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Neurobiology of Disease

Deep Brain Stimulation of the Center Median-Parafascicular
Complex of the Thalamus Has Efficient Anti-Parkinsonian
Action Associated with Widespread Cellular Responses in
the Basal Ganglia Network in a Rat Model of Parkinson’s
Disease

Loréline Jouve, Pascal Salin, Christophe Melon, and Lydia Kerkerian-Le Goff
Developmental Biology Institute of Marseille Luminy, Unité Mixte de Recherche 6216 Centre National de la Recherche Scientifique-Université de la
Méditerranée, 13288 Marseille, France

The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pfin rodents, is proposed as an interesting target for
the neurosurgical treatment of movement disorders, including Parkinson’s disease. In this study, we examined the functional impact of
subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had sig-
nificant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was
moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the
cellular level, Pf-HES partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a
marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and
preprodynorphin). Pf-HES totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the
subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike
HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated 1-3,4-
dihydroxyphenylalanine (1-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-
parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to
strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of
Pf-HFS evidenced here demonstrate that CM/Pfis an important node for modulating the pathophysiological functioning of basal ganglia

and related disorders.

Introduction

The center median—parafascicular complex (CM/Pf) of the thal-
amus, mainly represented by the Pf in rodents, differs from the
other intralaminar thalamic groups in its rich connectivity with
the basal ganglia (BG). It is the source of a major excitatory glu-
tamatergic input to the striatum (Smith et al., 2004, 2009), which
modulates large striatal neuronal populations through local pro-
cessing (Nanda et al., 2009). CM/Pf also provides projections to
all the other BG components (Van der Werf et al., 2002) and, in
turn, receives substantial innervation from the BG output struc-
tures (Sidibé et al., 2002), particularly from the internal globus
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pallidus (GPi), called the entopeduncular nucleus (EP) in ro-
dents. One of the main functions attributed to the CM/P{~BG
circuit is the process of attentional orienting and action selection
appropriate for unexpected situations (Raeva, 2006; Minamimoto et
al., 2009).

Long “forgotten” in the schemes of BG anatomo-functional
organization, CM/Pf has recently been attracting increasing in-
terest in the context of BG-related functions and disorders. In
particular, there is accumulating evidence for CM/Pf involve-
ment in Parkinson’s disease (PD). Important neurodegeneration
in CM/Pf has been reported in PD patients (Henderson et al.,
2000). In rodent PD models, neurodegeneration and complex alter-
ations of CM/Pf activity have been evidenced (Freyaldenhoven
et al., 1997; Orieux et al., 2000; Aymerich et al., 2006; Parr-
Brownlie et al., 2009; Sedaghat et al., 2009). Because extensive Pf
lesion has been shown to prevent most of the cellular alterations
associated with dopamine depletion in the rat BG network, reac-
tive changes in the activity of spared CM/Pf neurons rather than
CM/Pf neurodegeneration might contribute to the pathophysio-
logical functioning of BG in the PD state (Bacci et al., 2004). This
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hypothesis complies with casual clinical reports that had de-
signed CM/Pf as a candidate target for the neurosurgical treat-
ment of movement disorders (Caparros-Lefebvre et al., 1999;
Krauss et al., 2002). To date, we are far from a comprehensive
view of the therapeutic potential of CM/Pf surgery. Whereas
CM/Pflesion in the MPTP monkey model of PD provided no
stable benefit on the parkinsonian syndrome (Lanciego et al.,
2008), recent trials of multitarget deep brain stimulation
(DBS) in small cohorts of PD patients have described some
specific CM/Pf-mediated effects compared with current tar-
gets with excellent anti-akinetic or anti-dyskinetic action: sub-
thalamic nucleus (STN) and GPi, respectively. Efficient,
although much less potent on unified Parkinson’s disease rating
scale (UPDRS) scores and L-3,4-dihydroxyphenylalanine (L-
DOPA)-induced dyskinesias (LIDs), CM/Pf-DBS at high fre-
quency [i.e., high-frequency stimulation (HFS)] strongly relieves
tremor and is efficient on freezing (Mazzone et al., 2006; Pepe et
al.,, 2008; Stefani et al., 2009).

Here, we investigated the functional outcomes of subchronic
Pf-HFS in comparison with previous or parallel data obtained for
STN-HFS in the 6-hydroxydopamine-lesioned hemiparkinso-
nian rat model. We confirm that Pf-HFS relieves akinesia less
potently than STN but has direct anti-dyskinetic action. We
further found that Pf-HFS has a strong beneficial effect on
sensorimotor neglect and that L-DOPA might affect its anti-
parkinsonian action. Finally, we show that the impact of Pf-
HFS on BG pathophysiological functioning differs mainly from
the one of STN-HFS by its action on EP, pointing to the CM/P{~EP
connections as a key substrate for specific CM/Pf-mediated action
on movement disorders.

