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Learning motor skills entails adaptation of neural computations that can generate or modify associations between sensations and
actions. Indeed, humans can use different strategies when adapting to dynamic loads depending on available sensory feedback. Here, we
examined how neural activity in motor cortex was modified when monkeys made arm reaches to a visual target and locally adapted to curl
force field with or without visual trajectory feedback. We found that firing rates of a large subpopulation of cells were consistently
modulated depending on the distance of their preferred direction from the learned movement direction. The newly acquired activity
followed a cosine-like function, with maximal increase in directions that opposed the perturbing force and decrease in opposite direc-
tions. As a result, the combined neuronal activity generated an adapted population vector. The results suggest that this could be achieved
without changing the tuning properties of the cells. This population directional signal was however altered in the absence of visual
feedback; while the cosine pattern of modulation was maintained, the population distributions of modulated cells differed across
feedback consistent with the different trajectory shapes. Finally, we predicted generalization patterns of force-field learning based on the
cosine-like modulation. These conformed to reported features of generalization in humans, suggesting that the generalization function
was related to the observed rate modulations in the motor cortex. Overall, the findings suggest that the new combined activation of
neuronal ensembles could underlie the change in the internal model of movement dynamics in a way that depends on available sensory
feedback and chosen strategy.

Introduction
The beautiful rendering of a symphony entails a modulation of
the dynamics of crescendi and decrescendi of note sequences
combined to form harmonious chords. During arm-reaching
movements, motor cortical cells modulate their firing rates in
such harmony to encode a myriad of movement parameters such
as direction (Georgopoulos et al., 1982; Schwartz et al., 1988),
force (Evarts, 1968; Kalaska et al., 1989; Taira et al., 1996), speed,
or amplitude (Schwartz, 1992; Fu et al., 1993; Johnson et al., 1999;
Moran and Schwartz, 1999; Reina et al., 2001). However, it has
been a formidable challenge to dissociate elegantly between these
parameters. Complicating the issue further is that motor cortex
and even single units simultaneously encode multiple parameters
(Caminiti et al., 1990; Ashe and Georgopoulos, 1994; Fu et al.,
1995; Kakei et al., 1999; Paninski et al., 2004; Kurtzer et al., 2005;

Aflalo and Graziano, 2006; Hatsopoulos et al., 2007; Stark et al.,
2007;). For example, relevant to our study (see supplemental
information, available at www.jneurosci.org as supplemental
material) is the finding that speed modulates the cell’s directional
tuning.

Motor cortex also plays a role in learning (Sanes, 2003; Scott,
2004; Lalazar and Vaadia, 2008). Changes in the neurons’ dis-
charge patterns correlate with the new kinematics or dynamics of
movement (Wise et al., 1998; Gandolfo et al., 2000; Li et al., 2001;
Paz et al., 2003). Yet, what is represented by the learning-related
changes remains largely unknown. Here, we examined how mo-
tor cortical cells modify their activity to orchestrate new move-
ment strategies as monkeys learn to reach to a single visual target
in the presence of viscous curl force fields. In such perturbations,
the compensatory direction, which is opposite to the force field
and away from the learned direction (LD), yields the adapted
hand trajectory when summed vectorially with the force field
(Fig. 1A). Specifically, we tested whether the neuronal responses
would depend on the distance of the cells’ preferred direction
(PD) from the LD. The task was designed to test two possibilities
concerning which neurons would modify their firing during
learning (Fig. 1B): (1) a specific subpopulation of cells with PD
near the LD or orthogonal to the LD, and (2) subpopulations of
cells with diverse PDs. The first possibility implies that cells
would represent either the LD (Fig. 1B1) or the force-field direc-
tion (Fig. 1B2). The alternate possibility would imply that cells
with wide-ranging PDs would represent the compensatory direc-
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tion (Fig. 1B3). Depending on which subpopulation of cells was
recruited, the population directional signal would point either
toward the LD or orthogonal to the LD or toward the direction of
compensation.

Following our findings that humans used different strategies
when adapting to force fields with or without visual feedback
(Arce et al., 2009), we also examined here how sensory feedback
might affect the computation of the new motor output. Since the
final hand position is dissociated from the compensatory direc-
tion, manipulating the visual feedback of trajectory and endpoint
could influence what eventually drives adaptation (Scheidt and
Ghez, 2007). We tested whether neuronal activity would vary
according to the expected sensory outcomes relating to trajectory
or endpoint. The findings have been reported previously in ab-
stract form (Arce et al., 2008).

Materials and Methods
Animal care and experimentation were in accord with the U.S. National
Institutes of Health Guide for the Care and Use of Laboratory Animals and
with the Hebrew University guidelines for the use and care of laboratory
animals in research, approved and supervised by the Institutional Animal
Care and Use Committee. Before, during, and after experimentation,
monkeys were assessed for general well being. When the health of the
monkeys so required, the experiment was terminated or appropriate
treatment was applied as recommended by the head veterinarian.

Behavioral task and recordings
Two monkeys (Macaca fascicularis, �4 kg) were trained to reach visual
targets using a lightweight robotic arm (Phantom Premium 1.5 High
Force, SensAble Devices). Details of the setup were described previously

(Arce et al., 2009). Once the monkeys were fully trained, neural record-
ings were initiated. Monkey A was implanted with a recording chamber
(27 � 27 mm) above the left hemisphere. Signals from 32 moveable
microelectrodes were amplified, filtered, online sorted, and sampled at
20 kHz (Alpha-Omega). Penetration sites in the premotor (PM) and
primary motor (M1) cortices were verified using combined analyses of
magnetic resonance imaging (Biospec 4.7 T, Bruker) and skull endocast,
microstimulation (50 ms of 200 �s cathodal pulses at 300 Hz), passive
limb movements, and light touch (supplemental Fig. 1, available at www.
jneurosci.org as supplemental material). Monkey B was chronically im-
planted with a 96 microelectrode array (Cyberkinetics Neurotechnology
Systems) on the arm region of the left M1. Signals were online sorted and
sampled at 30 kHz.

