between firing and quiescent states, and fairly slow synaptic
timescale, useful comparisons with preparations that should pre-
serve these characteristics can be made. Our network model gen-
erates dynamically switching assemblies, in good agreement with
the observations of Carrillo-Reid et al. (2008).

The power-law distributions we observed may be a ubiquitous
feature of balanced spiking networks in which the individual cells
are near bifurcation points. Studies show that balanced networks
with strong excitatory and inhibitory connections display chaotic
irregular firing with broadly distributed rate (Van Vreeswijk and
Sompolinsky, 1996; Amit and Brunel, 1997). Critical amplifica-
tion of fluctuations and power laws in neural networks has been
addressed by Usher et al. (1994, 1995). In the low connectivity
regime, our network can be considered a critical system in the
vicinity of a phase transition in which the fluctuations arise from
the underlying deterministic chaos.

The origin of the assembly switching dynamics in our model
may be consistent with WLC (Rabinovich et al., 2000, 2008a). In
this paradigm, neural activity does not reach a fixed steady-state
attractor as in WTA but is transient, continuously switching be-
tween the vicinities of metastable states. Rabinovich et al. (2000)
demonstrate that small strongly asymmetric inhibitory networks
generate stimulus-dependent switching between neural ensem-
bles. In large random networks as studied here, strong asymmetry
is likely at sparse to intermediate connectivities. WLC has several
computational advantages over WTA. It represents the input sen-
sory information using both space (neural identity) and time,
depends on the stimulus, and, although based on transient
dynamics (Rabinovich et al., 2008a), is reproducible and ro-
bust against noise. Because of these factors, WLC has been
applied to modeling of sequential firing patterns in olfactory
systems (Rabinovich et al., 2000, 2001; Laurent et al., 2001), se-
quential decision making (Huerta and Rabinovich, 2004; Ashwin
and Borresen, 2005; Rabinovich et al., 2006a,b, 2008b), and cen-

tral patterns generators (Selverston et al., 2000; Varona et al.,
2002; Levi et al., 2004, 2005).

The striatum is the main input structure to the BG. Coher-
ent episodic firing activity in cortico-BG microcircuits is im-
portant in the encoding of movement sequences (DeLong,
1973; Hikosaka et al., 1989, 2000; Jaeger et al., 1995; Kasanetz
et al., 2006), and the execution of learned motor programs and
sequence learning (Kimura, 1990; West et al., 1990; Brotchie et al.,
1991; Gardiner and Kitai, 1992; Kimura et al., 1992; Kermadi and
Joseph, 1995; Mushiake and Strick, 1995; Aldridge and Berridge,
1998; Jog et al., 1999; Barnes et al., 2005). Such activity could result
from coherent patterned cortical activity. However, here we have
shown that excitatory input does not have to be patterned and
coherent sequential episodic firing is generic even under fixed or
randomly fluctuating (but weak) excitation. Why could this be
useful?

The BG are also closely involved in reinforcement learning
(Sutton and Barto, 1998; Doya, 2000), which requires random
exploratory switching between motor sequences (Doya and
Sejnowski, 1996; Barnes et al., 2005; Kao et al., 2005; Olveczky et
al., 2005). Animals need to generate different movement se-
quences precisely in response to the same sensory cortical signals.
Striatal assemblies firing in coherent episodes may generate ran-
dom sequences of “macroscopic scale” fluctuations on long be-
haviorally relevant timescales facilitating such exploration. This
is not possible in incoherent systems far from criticality in which
independently fluctuating cells average themselves out. Such
large slow macroscopic fluctuations are visible in the time
series shown by Miller et al. (2008) (Fig. 9) for WT mice
during exploration, generated by episodically firing cell as-
semblies. Furthermore, the endogenously generated assembly
sequences we observed require weak input. If the input is strong,
network activity becomes locked into input-dependent states
(data not shown). It is possible that excitatory input strength is
controlled, for example by dopamine, to produce stereotyped
sequences when reward-motivated behavior is fully learned but
maintain the cells in the vicinity of the firing threshold to pro-
mote exploratory sequence variability in early learning stages. In
fact, dopaminergic modulation of sequence variability has been
observed in birdsong (Sasaki et al., 2006a).

Our study shows that switching assemblies form spontane-
ously as part of the intrinsic dynamics of the striatal network. In
the future, it is necessary to study how varying cortical input
affects assembly switching and how this can be used in behavioral
tasks.