Materials and Methods

All experiments have been performed on male Wistar rats weighing 160 —
180 g at the time of the first surgery, and were conducted in accordance
with the European Communities Council Directive of November 24,
1986 (86/609/EEC). Naive rats without any surgery or treatment served
as controls, and animals with the dopamine lesion were divided into five
groups: (1) lesion alone without any further treatment (6-OHDA); (2)
Pf-HEFS for 6 d; (3) Pf-DBS at low frequency [i.e., low-frequency stimu-
lation (LFS; 25 Hz)] for 6 d; (4) .-DOPA + P{-HFS (HFS during the last
6 d of the 21 d L-DOPA treatment); and (5) STN-HFS for 6 d. All animals
were killed 30-37 d after the 6-OHDA lesion. Animals to be included in
the analyses were selected a posteriori based on controls of the dopamine
denervation extent and correct location of the stimulating electrode. The
numbers of animals per group were as follows: 8 controls, 10 6-OHDA,
10 Pf-HFS, 4 Pf-LFS, 8 STN-HFS, and 5 Pf-HFS + 1-DOPA.

6-OHDA lesion

Surgery was performed under Equitesin anesthesia (4 ml/kg). Animals
received a unilateral injection of 12 ug of 6-OHDA (Sigma-Aldrich)
dissolved in 6 ul of 0.9% sterile NaCl containing 0.1% ascorbic acid, at
the rate of 1 wl/min, in the left substantia nigra pars compacta. The
stereotaxic coordinates of the injection site were as follows: anteroposte-
rior +2.2 mm, lateral 2.0 mm, dorsoventral +3.3 mm, with the incisor
bar at +5.0 mm above the interaural plane, according to the rat stereo-
taxic atlas by De Groot (1959).

Electrode implantation and chronic DBS

Fifteen days after the 6-OHDA lesion, the rats to be treated by DBS were
unilaterally implanted with one bipolar electrode in the ipsilateral Pf or
STN. The material and procedure for the stimulation were the same as
previously used for STN-HFS (Oueslati et al., 2007). The stimulating
electrode was formed by two parallel platinum iridium wires insulated
with Teflon and bared at the extremity on a length of 500 wm (diameter
of each wire; insulated, 140 wm; bare, 76 um). The distance between the
two wires was ~400 wm. The electrode was implanted so that the two
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wires were placed in the anteroposterior axis and the bared part of each
wire was covering major part of the structure of interest in depth. The
stereotaxic coordinates were defined from the stereotaxic atlas of Paxinos
and Watson (1986) using the following interaural coordinates: antero-
posterior +3.75 mm (taken at equidistance of the two wires), lateral 1.0
mm, dorsoventral +4.1 mm, incisor bar at —3.3 mm for Pf and antero-
posterior +5.2 mm (taken at equidistance of the two wires), lateral 2.3
mm, and dorsoventral +2.4 mm for STN. Animals were allowed to re-
cover from surgery for 9-15 d before starting the DBS treatment. The
stimulation was delivered by a pulse generator/stimulator and a stim-
ulus isolation unit (P2MP), which gave rectangular current pulses
(monophasic). The delivered current was controlled daily using an oscil-
loscope (Hewlett Packard). DBS was applied continuously for 6 d at high
frequency (130 Hz) on freely moving rats, except in one Pf group in
which DBS was applied at the low frequency of 25 Hz. The pulse width
was set at 80 ws. Within the first minutes of HES, the effects on the animal
gross behavior of increasing progressively and briefly the stimulation
intensity from 0 to 250 uA were examined. Thereafter, the intensity was
fixed at 80 uA to avoid tissue damage with long-duration HFS. Animals
were killed immediately after turning off the stimulation.

Chronic L-DOPA treatment

Twenty days after the 6-OHDA lesion, rats of the Pf-HFS group received
chronic L-DOPA treatment for 21 d. The treatment consisted of two
injections per day (12 h interval) of 25 mg/kg .-DOPA and 12.5 mg/kg
benserazide (Sigma-Aldrich) dissolved in 0.9% NaCl. HFS of Pf was
applied all along the last 6 d of the L-DOPA treatment.

Analysis of motor behavior

Cylinder test. All groups of 6-OHDA-lesioned rats were scored for akine-
sia of the contralateral forelimb by using the cylinder test, in comparison
with control rats. In brief, they were placed in a Plexiglas cylinder and,
immediately after, videotaped for 30 min to examine the symmetry/
asymmetry of their forepaws use during their explorative behavior in this
new environment. The numbers of contacts made on the cylinder wall
during this period with the ipsilateral paw, the contralateral paw, and
with both paws (double contacts) were determined and expressed as a
percentage of the total number of contacts. In the Pf-HFS, Pf-LFS, and
STN-HFS groups, the test was performed before starting and at the end of
the stimulation period. For the L-DOPA + Pf-HEFS group, testing was
performed in the off-L-DOPA period, that is 12 h after the last injection of
L-DOPA. Data are the means = SEM of the values determined from n
animals per group.