The monkeys completed three blocks of target reaching sequentially:
prelearning null-field reaches to eight different targets (160 trials), force-
field reaches to one and the same target (144 field trials and 16 inter-
spersed catch trials in one same direction), and postlearning null-field
reaches to eight targets (160 trials). Each recording session was either
with or without visual feedback (VFB) of the cursor (FFv and FFnv,
respectively, where FF is force field), which instantaneously tracked the
hand position. In the learning block, the robot’s motors generated forces
that perturbed the hand perpendicular to the current reach direction and
proportional to the hand velocity. To ensure that the monkeys learned
anew, the learned target (0°, 45°, 90°, 135°, 180°) and force-field direction
(clockwise or counterclockwise) were varied. Moreover, null-field
reaches before and after learning assured a washout of the previous learn-
ing. Indeed, analysis of success rates across days showed that success rates
for the first 20 trials were significantly lower than success rates for the
next 20 trials (paired t test, FFv: p � 0.01; FFnv: p � 0.005).

Trials started with the appearance of an origin and a cursor (both 10
mm radius) (Fig. 2 A, B). Without VFB, the cursor appeared when near

Figure 1. Schema of hypothetical activity of different cells to generate adapted movements under force field. A, Left, Trajectories in the absence of force field are straight (upper row, black
arrows). Firing rate of cells whose PD corresponds to these directions are marked by the length of the colored arrows (lower row). Center, Trajectory (red, upper row) deviates in the direction of the
force field (orange arrows) as nonadapted cells fire as in the null-field (lower row). For simplicity, the viscous curl force field was represented as straight lines whose length varied to reflect the
bell-shaped velocity profile. Note that the direction of the force field was always orthogonal to the direction of movement. Right, When monkeys effectively anticipate the force properties (orange)
and generate a compensatory direction (purple), the hand takes an approximately straight path (black) when reaching to the target. B, Two possibilities: (1) adaptive changes in one subpopulation
of cells in which activity increases for cells with PD near the LD (B1) or those with PD orthogonal to the LD (B2); and (2) adaptive changes in different subpopulations of cells (B3) in which activity
increases for cells with PD that counters the force field and decreases with PD along the direction where force field assists movement. C, Behavioral after-effects. Hand paths corresponding to single
trials (early and late force field trials and catch trials) from the same recording day for each feedback condition (counterclockwise, FFv; clockwise, FFnv). Deviations of hand paths in catch trials (blue)
were mirror images of the deviations early in adaptation (red). D, Histograms of the initial directional deviations of all catch trials. The directional deviations are expressed in angles. Negative values
denote directional deviations opposite to the force field direction. Initial directional deviations did not differ with and without VFB (t test, p � 0.10). The mean directional deviations of significant
after-effects [i.e., those above 2 SD from the mean directional deviation (dashed vertical lines) of control trials] reflect the compensatory direction (FFv ��45 � 2° and FFnv ��41 � 2° for LD
at 0° convention).
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the origin (0 –20 mm). Monkeys positioned the cursor at the origin and
held it there for a randomized variable period (0.75–1.25 s) until a target
(10 mm radius) appeared. [The target distance, 4.24 cm from center
points of origin and target (equivalent to �12 cm in humans), required
movements of shoulder and elbow joints with minimal postural adjust-
ments of axial (trunk) muscles.] After another randomized variable hold
period from target onset (0.75–1.25 s), the origin disappeared (go signal)
and the monkeys should have reached the target within 1 s from go signal.
With VFB the cursor was visible during the reach movement, while with-
out VFB the cursor disappeared at target onset and appeared only at trial
end. Note that since prior adaptation might influence subsequent ones,
recording sessions were done separately with or without VFB. Upon
reaching the target, monkeys held the position for 0.2 s to get a reward.
Trial end was defined by a success or failure event. Successful trials were
cued by change of target color and an auditory cue (Notify.wav, Mi-
crosoft Windows). In failed trials (i.e., inability to comply with required
hold and movement times), monkeys were given a different auditory cue
(Pop-up Blocked.wav, Microsoft Windows). An intertrial interval (1.5 s)
followed trial end, during which the workspace was blanked. In field
trials, the velocity-dependent force field (Arce et al., 2009) was generated
with k � 8 N * s/mm and turned off 200 ms after trial end.

Data analysis
Behavioral analysis. We examined behavioral performance based upon
success rates, initial directional deviation, path curvature, and spatial
error and compared differences between the feedback conditions and
across the early (first 20 trials) and late phases (trials 61– 80) of force-field
adaptation using one-way ANOVA. Initial directional deviation was the
angular difference between the direction of a vector going from the hand
position at movement onset to the target and one from the origin to the
hand position 150 ms after movement onset. Path curvature was the
mean perpendicular distance along the path to a straight line that con-
nected the origin to the target from movement onset to trial end. Initial
deviation and path curvature were also assessed using the perpendicular
distance measured at 150 ms and the maximal value along the trajectory.
All measures yielded similar results. Spatial error was the perpendicular
distance between the target’s center and the hand position at trial end.
Other behavioral parameters were also evaluated (see supplemental Ta-
ble 1, available at www.jneurosci.org as supplemental material). For fur-
ther details, see Arce et al. (2009).

Neuronal analysis. Cell activity was evaluated from the go signal to 600
ms afterward. The dataset included cells based upon their stable isolation,
an average firing rate of �1 Hz, and at least five successful trials per
direction in the prelearning and postlearning blocks separately. We con-
structed separate directional tuning curves for prelearning and postle-
arning blocks using the target directions and calculated each cell’s PD
using the vector method (Batschelet, 1981). Only cells with significant

directional tuning (bootstrap technique, p �
0.05) were included in this analysis. For each
directionally tuned cell, we computed a nor-
malized PD (nPD) as the angular distance be-
tween the cell’s PD and the learned target
direction (LD) and was signed positive or neg-
ative (�/�) depending on the direction of the
force field. Positive denotes nPDs in the direc-
tion of the force field, while negative denotes
nPDs in the opposing direction. To pool data
across force field directions, we flipped the PD
distance for the counterclockwise force field.
We then subdivided the population of cells ac-
cording to their nPDs: (1) near-LD (LD, �45
to 45°), (2) counter-field (CF, �135 to �46°),
(3) with-field (WF, 46° to 135°), and (4) far-LD
(�136 to �180° and 136 to 180°).

For each cell, we compared the discharge
rates during the prelearning, learning (early
and late phases), and postlearning reaches to
the LD. Differences were assessed using one-
way ANOVA with post hoc Tukey–Kramer cor-
rection for multiple comparisons ( p � 0.05).