Appendix
From a network simulation, we generate spike time series for a
certain period of observation for each cell i � 1, . . ., N, where
here the number of cells N � 500. The period of observation here
is usually tstart � 10,000 ms to tend � 60,000, although some
longer time series with tend � 600,000 ms are also used when
necessary for more accurate distributions (see below). A spike
time is defined as the time the cell i membrane potential crosses
Vi(t) � 
40.0 from below. Each cell i therefore has an associ-
ated series of spike times, {tn

i }, where n � 1, . . ., Si, and Si is the
total amount of spikes fired by cell i in the period of observa-
tion, tstart � tn

i � tend, @n,i.
The number of cells that fire at least one spike is given by

Nfire � N 
 Nquies, where the number of completely quiescent
cells is given by Nquies � �i�1

N �0,Si where � is Kronecker delta.
Rate time series Ri(t) for each cell i are constructed so that

Ri(t) � Si(t)/Twin, where Twin is the time window length and the
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number of spikes fired by cell i, Si(t) in the time window is given
by Si(t) � ne(t) 
 ns(t), where ns(t) is defined such that t � tne

i �t� �
t � Twin but tns

i �t� � 1 � t, and ne(t) is defined such that t �
tne

i �t� � t � Twin but tne

i �t� � 1 � t � Twin. Here, Twin is usually set
to Twin � 2000 ms and to construct Ri(t), t runs from t � tstart to
t � tend 
 Twin in increments of Tinc � 20 ms. Sometimes for
calculation of time-lagged cross-correlations, a window of Twin �
1000 and, for comparison, the shorter window Twin � 20 ms is
also used. Cells that are quiescent in the observation period have
Ri(t) � 0, for tstart � t � tend.

Network state transition matrices D(t1, t2) at two different
times t1 and t2 are constructed from dot products of normalized
rate vectors, D(t1, t2) � R(t�1) � R(t�2)/(�R(t�1)� �R(t�2)�), where R(t�1)
is the vector of cell rate time series Ri(t), and �R(t�)� is the length of
the vector. For these calculations, a window of Twin � 40 ms is
used, incremented in steps of Tinc � 40. D(t1, t2) varies from 0,
meaning the network state at times t1 and t2 is very dissimilar, to
1, meaning the network state at times t1 and t2 is identical. The
color scale for plots in Figures 5 and 6 has been rescaled to show
2D-1 for presentation clarity and goes from 
1 to 1 in 11 equal-
sized steps.

Cell– cell cross-correlation matrices Cij are constructed from
the rate time series Ri(t) as follows:

Cij �
��Ri�t� � �Ri�t����Rj�t� � �Rj�t����

���Ri�t� � �Ri�t���2���Rj�t� � �Rj�t���2�
,

where �Ri(t)� denotes expected value, �Ri(t)� � (1/J)�j�0
J R(tstart �

jTinc), where J is defined such that tstart � JTinc � tend and tstart �
(J � 1)Tinc � tend. Only cells that fire at least one spike are
included in the cross-correlation matrix calculation. The color
scale for plots in Figures 4 – 6 goes from 
1 to 1 in 11 equal-
sized steps.

Time-lagged cross-correlations and autocorrelations are de-
fined as in the correlation matrices:

Cij��� �
��Ri�t� � �Ri�t����Rj�t � �� � �Rj�t � �����

���Ri�t� � �Ri�t���2���Rj�t � �� � �Rj�t � ����2�
,

where � is the time lag. [The quantities �Ri(t � �)� and �Ri(t)� may
be slightly different at long time lags � because of the finite size
observation period.]

ISI time series are defined by In
i � tn�1

i 
 tn
i . Cell i mean

ISI is defined by mI
i � �In

i � � (1/(Si 
 1)) �n�1
Si
1 In

i ; it is only
defined for cells that fire at least two spikes, Si � 1, during
the observation period. Cell i ISI SD is defined by

	I
i � ��1/�Si � 1���n�1

Si
1�In
i � �In

i ��2; it is only defined for
cells that fire at least three spikes, Si � 2, during the observa-
tion period. The coefficient of variation CVi of a cell ISI dis-
tribution is defined by CVi � 	I

i/mI
i when cells fire at least

three spikes. The average CV for a network is defined by CV �
(1/Nfire�) �i

N
fire� CVi, where the sum that runs over the Nfire� is

the cells that fire at least three spikes.
Local coefficients of variation CV2 are defined through the

quantity

CVn
i �

�In � 1
i � In

i �
In � 1

i � In
i ,

which varies between zero and one. The cell CV2
i � (1/Si 
 1))

�n�1
Si
1 CVn

i is defined by averaging over n. The network CV2 is
defined by averaging over all active cells CV2 � (1/Nfire�) �i fire�

N

CV2
i as above. Distributions of CV2 are formed by combining all

cells i.
To study the clustering, we apply the k-means algorithm to the

cross-correlation matrix Cij to order the cell indices. To each of
the Nfire cells i, we associate the vector C� i � Ci1, Ci2, . . ., CiNfire of
cross-correlation coefficients. We chose NK centroids K� k, where
k � 1, . . ., NK, which are also Nfire dimensional vectors. These are
initially chosen randomly from the Nfire vectors C� i. We associate
each cell i to a single centroid k, which is the centroid nearest to
the cell, i.e., min k 
 NK

��C� i 
 K� k�� 2. Denoting the centroid to which
cell i is associated by ki � 1, . . ., NK, we then form new centroids
as the centers of their associated cluster of cells, K� k � �iC� i�k1,k/
�i�k1,k. We then repeat the operation by associating each cell i to
the nearest of the new centroids and calculate the new centroids
again. The algorithm is repeated until it halts when no cells
change their associated centroids. This minimizes the total dis-
tance �i��(C� i 
 K� k1

)�� 2. The cells are then reordered according to
their clusters, so that the cluster of cells i with ki � 1 come first,
followed by the cluster of cells with ki � 2, and so on up to the
cluster of cells with ki � NK. Within each cluster, cells are further
reorganized according to their within-cluster cross-correlation
coefficients. That is, we first select the cell with the maximum
cross-correlation coefficient in a given cluster, then find the cell
with which it has maximum cross-correlation within that cluster,
and then find the cell in the cluster with the maximum cross-
correlation to them and so on. We start with cell i, given by maxi,j

Cij, where i and j index the cells in a given cluster. Cell i receives
index 1 and cell j index 2, then we look for cell k defined by
maxk(C1k � C2k), and this cell receives index 3 and so on. The cells
are thereby reorganized.

Cluster spike time series {tn
k}, where k labels the cluster, are

defined by combining all the spike times of the member cells,
�tn

k	 � Uijk1 � k�tn
i 	. Cluster rate time series are calculated from

these cluster spike time series in the same way as for individual
cells described above. CVassem are calculated from cluster spike
time series in the same way as the single-cell CVs, and their dis-
tributions can be studied in the same way as single-cell CVs.
Network cluster coefficients of variation can also be calculated by
averaging the individual cluster CVassem.

To test for significance of various quantities, we compare their
values with those obtained after randomly scrambling the ISIs.
That is, we create the ISI time series defined by In

i � t n�1
i 
 tn

i and
then scramble the indices n � 1, . . ., Si 
 1 to make a new set n*
(n) and then make the new spike time series tn

i ,* � t1
i � �j�1

Si
1

In*( j). We then calculate the rates Ri
*(t) and the cross-correlation

matrix Cij
* exactly as described above. The scrambling operation

produces randomly ordered spike time series that nevertheless
preserves quantities such as the mean rates, �Ri(t)� � �Ri

*(t)� and
does not alter the distribution of ISIs but destroys cross-
correlation between cells. The k-means algorithm can then be
applied to the new cross-correlation matrix to produce clusters
from scrambled ISI time series. Cluster spike time series are cre-
ated as above, and their coefficients of variation are calculated.
The resultant cluster coefficients of variation CVscram can be stud-
ied, and they can be averaged to produce the network scrambled
ISI coefficient of variation. As another method of significance
testing, we find clusters in the normal way by applying k-means
algorithm to the unscrambled spike time series, but, before cre-
ating cluster time series, we scramble the cell indices, randomly
associating cells to clusters but preserving cluster sizes. That is, we
use the k-means algorithm to obtain appropriate cluster sizes but
then associate the cells to the clusters randomly. It is important
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that we preserve the correct cluster sizes because larger clusters
obviously produce denser cluster spike time series with shorter
ISIs. From the resultant cluster spike time series, we obtain their
coefficients of variation CVrand and then the average of those to
obtain the network random coefficient of variation.

To refine these methodologies further, we note that the cen-
troids found by the k-means algorithm are not unique and de-
pend on the initial choice of centroids. As mentioned above, we
chose these at random from the Nfire vectors C� i, and, similarly for
the randomized calculation, we chose the initial centroids from
C� i

*. The k-means algorithm relaxes until it has found a minimum
of the total distance as described above. However, this need not be
a global minimum and is likely to be local minimum. Therefore,
different choices of initial centroids lead to different final cen-
troids. To control for this, we perform the calculation many times
on the correlation coefficients calculated from both the non-
scrambled and the scrambled spike time series. Each time, we
chose a different set of initial centroids. Each time, we calculate
the cluster spike time series and the cluster coefficients of varia-
tion. From the nonscrambled ISI time series, we obtain many
samples of CVassem and CVrand, and, from the scrambled ISI time
series, we obtain many samples of CVscram and find their distri-
butions. Then we average the results to obtain �CVassem�, �CVrand�,
and �CVscram�, where �.� denotes the average over the many differ-
ent initial centroids.
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