Corridor task. Sensorimotor neglect for the side contralateral to the
lesion was also examined using the corridor task as described by Dowd et
al. (2005). The food supply of animals was restricted to 15-17 g per day
per individual to keep them at 85% of the free feeding weight. After
habituation to the corridor (10 min in the corridor with scattered sugar
pellets on the 2 d preceding the first test day, and 5 min in an empty
corridor just before the test), animals were placed at an extremity of the
corridor in which sugar pellets were available in small containers. Two
versions (alternating and adjacent) of the test have been considered: in
the alternating version, the containers were alternated along the left and
right sides of the corridor at regular intervals; in the adjacent version, the
containers were placed in pairs all along the corridor. Rats were left free to
move in the corridor for 5 min, during which they were videotaped. The
numbers of retrievals made by the rat from containers on either side were
counted, and the data were expressed as a percentage of the total number
of retrievals. Data are the means = SEM of the values determined from n
animals per group. These two tests were performed for the Pf-HFS group.
Because the results were equivalent between the two versions, only the
alternating version was used for the STN-HES group.

Abnormal involuntary movements score. The abnormal involuntary
movements (AIMs) scores were used to evaluate LIDs. We use a modified
version of the test described by Winkler et al. (2002). Animals were
videotaped for 2 h after the L-DOPA injection, and axial, forelimb, and
orolingual dyskinesias were scored from 0 to 4 for 1 min every 10 min in
this time window (11 monitoring periods from 10 to 110 min postinjec-
tion). The animals were scored after 15 days of L-DOPA treatment and, a
second time, at the end of Pf-HFS + 1-DOPA treatment (day 21).
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Morphological studies

Tissue preparation. All animals were killed by decapitation after a 36—42
d postlesion survival time. The brains were quickly removed, then frozen
in dry ice and stored at —80°C. Coronal (10 um thick) tissue sections
were cut at —20°C with a cryostat (CM3050, Leica). The sections were
then mounted on SuperFrost Plus glass slides (Fisher Scientific) and
stored at —80°C until specific treatment.

Histological control of 6-OHDA lesion and electrode placement. The loss
of DA terminals in the striatum was assessed as an index of the extent of
the DA denervation by analysis of [ *H]-mazindol binding to DA uptake
sites, as described previously (Salin et al., 2002). Briefly, brain sections
were air dried and rinsed for 5 min in 50 mm Tris buffer with 120 mm NaCl
and 5 mm KCL They were then incubated for 40 min with 15 nm [*H]-
mazindol (NEN, DuPont; specific activity, 17 Ci/mm) in 50 mm Tris buffer
containing 300 mm NaCl and 5 mm KCl added with 0.3 mm desipramine to
block the noradrenalin uptake sites. Sections were rinsed twice for 3 min in
the Tris incubation buffer and for 10 s in distilled water and were air dried.
*H-sensitive photographic film (Kodak BioMax MS Film, Sigma) were ap-
posed to the slides in x-ray cassettes and exposed at room temperature for
21 d. The levels of [ *H]-mazindol labeling were quantified by digitized im-
age analysis from the film autoradiograms using a BIOCOM analysis system
(Densirag, BIOCOM). Gray levels were converted to optical densities (ODs)
using external standards (calibrated density step tablet, Kodak). The mean
OD value was determined from three sections per animal after subtracting
the background signal measured on each section by scanning an area of the
corpus callosum that is known to lack DA terminals.

The location of the stimulating electrode in the Pf and the STN was
examined on toluidine blue-stained sections. Animals showing a reduc-
tion of <85% in [*H]-mazindol binding or a misplaced electrode were
not included in the experimental groups presented above.

In situ hybridization histochemistry

Quantitative radioactive in situ hybridization was used to assess changes
in intraneuronal mRNA levels of cytochrome oxidase subunit I (COI), as
a general metabolic marker of neuronal activity, and of the neuropeptide
precursors associated with the two populations of striatal projection neu-
rons, preprodynorphin (PPDyn), and preprotachykinin (PPT), as mark-
ers of the direct pathway, and preproenkephalin (PPE) as a marker of the
striatopallidal neurons, the first link of the indirect pathway. Probes were
43—48 mer synthetic oligonucleotides selected on the basis of the pub-
lished sequence of PPE, PPDyn, PPT, and COI. Probes were 3'-end-
labeled by terminal deoxynucleotide transferase with *>S-dATP (1300
Ci/mmol). The radiolabeled probes were then extracted on a mini Quick
Spin Oligo Column (Roche).

All solutions used for in situ hybridization were treated with diethyl
pyrocarbonate and autoclaved to avoid RNase degradation. Slide-
mounted sections were postfixed for 5 min in 3% paraformaldehyde. The
sections were then incubated in prehybridization buffer containing 2X
standard saline citrate (SSC). The sections were then acetylated for 10
min with 0.25% acetic anhydride in 0.1 M triethanolamine and treated for
30 min in 0.1 M Tris-glycine before being dehydrated in ethanol and air
dried. Each section was covered with 35 ul of hybridization solution (4X
SSC with 50% formamide, 10% dextran sulfate, 1 X Denhardt’s solution,
0.25 mg/ml Escherichia coli tRNA, and 0.5 mg/ml sheared salmon sperm
DNA) containing the radiolabeled probe (radioactivity level ~500,000
cpm per section), and incubated overnight at 47°C in humid chambers.
Sections were then rapidly rinsed in ice-cold 2X SSC, then treated suc-
cessively for 10 and 40 min with 1X SSC at room temperature, 1 X SSC at
42°C, and 0.1X SSC at 42°C. Sections were then dehydrated in ethanol
and air dried.