For cells that showed significant differences in discharge rates between
the prelearning null field reaches and force-field reaches (here referred to
as “force field-modulated cells”), we calculated a modulation index as
follows:

	Fk � Nk
/	Fk � Nk
, (1)

where Fk and Nk are the mean discharge rates of a single-unit k in field
trials and null-field trials of the LD, respectively. The index values range
between �1 and 1, and positive values denote increased firing in field
trials. The average index value corresponds to a geometric mean that is
less influenced by large values. The modulation index was calculated
separately for the early (first 20 successful trials) and late (successful trials
61 to 80) phases of adaptation.

To test whether the changes in firing rate during adaptation depended
on the cells’ nPD, we fitted the response of the population of force field-
modulated cells to a cosine model. The nPDs were binned into eight
ranges (�180 to �136°, �135 to �91°, �90 to �46°, �45 to 0°, 0 to 45°,
46 to 90°, 91 to 135°, 136 to 180°). The population modulation index per
nPD range was obtained by averaging across the modulation index values
of cells whose nPDs fall within a range. The model relates the population
modulation index to the normalized PD as follows:

PI	ri,pj
 � a � b * cos	�	ri
 � PDpop
, (2)

where PI(ri,pj)
is the population modulation index per nPD range ri

(where i � 1 to 8) and per adaptation phase pj (where j � 1 to 2), �(ri,pj)

are the angles corresponding to the center of the nPD range (�157.5,
�112.5, �67.5, �22.5, 22.5, 67.5, 112.5, 157.5). PDpop is the population
preferred direction, which indicates the nPD of maximal modulation
index, a is the offset, and b is the amplitude. To obtain 95% confidence
intervals for the R 2 of the cosine fit, we used the bootstrap technique
(1000 repeats). By taking the population modulation index per nPD
range, we considered primarily the variability of the mean responses and
not the variability of each neuron with respect to the mean. However, to
ensure that the dependence in nPD did not depend on the binning pro-
cedure, we also evaluated the cosine fit by taking the modulation index
and nPD of each cell instead of the population modulation index per
nPD range. We also evaluated whether the cosine model best described
this relation. For these, we used stepwise multiple regressions (Matlab
built-in software) with higher harmonics as additional regressors. Signif-
icance was obtained using F test on the regression analysis.

To compare the tuning curves of prelearning and learning blocks, we
estimated the directional tuning curves of cosine-tuned units during the
adaptation block. To do this, we obtained the cell’s predicted firing rates
for field reaches to all eight directions based on the coefficients of the
cosine fit on the observed population response during the late phase of

Figure 2. Behavioral task. A, B, Trial flow in force field with visual feedback (FFv) (A) and without (FFnv) (B). A, With VFB, the
cursor is seen throughout the movement. B, Without VFB, cursor disappears at target onset and appears only at trial end.
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adaptation. Here, we made the following assumptions: (1) the single unit
is cosine-tuned to the target directions; (2) the prelearning directional
tuning curves of single units remain the same during the learning block;
and (3) during the late phase of adaptation, the actual hand movement
direction approximates the learned target direction. We first calculated
the predicted population modulation index for target direction Mi

(where i � 1 to 8 and M � 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) for
each feedback condition. We then calculated the adjusted predicted
modulation index Îa(k,MI)

for a single-unit k at target direction Mi by
multiplying the predicted population modulation index at target direc-
tion Mi (Îp,Mi

) by the ratio between the single-unit’s observed modula-
tion index at the LD [I(k,LD)] and its predicted population modulation
index at the LD (ÎpLD). This makes the predicted modulation index of
each single-unit to be proportional to its observed response at the LD:

Îa	k,Mi
 � ÎpMi
* 	I	k,LD

/ ÎpLD). (3)

The predicted modulation index indicates the expected magnitude of
decrease/increase in the single unit’s firing rate. Given the single-unit’s
firing rates in the prelearning block and its predicted modulation
index for force field, we derived the single unit’s predicted force-field
firing rate F̂Mi

for direction Mi. Equation 4 was algebraically derived
from Equation 1:

F̂Mi
�

NMi
* 	 ÎaMi

� 1


1 � Îa	Mi


, (4)

where NMi
is the observed prelearning rate for direction Mi. Finally, we

estimated the cell’s tuning curve based on the predicted force-field firing
rates and compared it to the tuning curve based on the observed pre-
learning rates.

We calculated the population vector Pt for the trial block t correspond-
ing to prelearning and learning blocks as follows:

Pt � �
k�1

N

w	k,t
 Ck, (5)

where Ck is the normalized preferred direction (a two-dimensional unit
vector) of neuron k in the population of cells N in the vision (N � 85
cells) or nonvision (N � 90 cells) conditions, and w(k,t) is a weighting
function calculated as follows:

w(k,t) � 	d	k,t
 � Dk
/Rk, (6)

where d(k,t) is the neuron’s average firing rate for reaches to the learned
direction for trial block t, Dk is the neuron’s average firing rate across all
prelearning null-field trials and target directions, and Rk is the half-range
for the eight directions (Georgopoulos et al., 1988). Assuming that the
directional tuning of cells did not change, we used the weighting function
of the prelearning dataset when calculating the population vector for the
learning block. Cells were included in this analysis if: (1) R 2

k � 0.70, (2)
Dk � 5 Hz, and (3) Rk � 3 Hz. We tested whether the sample population
per feedback condition had: (1) symmetrical tuning around the PD, (2)
PD distribution that did not show nonuniformity (Raleigh test p � 0.25),
and (3) amplitude and offset that were uncorrelated with PD (Pearson’s
correlation coefficient, p � 0.10). The bootstrap technique (5000 repeat
samples) was used to test whether the estimated PV length resulted from
random activity and to compare PVs between feedback conditions. Be-
fore pooling data for both monkeys together, we performed all analyses
separately for each monkey to ensure that results were similar and to
verify that differences found when using the pooled data were not due to
sampling bias.

EMG recording and analysis. We obtained 32 samples of surface EMGs
(bipolar electrodes, Motion Lab Systems) from the anterior and middle
deltoids, biceps brachii, and triceps brachii. The EMG traces were band-
pass filtered (0.005–3 kHz) and sampled at 10 kHz. EMG traces were
rectified and integrated from 0.25 s before the go signal to 0.75 s after. We
compared the change in muscle activation from prelearning to learning
blocks by calculating the modulation index as described above. To exam-
ine coupling between adaptive modulation and directional tuning, we
included only those muscles with significant directional tuning (boot-

strap technique, p � 0.01) and whose mean modulation index of the late
40 trials was significantly different from zero (t test, p � 0.05). As in the
neuronal analysis, muscles were grouped according to the distance of
their PD from the LD. Mean modulation index values were compared
between feedback conditions using t test ( p � 0.01).