Sections were apposed to Kodak Bio-Max MR-1 film, and exposure
time was adjusted to avoid film saturation. Those from control and ex-
perimental groups of animals were run together in the same experimen-
tal session and exposed side by side on the same autoradiographic film.
Sections processed for cellular analysis of COT mRNA levels were there-
after coated with GE Healthcare LM1 autoradiographic emulsion and
exposed at 4°C for 1-3 weeks. Exposed slides were developed in Kodak
D-19 for 4 min at 13°C and counterstained with toluidine blue.
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Data analysis

Levels of autoradiographic labeling were quantified by a computerized
imaging system (BIOCOM). Analysis of striatal PPE, PPDyn, and PPT
was performed from autoradiographic films, and was restricted to the
dorsal part of the structure, excluding the nucleus accumbens. Gray levels
were converted to relative OD by using standard internal curves. The
background signal was determined for each section by scanning the cor-
pus callosum and subtracted from values obtained in the striatum on the
same section. The mean OD was determined from three sections of each
animal.

Analysis of COI mRNA labeling was performed at the cellular level on
emulsion-coated sections in the GP, EP, STN, and substantia nigra pars
reticulate (SNr). Sections were observed under dark-field epilumination
with an immersion 20X objective lens of a microscope connected to a
Cohu camera, and the digitized images were transferred to the screen of
a video monitor with a resulting magnification of 1000. Using the
Visioscan image analysis software from BIOCOM, the number of silver
grains per cell was estimated under polarized light by measuring OD with
respect to a standard curve of a defined number of silver grains. Specific
labeling was determined after subtracting autoradiographic background
on the same section. A sampling of at least 50 labeled neurons (>10
grains) per section was quantified in three sections from each animal, and
the mean number of silver grains per neuron determined. For both film
and cellular analyses, the data from all the animals per condition were
averaged and were expressed as the percentage = SEM of the correspond-
ing control values.

For cellular and behavioral studies, statistical analyses of data were
performed using a one-way ANOVA followed by a Student—Newman—
Keuls test for multiple group comparison. To compare the same rats in
different conditions (before and after stimulation), a paired ¢ test was
performed. A significance of p < 0.05 was required for rejection of the
null hypothesis.

Results

Control of the electrode location in Pf and of
6-OHDA-induced denervation extent in the striatum

Figure 1 illustrates the location of the stimulating electrode,
which was in the dorsolateral part of the Pf in the selected ani-
mals. No major tissue damage was observed after 6 d of continu-
ous stimulation.

The animals with or without Pf-HFS that received a unilateral
injection of 6-OHDA showed an almost complete loss of [ *H]-
mazindol binding in the ipsilateral striatum (Fig. 2). No signifi-
cant change of the striatal [*H]-mazindol binding was found in
the side contralateral to the lesion.

Behavioral observations

Pf-DBS was applied at a fixed low intensity (80 wA) all along the
6 d stimulation period to avoid tissue damage with prolonged
application. However, within the 2 min before fixing the stimu-
lation intensity, we examined whether HES of Pf at increasing
intensities can induce per se abnormal involuntary movements as
observed for STN-HFS (Salin et al., 2002; Bacci et al., 2004; Boulet
et al., 2006; Oueslati et al., 2007). Whereas STN-HFS elicited
abnormal involuntary movement from ~110 pA in our experi-
mental conditions, such movements were never induced by HFS
of Pf for intensities up to 250 wA. No alteration of the animal
gross behavior was observed.

Cylinder test

In these experiments, the efficiency of HFS of Pf and of STN to
alleviate akinesia was compared. Control rats (n = 8) made a
majority of double contacts (58.6 * 4.4) on the cylinder wall
during their explorative behavior. The three groups of hemipar-
kinsonian rats, unimplanted (n = 10) and implanted for Pf-HFS
(n = 10) or STN-HES (n = 8) in prestimulation conditions, all
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A

Figure 1.  Location of the stimulating electrode. 4, Photomicrograph of a toluidine blue-
stained section at Pf nucleus level (delineated by dotted line) illustrating the implantation site
(black arrows). B, Schematic diagram adapted from the stereotaxic atlas of Paxinos and Watson
(1986) showing the location of the electrode tips (black points) for all stimulated animals (n =
10). fr, Fasciculus retroflexus; MHb, medial habenular nuclei. Scale bar, 150 wm.

showed a dramatic decrease in the proportion of double contacts
due to decreased spontaneous use of the contralateral forepaw
(—86%, —89.5%, and —83%, respectively; p < 0.01). No signif-
icant differences were found among these lesioned groups, sug-
gesting that the electrode implantation alone does not affect the
scores. HFS of both Pf and STN efficiently alleviated this deficit,
as evidenced by the increase in the number of double contacts
compared with the 6-OHDA group (+271% and +450%, re-
spectively; p << 0.01) or to respective prestimulation values. Re-
versal was partial, the scores remaining significantly decreased
versus controls by —26.6% (p < 0.01) after STN-HFS and
—50.5% (p < 0.01) after Pf-HFS. A significant difference was
found between the two stimulated groups, showing that Pf-HFS
is less potent than STN-HFS ( p < 0.01). (Fig. 3). Pf-LFS did not
induce any relief of the deficit triggered by the dopamine lesion
(—85.7% compared with controls; —0.24% compared with the
6-OHDA group).

Corridor test

Control animals (n = 8) performed an equivalent number of
retrievals from each side of the corridor (~50% of the total re-
trievals from either side) in the alternating or the adjacent ver-
sions of the corridor. Animals with the unilateral 6-OHDA lesion
(n = 10) exhibited a strong bias toward the side ipsilateral to the
lesion: they made 84% and 90% of retrievals from the ipsilateral
side in the two versions (+74% vs controls in alternating corri-
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Figure2. A, B, Digitized autoradiographicimages (A) and quantitative analysis (B) showing
the effects of unilateral 6-hydroxydopamine lesion on striatal [ *H]-mazindol binding to dopa-
mine uptake sites. The data presented in the graphs are the means = SEM of the optical
density values determined from n animals per condition and are expressed as percentages
of controls. Statistical comparison was performed using a one-way ANOVA test followed by
Student—Newman—Keuls test. Scale bar, 2 mm. @, Side ipsilateral to surgery. **p << 0.01
compared with control values.
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Figure 3.  Effects of STN-HFS or Pf-HFS on 6-OHDA lesion-induced akinesia evaluated
using the cylinder test. The data presented in the graphs are the means = SEM of the
double contacts on the wall of the cylinder, expressed as the percentage of the total
number of contacts, determined from n animals. Statistical comparison was performed
using a one-way ANOVA followed by Student—Newman—Keuls test for multiple group
comparison. The numbers of animals per group were as follows: 8 controls, 10 6-OHDA, 10
Pf-HFS, and 8 STN-HFS. **p < 0.01 compared with control values; ®©p << 0.01 compared
with 6-OHDA lesion; ££p < 0.01 comparing STN-HFS and Pf-HFS. In addition, a paired
Student’s t test is used to compare the scores of the same rats before or during HFS. %%p <
0.01 compared with prestimulation.

dor, p < 0.01; +76% vs controls in adjacent corridor, p < 0.01),
neglecting food on the contralateral side (—68% vs controls in
alternating corridor, p < 0.01). Pf-HFS (n = 6) or STN-HES (n =
4) completely reversed this bias, with the animals recovering the
ability to make ~50% of food retrievals from the side contralat-
eral to the lesion ( p < 0.01) (Figs. 4, 5).
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retrievals from either side of the body, expressed as the percentage of total retrievals determined from n animals per group.
Statistical comparison was performed using a one-way ANOVA followed by Student—Newman—Keuls test. The numbers of animals
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0.01) and did not statistically differ from the
6-OHDA group (Fig. 6 B). Also in the corri-
dor test, in contrast to animals treated by
Pf-HFS only, the P-HFS + 1-DOPA-
treated animals did not recover from the
contralateral neglect: the contralateral
scores were significantly reduced versus
controls and Pf-HFS alone, and were no
more different from the untreated 6-OHDA
group (Fig. 6C). These data point to strong
interferences between the two treatments.
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Figure 5.  Effect of STN-HFS or Pf-HFS on 6-OHDA lesion-induced sensorimotor neglect, as-
sessed with the alternative version of the corridor test. The data presented in the graphs are the
means = SEM of the contralateral retrievals expressed as percentages of total retrievals deter-
mined from n animals. Statistical comparison was performed using a one-way ANOVA followed
by Student—Newman—Keuls test. The numbers of animals per group were as follows: 8 controls,
106-0HDA, 6 P-HFS, and 4 STN-HFS. **p < 0.01, compared with control values; ©p < 0.01
compared with 6-OHDA lesion values.

Interaction between Pf-HFS and L.-DOPA

To assess the ability of Pf-HFS to relieve LIDs, we measured AIMs
of L-DOPA-treated rats (n = 5) before starting Pf-HFS (at day 15
of L-DOPA treatment) and the last day of HFS (day 21 of L-DOPA
treatment). Animals presented almost no axial dyskinesias
(grades 0—1; mean score, 0.5 * 0.2), occasional to moderate oro-
facial dyskinesias (grades 1-2; mean score, 1.2 = 0.2), and mod-
erate to severe forepaw dyskinesias (grades 2—4; mean score,
2.8 = 0.4). After 6 d of Pf-HFS, the mean score of forelimb dys-
kinesias was significantly reduced by 28.6% ( p < 0.05) compared
with prestimulation (grades 1-3; mean score, 2 * 0.4) (Fig. 6 A).
The orofacial and axial dyskinesia scores were also reduced (0.7 =
0.2 and 0.2 = 0.1, respectively), but no valid statistical compari-
son could be made with such narrow ranges of values.

When testing the same Pf-HFS + L-DOPA-treated animals in
the cylinder test, in the off-L.-DOPA period (12 h after the last
injection of L-DOPA) no more beneficial anti-akinetic effect of
the stimulation was observed: the number of double contacts was
decreased compared with animals with Pf-HFS alone (—98%, p <

Preproenkephalin A mRNA levels

The expression of PPE was increased by

101.6% in the 6-OHDA group compared
with controls ( p < 0.01) (Fig. 7 A, B). Animals with the 6-OHDA
lesion that received Pf-HFS present a significant reduction of PPE
mRNAs levels in comparison with animals with the 6-OHDA
lesion alone (—19.25%, p < 0.05). However, the expression of
PPE remained significantly increased versus control animals
(+62.7%, p < 0.01), showing that reversal of the dopamine
lesion-mediated response by Pf-HFS was partial.