Results
Monkeys did three blocks of reaching movements: prelearning
null-field reaches to eight directions, force-field reaches to one
direction, and postlearning null-field reaches to eight directions.
All reaching movements were either with or without VFB of the
cursor, which instantaneously tracked the hand position. With
VFB, monkeys always saw the cursor, whereas without VFB, the
cursor only provided feedback of the hand position at trial end
(Fig. 2).

Behavioral findings
During the first encounter with the velocity-dependent force
field, monkeys missed the target as the hand was pushed by the
force field. With practice, they learned to compensate for the
perturbations (Fig. 1C, red vs black) as indicated by the improved
success rates (supplemental Table 1, available at www.jneurosci.
org as supplemental material) along with reductions in devia-
tions in trajectory (Fig. 3) (ANOVA p � 0.0001) and endpoint
accuracy (FFnv: p � 0.01). As we previously found in humans
(Arce et al., 2009), trajectories were significantly more curved
without VFB than with it (Fig. 3E) (ANOVA p � 0.001). Never-
theless, the progressive reduction in the initial directional devia-
tion both with and without VFB suggests that adaptation involves
feed-forward changes and not merely reliance on online feedback
corrections. It further suggests that the monkeys have learned a
new motor plan.

Learning was confirmed by the emergence of behavioral after-
effects in both feedback conditions (Fig. 1C,D). After-effects, im-
plicated as a signature of new internal models (Shadmehr and
Mussa-Ivaldi, 1994), were apparent in the opposite directional
deviations in catch trials, which were the null-field trials that were
randomly interspersed throughout the learning block. This im-
plies that predicting the novel forces, the monkeys modified their
motor commands in a new intended direction to compensate for
the perturbation. The directional after-effects indicated the di-
rection that compensates for the perturbation. Alternatively,
monkeys might have used strategies other than a change in the
motor command; however, other results showed that this was
unlikely (see supplemental information, available at www.
jneurosci.org as supplemental material).

Neuronal findings
We analyzed the movement-related activity of 685 cells in PM
and M1 cortices. Over 78% of the cells were directionally tuned
(bootstrap p � 0.05), with similar proportions across feedback
conditions (binomial test p � 0.10, FFv � 284/344, FFnv � 252/
341). Tests on non-uniformity of the distribution of PDs in the
prelearning block for each feedback condition were found non-
significant (Raleigh test, p � 0.10).

Movement-related responses of PM and M1 neurons during
adaptation to force field were found to be similar, consistent with
previous studies (Li et al., 2001; Xiao et al., 2005). Therefore, we
pooled together the results from both areas (supplemental Fig. 1
and supplemental Table 2, available at www.jneurosci.org as sup-
plemental material). Of the directionally tuned cells, the follow-
ing was found: (1) 45% (240/536) showed significant changes in
firing during perturbed reaches relative to prelearning null-field
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reaches to the same direction; (2) 25% changed activity from
prelearning to postlearning blocks; and (3) 30% remained un-
changed in both learning and postlearning blocks (ANOVA, p �
0.05; post hoc for multiple comparisons, p � 0.05). Modulation of
firing rates during adaptation also occurred in nondirectionally
tuned cells (28%).

The proportions of cells that modified their discharge during
adaptation (i.e., force field-modulated cells) were similar with or
without VFB (FFv � 125 (44%), FFnv � 115 (46%), binomial
test p � 0.10). Discharge modulation occurred early or late in
adaptation (159 and 183 cells, respectively) or persisted through-
out the learning block (102 cells). Of the total population of force
field modulated cells, 29% retained the adaptive changes in the
postlearning null-field block (ANOVA, p � 0.05).

Single neuron’s activity depends on PD distance from the
learned direction
Examples of three classes of directionally tuned cells that showed
adaptive modulation are shown in Figure 4. Compared with pre-
learning reaches to the LD, the movement-related activity of the
cell in Figure 4A increased during field reaches (ANOVA, p �
0.001). The cell’s PD (0°) was in the direction that countered the
perturbation and was orthogonal to the LD at 90°. Thus, the
heightened activity of the cell during movement toward LD re-
flects an increased contribution to the population directional sig-
nal (counter-field) (Fig. 1B). During the same recording session,
another cell with PD (173°) along the direction of the perturba-
tion (with-field) (Fig. 1B) decreased its activity (Fig. 4B)
(ANOVA p � 0.001). Similarly, a cell whose PD was near the LD

(88°) decreased its firing during the perturbed reaches (Fig. 4C)
(ANOVA p � 0.001). This suggests that the cells in Figure 4, B
and C, reduced their contribution to the population directional
signal during the perturbation. In the postlearning block, activity
of these cells at the LD returned to prelearning level (orange
perievent time histogram), suggesting that the modulation in
perturbed reaches were force-field specific. As mentioned above,
other cells did retain the increased/decreased activity even after
the cessation of the perturbation, as monkeys returned to per-
forming null-field reaches.

To measure the differences between firing rates in null-field
and field reaches to the same direction, we calculated an index of
modulation for each cell. We then plotted each cell’s modulation
index as a function of the angular distance of its PD from the LD,
referred to as the normalized PD (supplemental Fig. 3A, available
at www.jneurosci.org as supplemental material). We found that
the firing rates of single cells either increased or decreased de-
pending on the cells’ nPD. In both feedback conditions, positive
modulations were more frequent in counter-field cells whose
nPDs ranged from �46° to �135° (Fig. 5, black circles) (binomial
test, p � 0.001). By contrast, negative modulations were associ-
ated with with-field cells whose nPDs ranged from 46 to 135°
(Fig. 5, gray circles) ( p � 0.001).