Preprodynorphin mRNA levels

In the 6-OHDA group, PPDyn mRNA levels were decreased
compared with controls (—32.4%, p < 0.05) (Fig. 8). In the Pf-
HFS group, PPDyn mRNA levels did not significantly differ from
the 6-OHDA group and remained decreased compared with con-
trols (—22.35% vs controls, p < 0.05).

Preprotachykinin mRNA levels

PPT mRNA expression was decreased by 56.94% in 6-OHDA
animals compared with controls (p < 0.01) (Fig. 8). This re-
sponse was not significantly modified by Pf-HFS (+16.76% vs
6-OHDA lesion animals; —49.72% vs control group, p < 0.01).

COI mRNAs levels in the globus pallidus and in the
subthalamic nucleus

Compared with control animals, the dopamine denervation in-
duced a significant increase in COI mRNA levels in the GP and
the STN ipsilateral to the lesion [38.7% (p < 0.01) and 36.8%
(p<0.01), respectively] (Fig. 9A, B). Pf-HEFS totally reversed this
increase both in GP and in STN, with the values being signifi-
cantly decreased compared with 6-OHDA alone (GP: —20.8%,
p < 0.05; STN: —32.8%, p < 0.01) and no more different from
controls. No significant differences in COI mRNA levels were
measured in these structures in the side contralateral to the lesion
in the different conditions examined, although a tendency to-
ward decrease was observed in the STN of the Pf-HFS group
compared with controls or 6-OHDA group alone (Fig. 9).

COI mRNAs levels in the entopeduncular nucleus and in the
substantia nigra pars reticulata

Animals with the 6-OHDA lesion alone exhibited a significant
increase in COI mRNAs in the EP and the SNr ipsilateral to the
lesion [51.7% (p < 0.01) and 38.5% (p < 0.01), respectively]
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Figure6. A-C Effect of combined chronic(-DOPA treatment and Pf-HFS on 1-DOPA-induced
forepaw dyskinesia (4), on 6-OHDA lesion-induced akinesia (B), or on sensorimotor neglect
induced by 6-OHDA lesion using the corridor test (C). In A, the scores of forepaw dyskinesias
were assessed at day 15 of the chronic 1-DOPA treatment before starting Pf-HFS, and at day 21
of 1-DOPA treatment and 6 d of stimulation. The data are the mean of the scores determined
during 1 min observation every 10 min from 10 to 110 min after the --DOPA injection. Statistical
comparison was performed using a t test to compare the scores of the same rats before or during
HFS. In B and C, behavioral assessments were performed 12 h after the last injection of .-DOPA
at day 21 of the chronic treatment. Statistical comparison was performed using a one-way
ANOVA followed by Student—Newman—Keuls test. The numbers of animals per group were as
follows: 8 controls, 10 6-OHDA, 10 Pf-HFS, and 5 Pf-HFS + (-DOPA. **p << 0.01 and *p << 0.05
compared with before stimulation (4) or control values (B, €); ®®p < 0.01 compared with
6-OHDA lesion; and ££p << 0.01 compared with Pf-HFS values (B, C).

(Fig. 10A, B) compared with control animals. After Pf-HFS, COI
mRNA levels were significantly reduced in EP versus 6-OHDA
lesion (—18.69%; p << 0.05) but remained increased versus con-
trols (+23.34%, p < 0.05). In SNr, Pf-HFS reversed the lesion-
induced increase, with COI mRNA levels being significantly
reduced versus 6-OHDA (—18.79%; p < 0.05) and being no
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Figure7. A, B, Digitized autoradiographicimages (A) and quantitative analysis (B) showing
the effects of separate or combined unilateral 6-hydroxydopamine lesion and Pf-HFS on striatal
PPE mRNA expression. The data presented in the graphs are the means == SEM of the optical
density values determined from nanimals per condition and are expressed as the percentages of
control. Statistical comparison was performed using a one-way ANOVA followed by Student—
Newman—Keuls test. Scale bar, 2 mm. @, Side ipsilateral to surgery. **p << 0.01 compared with
control values; ®p << 0.05 compared with 6-OHDA lesion values.

more different from controls. No significant differences in COI
mRNA levels (Fig. 10) were detected between animals with do-
pamine lesion alone and those with the lesion and P{-HFS in the
side contralateral to the lesion.