Modulations of firing rates of the population follow a
cosine model
To test whether the changes in firing rates depended on the cells’
normalized PDs, the response of the population of force field-
modulated cells was fitted to a cosine model. We first binned the

Figure 3. Behavioral performance during adaptations to force field. A, Average hand paths during prelearning null (black) and field reaches with and without VFB [averaged trajectories of the
first (dashed line) and last 10 (solid line) field trials]. Data from all recording days. B, Average hand paths across field trials (10 trials/bin). The x-axis is enlarged to show lateral path deviations.
C, Velocity profiles of null (black) and field (colored) reaches averaged across trials (five successful trials/bin). D–F, Means and �1 SE of initial directional deviation (D), path curvature (E), and spatial
errors (F ) during adaptation (10 trials/bin). Isolated points and colored lines denote baseline values of the same directions used in the learning blocks. Dashed black lines in D and F denote error level
that achieves reward. While spatial error was sufficiently reduced to achieve success, trajectory errors were not fully compensated without VFB.

Arce et al. • Adaptive Modulation of Motor Cortical Activity J. Neurosci., April 14, 2010 • 30(15):5415–5425 • 5419



nPDs into eight ranges (�180 to �136°,
�135 to �91°, �90 to �46°, �45 to 0°, 0
to 45°, . . ., 136 to 180°). We then obtained
the population modulation index per
nPD range by averaging across the modu-
lation index values of cells whose nPDs fall
within a range. This was done separately
for each adaptation phase and feedback
condition. Figure 6A relates the nPD to
the population modulation index. For all
conditions tested, we found a significant
fit of the population data to the cosine
model (F test p � 0.01); R 2 values were
high (early and late phases were 0.91 �
0.06 and 0.88 � 0.09 for FFv, respectively,
and 0.93 � 0.07 and 0.95 � 0.04 for FFnv,
respectively) (Fig. 6A). The cosine model
therefore explains the graded adaptive re-
sponse according to the normalized PDs;
the adaptive response is maximal at nPDs
that lie on the steepest slope of the tuning
curve (�90°) and minimal at nPDs where
the tuning curve is flat (�0°). Note that
while the peaks of the fit to cosine de-
picted in Figure 6A are shifted from 0°,
they do not indicate PD shifts of the force
field-modulated cells. Rather, they signify
that the peak positive modulation during
adaptation corresponds to the subpopula-
tion of CF cells. Note also that the peak
negative modulation in the subpopula-
tion of WF cells was of comparable mag-
nitude to the modulation of CF cells.
Thus, the cosine-like profile indicated
that compensation for the perturbing force was not accom-
plished by counter-field cells alone but involved cells with diverse
PDs. Cells whose output countered the force field increased their
firing in concert with decreased firing of other cells whose output
was in the force-field direction.

This adaptive modulation profile was even observed at the
level of single recording days that yielded 15–20 simultaneously
recorded cells that were modulated by force field (Fig. 6B). We
also found that R 2 values were comparable under both feedback
conditions (bootstrap, p � 0.10), suggesting that the rate modu-
lation was not feedback driven. In addition, we examined the
early epoch of the trial and obtained similar modulation profiles
when neural activity was examined 300 ms before movement
onset to 200 ms after it and before reaching peak velocity (early
and late phases were 0.72 and 0.97, respectively, for FFv and 0.75
and 0.88, respectively, for FFnv) (Fig. 6C). As this time window is
unaffected by sensory feedback, this suggests that the observed
rate modulation is most likely feed forward.

When the same analysis was done without binning the nPDs,
we obtained lower R 2 data compared with the binned data due to
intercell variability (R 2 values for early and late phases were 0.21
and 0.27 for FFv, respectively, and 0.47 and 0.42 for FFnv, respec-
tively). Nevertheless, these latter R 2 values were all significant
(bootstrap, p � 0.001). To assess whether the cosine model best
describes this relation, we performed stepwise regression using
higher harmonics as regression terms. For early adaptation, re-
sults were significant only for the first harmonic ( p � 0.00001).
For late adaptation, regression was significant for the first
harmonic ( p � 0.00001) and was only improved by the fifth

harmonic from R 2 of 0.42 to 0.45 for FFnv (root mean square
error from 0.314 to 0.307) and R 2 of 0.27 to 0.31 for FFv (root
mean square error from 0.33 to 0.32). Overall, the results
indicate that the cosine model accounts for the largest portion
of the variability in the data whether the normalized PDs are
binned or not.

Since the adaptive modulation of the population fits well to a
cosine, a cosine-tuned cell might exhibit a similar response pro-
file. Using the parameters of the cosine fit on the population’s
response, we predicted a single unit’s adaptive response for the
untested directions (see Materials and Methods). Figure 7A illus-
trates the observed prelearning firing rates and the predicted fir-
ing rates in force field for three representative cells. The predicted
discharges showed graded increase/decrease from prelearning ac-
tivity across all eight directions. For example, in Figure 7A1 the
discharges of the CF cell were predicted to increase in the direc-
tions near the LD (i.e., 45, 135, and 180°) and to decrease in the
remaining directions. Since this procedure was analogous to an
eight-target learning, we verified our predictions against the re-
ported findings during force field learning in eight directions
(Gandolfo et al., 2000; Li et al., 2001). We found that the changes
in firing rates of a cell described by Gandolfo et al. (2000) also
followed a cosine model (Fig. 7B). We then computed the PD of
the cells based on the predicted discharges and found that the new
PDs were shifted in the direction of the force field (Fig. 7A, com-
pare green vs blue arrows), consistent to that reported by Li et al.,
(2001). Thus, our findings suggest that PD-dependent adaptive
modulation explains how the prelearning PDs of single units
shifted in the direction of the force field during adaptation.

Figure 4. Changes of single unit’s activity during adaptations to force field. Perievent time histograms (PETH and �1 SE),
smoothed by a 50 ms-Gaussian kernel, show mean discharge of M1 neurons during prelearning (green) and postlearning (orange)
reaches to eight directions and during early (red) and late (black) field reaches to 90°. PETHs are aligned at movement onset
(dashed vertical line) for counter field (A), with-field (B), and near-LD (C) cells. During adaptation, activity around movement onset
increased in the cell shown in A but decreased in the cells shown in B and C. See supplemental Figure 2 (available at
www.jneurosci.org as supplemental material) for the raster plots.
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Reorganization of cells depended on available
sensory feedback
While the cosine-like adaptive modulation was comparable with
and without VFB, the population distribution of modulated cells
differed between feedback conditions. Figure 8A shows that the
peaks of the two distributions were different; although the pro-
portion of counter-field cells was significantly greater with VFB
(binomial test, p � 0.01), near-LD cells were significantly greater
without VFB ( p � 0.015). This suggests different reorganiza-
tion of cells in these two conditions; when VFB was available
and trajectory errors could be used to drive adaptation, more
counter-field cells were modulated. By contrast, more near-LD cells
were modulated when visual inputs provided only the final
hand position (no VFB), and mainly endpoint errors could
drive adaptation.

We then examined how the different population distributions
affected the population directional signal. We thus calculated the
predicted population vector (PV) during force field based on the
prelearning null-field tuning curves of cells, assuming that cells’
directional tuning did not change. For this analysis, the number
of cells that were included, based upon the set criteria (see Mate-
rials and Methods), were as follows: with-VFB, 85 cells, of which
61% were modulated; without-VFB, 90 cells, of which 62% were
modulated. Unlike the PVs in unloaded reaches [PV and 95%
confidence intervals: with VFB, 1.6° (1.1°, 2.1°); without VFB, 5°
(4°, 6°)], the PVs in force field no longer pointed in the direction
of hand movement but were instead deviated away from the LD
and were opposite the force field direction [FFv: �64° (�65°,
�63°); FFnv, �43.6° (�44.5°, �42.8°); bootstrap, p � 0.0001]
(Fig. 8B). The PVs mirrored the directional after-effects observed
in the catch trials, suggesting that PVs pointed toward the in-
tended direction that compensated for the perturbing force.
Thus, the vector sum of PV plus force field yielded the hand
motion toward the LD. This was true for both feedback condi-
tions. However, the PV was found significantly more deviated in
the counter-force direction with VFB than without VFB (boot-
strap, p � 0.002) (Fig. 8C). Furthermore, separate PV analyses on
force field-modulated cells showed significant differences across
feedback (bootstrap, p � 0.001). By contrast, the PVs did not
deviate significantly from the LD for the subpopulation that did
not modify their firing rates (bootstrap, p � 0.08). The results

may explain the different trajectory shapes found with and
without VFB. To further verify that the difference was not due
to sampling bias (see “Neuronal analysis” in Materials and
Methods), we compared the cosine-fit parameters of single
cells in vision versus nonvision and found that they were not
significantly different (amplitude: t-Test, p � 0.10; base: t test,
p � 0.10; PD: Wheeler’s Test, p � 0.10).

Since PVs may differ between M1 and PM areas (Schwartz et
al., 2004), we calculated the PVs excluding the PM cells (FFv � 21
cells; FFnv � 9 cells). Similar results were obtained, indicating
that directional signals from the PM did not account for the
difference [FFv � �63° (�64°, �62°); FFnv � �45° (�48°,
�42°); bootstrap, p � 0.01]. This suggests that the different re-
organization of force field-modulated cells underlies the different
population directional signals generated with or without visual
feedback. Indeed, PVs calculated trial-by-trial showed that PVs
evolved in time to point to the direction that compensates for the
force field. However, PVs differed significantly between feedback
conditions and throughout the learning block (t test on PV dif-
ferences, p � 0.0001) (Fig. 8D).

To verify the PV analyses, we determined the target directions
that best explained the firing rates of a population of cells using
maximum likelihood estimation (Chase et al., 2009). We per-

Figure 6. Adaptive modulation follows a cosine. A, Population modulation index ( y-axis) as
a function of normalized PDs (x-axis) is shown separately for early and late phases of adaptation
and for each feedback condition. Each point denotes the mean modulation index across cells
within a range of nPDs: near-LD (�45°), counter-field (�46 to �135°), with-field (46 to
135°), and far-LD (136 to 180°, �136 to �180°). Positive values indicate increased firing
rates in field reaches. Population modulation index showed a good fit to cosine (R 2 for early and
late phases were � 0.91 � 0.06 and 0.88 � 0.09 for FFv, respectively, and 0.93 � 0.07 and
0.95 � 0.04 for FFnv, reespectively). Modulation index did not differ between early and late
phases (paired Wilcoxon test, p � 0.10) nor between feedback conditions (Mann–Whitney,
p � 0.05). The PDs (late phase: FFv � �100°; FFnv � �109°) and the amplitudes (late
phase, FFv � 0.28; FFnv � 0.36) of the cosine fit were not significantly different with and
without VFB (bootstrap, p � 0.10). Error bars are �1 SE. B, As in A, but for a single-day
recording where 15–20 cells modulated by force field were simultaneously recorded. C, Popu-
lation modulation indexes corresponding to neural activity from 300 ms before movement
onset to 200 ms after. Shown for late force field trials of each feedback condition. The population
modulation index fit the cosine model well (R 2 for FFv � 0.97; R 2 FFnv � 0.88).

Figure 5. Modulation of neuronal activity depends on the cells’ PD distance from the learned
direction. Sample proportion of cells ( y-axis) according to the cells’ normalized PD (x-axis) is
shown for each feedback condition. The population was divided into positively (black) and
negatively (gray) modulated cells. The nPDs, which indicate the distance of the cells’ PD from
the LD, were binned into eight ranges. Negative nPDs denote nPDs opposite to the force-field
direction. With VFB, cells with positive modulation were more frequent than negative modu-
lation (binomial test; p � 0.05), while without VFB, no such difference was found ( p � 0.10).
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formed this analysis for each recording
session separately using all directionally
tuned cells. We obtained consistent results;
the population directional signal generally
pointed away from the LD and opposite to
the force-field direction (�43.1° � 5.6°).
Lastly, we tested whether the change in
the population directional signal might
happen in the absence of force field (150
ms from target onset to 600 ms after)
and found that it did not deviate from
the LD (�8.3° � 4.5°).

Muscle activity during force
field adaptation
Muscle EMG activity in field reaches
generally increased relative to that in
unperturbed reaches to the same target di-
rection (Fig. 9A). The modulation of
EMG activity also depended on the dis-
tance from the PD to the LD (Fig. 9B).
Increased activation was mainly observed
in muscles with counter-field PD, while all
other muscles did not show significant
modulation (although with R 2 � 0.79 for
both feedback conditions). This result in-
dicated that changes in the muscles’ activ-
ity were evoked mainly in the muscles that
can contribute to the direction of force
compensation. This differed from the
neuronal responses that showed compa-
rable magnitudes in the positive and neg-
ative modulation of CF and WF cells,
respectively (Fig. 6A). While the direction
of PV points to a new direction away from the LD, the final
activation of muscles together with the perturbing force yields
the hand motion toward the target. Therefore, the results can-
not support a simple relation between the population neuro-
nal modulation and muscle activity.