Discussion

This study shows that Pf-HFS efficiently alleviates akinesia and
sensorimotor neglect in a PD model based on extensive dopa-
mine lesion. This anti-parkinsonian effect is associated with par-
tial reversal of the increase in striatal PPE expression; a complete
suppression of the dopamine lesion-induced metabolic changes
in the STN, the GP, and the SNr; and a partial reduction of these
changes in EP. Compared with previous data about STN-HFS in
similar conditions (Lacombe et al., 2009), Pf-HFS appears to have
more widespread action on the BG network, with additional im-
pact on striatal neurons of the indirect pathway and on EP (Table
1). These data highlight subcircuits involved by Pf-HFS that may
be distinct from those affected by STN-HES and provide the first
cellular substrates for the therapeutic effects mediated by CM/Pf-
DBS (Caparros-Lefebvre et al., 1999; Krauss et al., 2002; Mazzone
et al., 2006; Peppe et al., 2008; Stefani et al., 2009). In addition,
complex interactions between Pf-HFS and L-DOPA treatment
are evidenced: the neurosurgical treatment reduces LIDs, and,
conversely, L-DOPA treatment interferes with the anti-
parkinsonian efficiency of Pf-HFS.

Pf and movement abnormalities in PD state

Effects of Pf-HFS versus lesion

It is now recognized that the action mechanisms of HES are more
complex than modulation of the activity of neurons in the
targeted structure and might involve adaptive changes in large
neuronal networks. In particular, a recent study using optoge-
netics has shown that the anti-parkinsonian action of STN-
HEFS is linked rather to activation of afferent input systems to
STN than to inactivation of STN neurons (Gradinaru et al.,
2009). Therefore, the effects of lesions and HES might in some
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instances differ. We previously reported, using the same rat
model of PD, that Pflesion, as shown here for Pf-HFS, coun-
teracts a great part of the effects of the dopamine lesion on
gene expression of markers of neuronal activity in the BG
(Bacci et al., 2004). The major difference concerns the output

structures of the BG: Pf-HFS reverses the lesion-induced
changes in COI mRNA levels totally in SNt and partially in EP
whereas Pf lesion reversed the changes in GAD67 mRNA lev-
els, a metabolic marker of GABA neurons, in EP but not SNr.
In addition, the dopamine lesion-induced increase in striatal
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Table 1. Impact of Pf-HFS or STN-HFS on the cellular alterations induced by the
dopamine denervation in the basal ganglia

Striatum GP STN EP SNr
PPDyn PPT PPE col ol col col

6-OHDA lesion l l 1 1 1 1 1

Pf-HFS l ! 1% <* «* 1¥ <>*
STN-HFS | b 1 <* «>* 1 <>¥*
Summary table comparing the impact of Pf-HFS and STN-HFS on the cellular alterations induced by the dopamine

denervation in the basal ganglia. 1, Increase; | , decrease; <>, normalization as compared to control; *, statis-
tically different from 6-OHDA lesion values.

PPE mRNA levels is partially reversed by Pf-HFS, but totally by Pf
lesion. Whether these cellular differences translate into a differ-
ential impact on parkinsonian deficits is a matter of concern. We
show here that Pf-HFS allows significant, although partial, recov-
ery of the impaired spontaneous use of the contralateral forepaw
induced by unilateral dopamine lesion in the cylinder test. This
provides evidence for efficient anti-akinetic action of Pf-HFS,
and complies with a clinical report showing that Pf-HFS amelio-
rates extrapyramidal symptoms (Stefani et al., 2009). There are
no data available about the anti-parkinsonian action of the Pf
lesion in the rat, but a recent study showed no significant persis-
tent motor improvement after CM/Pf lesion in the MPTP mon-
key model of PD (Lanciego et al., 2008). This lack of effect could
be due to the fact that the CM/Pf lesion was performed unilater-
ally in a bilateral dopaminergic lesion model, whereas crossed
projections from CM/Pf to STN and SNr have been reported
(Marini et al., 1999; Castle et al., 2005). Another explanation is
that reversal of the response to the dopamine lesion in SNr is a
requisite for efficient beneficial action on forelimb akinesia. In-
deed, evidence has been provided in parkinsonian monkeys that
SNr is involved in the development of parkinsonian signs, partic-
ularly those affecting appendicular function (Wichmann et al.,
2001).

Figure10. A, B, Photomicrographs (A)
and SNr. Sections were processed for in situ hybridization with **S-radiolabeled COl oligonucleotide probe and emulsion autoradiography. The data presented in the graphs are the means - SEM
of silver grain number determined from n animals per condition and are expressed as percentages of controls. Statistical comparison was performed using a one-way ANOVA followed by
Student—Newman—Keuls test. Scale bar, 20 um. **p << 0.01 and *p << 0.05 compared with control values; ©p < 0.05 compared with 6-OHDA lesion values.
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) and quantitative analysis (B) showing the effects of separate or combined unilateral 6-hydroxydopamine lesion and Pf-HFS on COl mRNA expression in EP