We also found that force field responses of the same muscles
significantly differed between feedback conditions. For example,
activation of the middle deltoid in perturbed reaches to 90° was
significantly higher with VFB than without (t test, p � 0.01) (Fig.
9A). Simultaneously, the activity of the anterior deltoid de-
creased, thereby enhancing the compensation by the middle del-
toid. This occurred with VFB but not without it (t test, p � 0.02).
While the relationships between muscle activity to endpoint
force, and endpoint force to hand motion are not trivial, the
differences may partly explain the different trajectories found
with and without VFB.

Discussion
Like humans (Arce et al., 2009), monkeys adopted different
strategies when coping with force fields under different feed-
back contexts. Along with the observed changes in behavioral
performance, we found that motor cortical cells rapidly modu-
lated their firing rates to predict the novel force properties and
generated a coherent population directional signal that incorpo-
rated the feedback context. This new pattern of neuronal activity,
encompassing cell ensembles with wide-ranging PDs, depended
on the cells’ contribution to a new computation of movement
direction that compensated for the perturbation. Sensory feed-
back influenced the profile of the population of cells recruited for

the task, but not the combined activity pattern. Finally, the emer-
gence of directional after-effects during catch trials suggests that
the combined adaptive activation of cell ensembles underlie the
generation of new internal models with which monkeys antici-
pate the force field and modify the motor commands.

Combined adaptive modulation of cell ensembles
Cell ensembles with diverse PDs modulated their firing rates de-
pending on the distance of the PD from the LD to generate a
compensatory directional signal. Thus, cells with PD along the
direction that counters the perturbation increase their contribu-
tion to the PV. Meanwhile, other cell subpopulations reduce their
contribution to the PV when the PD lies near the LD or where the
dynamic load assists the movement. Our results differed from
previous studies that reported changes in activity occurring
mostly along the cells’ PD during loaded-reaching (Kalaska et al.,
1989; Gribble and Scott, 2002) or in cells with PD near the learned
movement direction during visuospatial perturbations (Paz et al.,
2003).

The underlying computations at the population and single-
unit levels consistently followed a simple rule: the modulations of
firing rates follow a cosine model. Furthermore, the predictions
derived from the cosine-like adaptive modulation provided an
explanation for the PD shifts reported during eight target adap-
tation to force field (Li et al., 2001). The PD shifts result from the
rate modulations that signal a change in the intended movement
direction under force field and may not necessarily reflect
changes in the cells’ directional tuning properties during adapta-
tion. These findings were made evident when learning was local,

Figure 7. Predicted firing rates in force field based upon the cosine model. A, Polar plots of single neurons’ prelearning firing
rates (green) and predicted force-field firing rates (red/blue) for FFv counter-field (A1), FFv with-field (A2), and FFnv counter-field
(A3). Observed force-field firing rate at the LD (90° in all cases) is also shown (orange). Note that the PDs of the predicted rates
(red/blue arrows) are significantly shifted from the PD in prelearning (green arrows) in the direction of the force field (orange
arrow). That is, PD shifts clockwise for clockwise force field (A1 and A2) and counterclockwise for counterclockwise force field (A3).
B, Left, A single cell’s average firing rates in baseline (green) versus force field (orange) learned in all eight directions. Reproduced
from Gandolfo et al. (2000), their Fig. 3b. (Copyright © 2000 National Academy of Sciences, U.S.A.). Right, Modulation index
calculated for each direction show a good cosine fit (R 2 � 0.85), consistent with our model predictions.

5422 • J. Neurosci., April 14, 2010 • 30(15):5415–5425 Arce et al. • Adaptive Modulation of Motor Cortical Activity



allowing evaluation of cells’ activity depending on PD. Such re-
lation could not be assessed when load was applied for all direc-
tions (Kalaska and Crammond, 1992; Gandolfo et al., 2000; Li et
al., 2001; Gribble and Scott, 2002). Since reach errors experienced
in one trial affected errors in successive trials to other directions

(Thoroughman and Shadmehr, 2000; Donchin et al., 2003), neu-
rons might change their activity for more than one direction.

The combined modulation of cell ensembles suggests forma-
tion of a representation of a novel compensatory strategy during
adaptation. Indeed, their combined activation yielded a new pop-
ulation directional signal that was dissociated from the actual
hand movement direction and mirrored the directional after-
effects (Fig. 1D). Alternatively, the rate modulation may reflect
control signals of multiple movement features by single units or
distinct subpopulations; the activity of cells that are cosine tuned
to both movement and force might change to some intermediate
value that is also cosine tuned. In any case, neurons modified
their activity to accommodate the changing dynamics of the
environment.

How do neurons carry out the computations of desired
motor output?
The directional after-effects in catch-trials (Fig. 1,C,D) signify
that the computation of reaches to the targets has changed, gen-
erating a new mapping of limb states to external forces. We sug-
gest that the PD-dependent modulation of firing rates underlies
the change in the internal model of the movement dynamics.
What does this modulation represent? One possibility is that the
intended reach direction remains to be the LD, and changes in
neuronal activity could reflect changes of an inverse dynamics
model. This would represent changes in muscular activation pat-

Figure 8. Population distributions of modulated cells differ between feedback contexts.
A, Population distribution of cells (n � 342) according to their nPDs and feedback condition.
The FFv distribution is negatively skewed relative to the LD (�0.07), while the FFnv distribution
was positively skewed (0.07). Skewness was calculated as follows: S � E(x � �) 3/� 3 where
� is the mean of x, � is the standard deviation of x, and E(t) is the expected value of t. Error bars
are �1 SE. Brackets correspond to significant comparisons between nPD ranges within (col-
ored) and between feedback (black) conditions (*p � 0.01; **p � 0.001). B, Population
vectors during force-field adaptations (green) did not point to the hand movement direction. In
both feedback conditions, they pointed toward the compensatory direction [FFv � �64.2°
(�65.3°, �63.2°); FFnv � �43.6° (�44.5°, �42.8°)]. Similar results were obtained when
PVs were calculated separately for each monkey (a, FFv��51.7°; FFnv��33.3°; bootstrap,
p�0.03; B, FFv��72.0°; FFnv��46.0°; bootstrap, p�0.003). PVs were calculated using
mean firing rates of late force-field trials (41– 80). C, Histograms of the direction and magni-
tude of PVs shown in B, obtained from resampling using the bootstrap technique, show signif-
icant differences in direction but not in magnitude. D, PV direction calculated trial-by-trial
(dotted line, raw data; solid line, smoothed data) during adaptations to force fields with and
without VFB.