Effects of Pf-HFS versus STN-HFS

In compliance with recent clinical data (Stefani et al., 2009), we
found that Pf-HEFS is less potent than STN-HES in alleviating
akinesia. It is of interest to compare the impact of Pf-HFS on the
pathophysiological functioning of the BG with previous data on
STN-HFS (Oueslati et al., 2007; Lacombe et al., 2009). HFS of
both targets totally reverses the metabolic changes produced by
the dopamine lesion in the SNr in addition to GP and STN, and
does not interfere with the postlesional modifications in the stri-
atal neurons of the direct pathway. But, the effects differ at the
level of the EP and striatal PPE-expressing neurons: Pf-HFS par-
tially reverses the effects of the dopamine lesion, whereas STN-
HFS has no effect. Together, the comparisons of Pf-HFS with Pf
lesion and with STN-HEFS reveal a more marked anti-akinetic
effect in conditions where metabolic activity is normalized in
SNr but not in EP and the striatal indirect pathway. It then
could be that reversing the effect of the dopamine lesion in
SNr has an anti-akinetic effect, whereas reversal in EP may have
rather a pro-akinetic effect. In this connection, we also show here
that Pf-HFS relieves forelimb dyskinesias induced by chronic
L-DOPA treatment, whereas STN-HFS exacerbates this side ef-
fect. Also, clinical data have reported that CM/P{-HFS may be
helpful for the management of LIDs (Caparros-Lefebvre et al.,
1999; Stefani et al., 2009), and it is conceivable that the strong
connections between CM/Pf and GPi/EP (Sidibé et al., 2002)
are responsible both for the lower efficiency of Pf-HFS in
alleviating akinesia and for its direct anti-dyskinetic action
compared with STN.

Pf-HFS and sensorimotor neglect

Some abnormalities in sensorimotor processing have already
been reported in PD patients (Berardelli et al., 2001). First de-
scribed in rats with lateral hypothalamus lesion (Marshall et al.,
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1974), which damages ascending dopaminergic systems, the
phenomenon of lateralized neglect is characteristic of rats with
unilateral dopaminergic denervation. Initially considered as sen-
sorimotor in nature, this deficit might primarily reflect an im-
pairment of the initiation of actions directed toward contralateral
events (Carli et al., 1985). Based on this phenomenon, the corri-
dor task has been validated as a good behavioral test for assessing
the deficit of sensorimotor integration induced by the nigrostri-
atal dopamine lesion and the recovery by dopamine receptor
agonist or transplantation of fetal dopaminergic neurons in
hemiparkinsonian rats (Dowd et al., 2005; Fitzsimmons et al.,
2006). Here, we demonstrate that this task depends not only on
dopamine tone, but is also useful to evaluate nondopaminergic
anti-parkinsonian therapies. Pf-HFS completely reversed the ne-
glect toward the contralateral side induced by the unilateral
6-OHDA lesion, re-establishing the balance of food retrievals
from both sides of the body. The potent action of Pf-HFS in this
test of lateralized response selection is to be considered in partic-
ular in relationship with the proposed role of the CM/Pf-striatal
system in the modulation of motor responses under behaviorally
significant external stimuli and as the entrance of information
with attentional orienting value to the BG circuits (Matsumoto et
al., 2001; Van der Werf et al., 2002; Raeva, 2006; Minamimoto et
al., 2009). On the other hand, we also examined the impact of
STN-HEFS in the corridor task and observed a beneficial effect
equivalent to that provided by Pf-HFS, whereas the two surgical
treatments have differential qualitative or quantitative outcomes
on akinesia or dyskinesias. It could be suggested that lateralized
neglect preferentially involves the BG subcircuits that show com-
mon responses to HFS of the two targets (Table 1) rather than the
EP and/or the PPE-expressing striatal neurons.

Interaction between L-DOPA treatment and Pf-HFS
Treatments with dopamine agonists or L-DOPA are known to
relieve the ipsilateral bias created by the dopamine lesion in the
corridor task as well as akinesia in the cylinder test. However,
LIDs can affect the performance in chronic treatment conditions
(Lundblad et al., 2002). For this reason, the effects of the com-
bined treatment with Pf-HFS and L-DOPA were assessed 12 h
after L-DOPA administration, thus at off condition. We surpris-
ingly found that Pf-HEFS is much less efficient in alleviating limb
akinesia and lateralized neglect when applied in animals with
chronic L-DOPA treatment than when applied alone, suggesting
that the beneficial effects of Pf-HFS might be compromised by
L-DOPA treatment. Such interaction may contribute to mini-
mize the anti-parkinsonian efficiency of CM/Pf-HEFS in the PD
state and account for the weak benefits on UPDRS scores that
have been reported from a small cohort of patients (Stefani et al.,
2009). Together with the above observation that Pf-HFS allevi-
ates forelimb dyskinesias induced by chronic L-DOPA, these data
point to complex interactions between the two treatments, and
further between CM/Pf and dopamine tone in the BG, which
might be taken into consideration in the indication of CM/Pf-
DBS in the management of movement disorders.

Conclusion

This study demonstrates that CM/Pfis a key node for modulating
BG functioning, supporting the increasing interest for this com-
plex in the surgical treatment of BG-related disorders. Our find-
ings confirm and extend the clinical data showing moderate
impact of Pf-HFS on extrapyramidal PD symptoms and LIDs but
amarked outcome on more integrative deficits. They point to the
preferential relationships between Pfand EP as a substrate for the
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different, qualitative or quantitative, impact of HFS of the Pf
versus STN on motor dysfunction and reveals the complex inter-
action between Pf surgery and chronic L-DOPA treatment. Fur-
ther investigations are required to better understand the
functional state of CM/Pf in BG-related motor and nonmotor
disorders, such as Tourette syndrome (Houeto et al., 2005), and
to evaluate the efficiency of DBS of this nucleus to manage these
pathologies.
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