Figure 9. Forelimb EMG responses to force field. A, Average normalized EMG activity of
representative shoulder and elbow muscles that showed significant change of activity from
prelearning to late field reaches to specified targets. Activity was aligned at movement onset
(MO). These muscles also showed significantly different activities between feedback conditions.
B, Mean modulation index of EMG activity as a function of the distance of muscle PD from LD and
cosine fit for each feedback condition. Error bars: �1 SE, p values are shown for significant
comparisons between feedback conditions.
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terns that accommodate the dynamics of force changes inherent
in viscous force fields. Another possibility is that the neuronal
population computes a new intended reach direction away from
the LD without detailed computation of real-time dynamics
of the hand. Predicting the hand’s displacement by the force field,
the neuronal population specifies a new intended target direction
such that with the force field, the hand reaches the LD. Thus, the
rate modulation could reflect reaiming, as suggested for visuo-
motor rotation (Jarosiewicz et al., 2008). Indeed, the population
directional signal in field reaches pointed away from the LD (Fig.
8B) and reflected the intended compensatory direction. This was
the sum of the weighted activity of the directionally tuned cells
that were modulated by force field and those that were not. Al-
though we cannot conclusively determine which aspect of the
internal model has changed, reaiming may provide the neuronal
population a simpler computation of the desired motor output.

A neuronal basis for generalization patterns in
force-field learning
The notion of basis function was first proposed to underlie object
recognition in the visual cortex (Poggio, 1990) and spatial trans-
formations in the parietal cortex (Pouget and Snyder, 2000;
Pouget et al., 2000; Deneve and Pouget, 2003). It was later pro-
posed to underlie sensorimotor adaptations and generalization
patterns in the motor cortex (Poggio and Bizzi, 2004; Paz et al.,
2004). Here, we suggest that the same principle holds for the
directionally tuned cells when computing the motor output dur-
ing force-field adaptation as a linear combination of their
weighted activities. Thus, these neurons may serve as “upper mo-
tor neuronal primitives” that activate the spinal motor primitives
to generate muscle synergies. A similar principle of vector sum-
mation was found in the spinal cord as simultaneous stimulation
of two sites led to a linear combination of the endpoint forces
generated by each site separately (Bizzi et al., 1991; Mussa-Ivaldi
et al., 1994). We also found PD-dependent responses of muscles
here, suggesting that the population directional signal could be
translated downstream into specific muscle activation patterns
using the same principle. Although this is a clear parallel between
neuronal and muscle activities, important differences were also
found. Furthermore, the activity of �50% of the directionally
tuned cells did not correlate with changes in the muscle activity.

Human psychophysical studies have sought to infer the neu-
ronal computations involved in force-field adaptation from the
patterns of generalization. Thus, it has been suggested that the
neural elements that underlie such learning have wide tuning
curves that encode hand velocity bimodally and are found in the
cerebellum (Shadmehr et al., 2005). However, evidence is yet to
be found. Besides, more recent findings (Pasalar et al., 2006) do
not give support to the cerebellum as the site for inverse dynamics
of the arm as suggested previously (Kawato, 1999). Our find-
ings suggest that for the motor cortex, the shape of the gener-
alization function arises from the cosine-tuned modulation of
different subpopulations of directionally tuned neurons. The
generalization patterns that we predict for force-field learning
(see supplemental Discussion, available at www.jneurosci.org
as supplemental material) conform to the reported features of
generalization in humans (Gandolfo et al., 1996; Shadmehr and
Brashers-Krug, 1997; Shadmehr and Moussavi, 2000; Malfait et
al., 2002; Donchin et al., 2003; Criscimagna-Hemminger et al.,
2003; Caithness et al., 2004; Mattar and Ostry, 2007). Taken to-
gether, the findings suggest that the new activity pattern of the
same basis functions could underlie learning and generalization.
This further implies that cells’ directional tuning properties do

not necessarily change during adaptation, in contrast to previous
reports (Li et al., 2001).

Integration of sensory feedback in the motor output
Understanding how feedback signals affect the motor output has
important consequences for motor control (Jordan and Rumelhart,
1992; Ghez et al., 1995; Todorov, 2004), and in particular for the
development of brain-machine interfaces (Suminski et al., 2009).
We have previously suggested that humans use different adaptive
strategies depending on the available sensory feedback (Arce et
al., 2009). Here, the monkeys behaved similarly, yielding differ-
ent trajectory shapes with and without VFB. While feedback did
not influence pattern of combined activity of cell ensembles, it
affected the profile of the population of cells recruited for the
task. This is consistent with the notion that sensory stimuli do not
determine the firing patterns but rather modulate them (Llinas
and Pare, 1991). The peaks in the population profiles of force
field-modulated cells varied according to the expected sensory
outcomes relating to either trajectory or final hand position.
When trajectory could be assessed easily with VFB, counter-field
cells outnumbered all other cell ensembles. Without VFB, near-LD
cells were recruited the most, suggesting a shift to the final hand
position as the relevant parameter that drove adaptation. Such dif-
ferent reorganization underlies the different population directional
signals generated with or without VFB, consistent with the differing
trajectory shapes (straight vs curved). Thus, without changing how
the new activity pattern is computed, the population signal can be
fine tuned by the profile of the recruited cells. This shows how the
computation of the motor output incorporates sensory feedback
and as such may imply representations of sensory state estimates
or changes of forward sensory models. Because sensory feedback
mediates trajectory corrections on-the-fly as well, adaptive re-
sponses of motor cortical neurons may show different temporal
dynamics. Thus, our conclusion is limited by the fact that firing
rates had to be averaged across a relatively wide time window.

Conclusion
Our findings provide support for changes of population signals
produced by the motor cortical neurons during force-field adap-
tation. We have shown how the motor cortex incorporates sen-
sory feedback in the generation of the desired directional signal.
The combination of the adapted activations of neuronal ensem-
bles, while keeping their directional tuning properties, may re-
flect a general principle of how the computation of motor output
is accomplished in the motor cortex.
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