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Enhancement of Spatial Reversal Learning by 5-HT2C

Receptor Antagonism Is Neuroanatomically Specific
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United Kingdom

We have recently demonstrated that systemic administration of 5-HT2C and 5-HT2A receptor antagonists significantly enhanced and
impaired spatial reversal learning, respectively. In this study, the role of 5-HT2C and 5-HT2A receptor subtypes in the mediation of these
opposing effects was further investigated with respect to neuroanatomical specificity. The roles of 5-HT2C and 5-HT2A receptors were
examined within some of the brain regions implicated in cognitive flexibility, namely the orbitofrontal cortex (OFC), medial prefrontal
cortex (mPFC), and nucleus accumbens (NAc), by means of targeted infusions of selective 5-HT2C and 5-HT2A receptor antagonists (SB
242084 and M100907, respectively). Intra-OFC 5-HT2C receptor antagonism produced dose-dependent effects similar to those of systemic
administration, i.e., improved spatial reversal learning by reducing the number of trials (all doses: 0.1, 0.3, and 1.0 �g) and perseverative
errors to criterion (0.3 and 1.0 �g) compared with controls. However, the highest dose (1.0 �g) showed a nonselective effect, as it also
affected retention preceding the reversal phase and decreased learning errors. Intracerebral infusions of SB 242084 into the mPFC or NAc
produced no significant effects on any behavioral measures. Similarly, no significant differences were observed with intra-OFC, -mPFC,
or -NAc infusions of M100907. These data suggest that the improved performance in reversal learning observed after 5-HT2C receptor
antagonism is mediated within the OFC. These data also bear on the issue of whether 5-HT2C receptor antagonism within the OFC might
help elucidate the biological substrate of obsessive-compulsive disorder, offering the potential for therapeutic application.

Introduction
Prefrontal cortex (PFC)-mediated executive functions support
the ability spontaneously to adapt behavior in response to chang-
ing situational demands, thus promoting behavioral flexibility.
Without this top-down cognitive control, behavior controlled by
other cortical and subcortical regions is more likely to be inflex-
ible, dependent on simple sensory motor associations or habits
(Miller and Cohen, 2001). Such inflexible behavior constitutes a
common feature of various psychiatric afflictions, including
schizophrenia, depression, and obsessive-compulsive disorder
(OCD).

On the behavioral level, discrimination reversal learning is
one of the laboratory tasks used to investigate translationally as-
pects of executive control and behavioral flexibility. Neuroana-
tomically speaking, converging evidence from a plethora of
studies has implicated the orbitofrontal cortex (OFC) in efficient
reversal learning, as damage to this region produces selective re-
versal deficits [human (Rolls et al., 1994; Hornak et al., 2004),

monkey (Iversen and Mishkin, 1970; Jones and Mishkin, 1972;
Dias et al., 1996; Clarke et al., 2008), rat (Schoenbaum et al., 2002;
McAlonan and Brown, 2003; Boulougouris et al., 2007)]. The
medial region of the PFC (mPFC) has been shown to mediate
behavioral flexibility in attentional set-shifting tasks, requiring
the updating of attentional biases or rules (Owen et al., 1991; Dias
et al., 1996; Birrell and Brown, 2000; Ragozzino and Kesner,
2001). The striatum is also implicated in reversal learning: elec-
trolytic lesions of the ventrolateral head of the caudate nucleus in
macaques (Divac et al., 1967), excitotoxic lesions of the medial
striatum in marmosets (Clarke et al., 2008), and nucleus accum-
bens (NAc) lesions in monkeys (Stern and Passingham, 1995)
have been shown to produce reversal impairments. However,
studies in rats have produced equivocal results that seem related
to lesion location [e.g., NAc (Schoenbaum and Setlow, 2003) vs
ventral or medial striatum (Ferry et al., 2000)] and the nature of
the behavioral task [e.g., discrimination go/no-go (Ferry et al.,
2000) vs rule reversal (Block et al., 2007)]. Finally, although amyg-
dala lesions do not seem to disrupt reversal learning (Izquierdo and
Murray, 2007; Clarke et al., 2008), a recent study demonstrated
that basolateral amygdala lesions abolished OFC-induced rever-
sal learning impairments (Stalnaker et al., 2007).

In neurochemical terms, preclinical and clinical research sug-
gest that a dysregulation of serotonergic systems (5-HT) is in-
volved in behavioral flexibility and response inhibition (for
review, see Boulougouris and Tsaltas, 2008). Furthermore, 5-HT
projections to the mPFC and NAc as well as indirect actions via
5-HT receptors regulating the ventral tegmental area, may be
involved in executive processes including response inhibition
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(Robbins, 2000; Chudasama and Robbins, 2004; Winstanley et
al., 2006).

We have recently demonstrated that systemic administration
of 5-HT2C and 5-HT2A receptor antagonists showed significant
effects, respectively, enhancement and impairment of spatial re-
versal learning (Boulougouris et al., 2008). These effects were
observed in the early phase of reversal learning (i.e., perseveration
stage). In this study, the role of 5-HT2C and 5-HT2A receptor
subtypes in the mediation of these opposing effects on perse-
verative responding during spatial reversal learning are also
investigated with respect to their neuroanatomical specificity.
The role of 5-HT2C and 5-HT2A receptors were examined
within the brain regions implicated in cognitive flexibility,
namely the OFC, mPFC, and NAc, by means of targeted infu-
sions of selective 5-HT2C and 5-HT2A receptor antagonists (SB
242084 and M100907, respectively).

Materials and Methods
Subjects
One hundred sixty-eight experimentally naive adult male Lister Hooded
rats (Charles River) weighting 280 –320 g at the start of the experiments
were pair-housed under a reversed light cycle (lights on from 7:00 P.M. to
7:00 A.M.). Before the beginning of training, rats were handled for �5
min daily for 5 d and were put onto a food-restriction schedule (18 g of
Purina laboratory chow per day). Water was available ad libitum, and
testing took place between 1:00 P.M. and 4:00 P.M. 7 d per week. Table 1
presents the number of rats allocated to each experiment, the number of
rats that were excluded from each experiment, the doses used, and the
final number of rats in each group.

Surgery
Rats were anesthetized using isofluorane in oxygen and secured in a
stereotaxic frame fitted with atraumatic earbars. Bilateral stainless-steel
guide cannulae (22 gauge; Plastics One) were aimed dorsal to the target
brain structure using standard stereotaxic techniques. The coordinates
used were as follows (Paxinos and Watson, 1998): OFC: anteroposterior
(AP), �3.2 from bregma; lateral (L), �2.5 from bregma; dorsoventral
(DV), �2.2 from dura; mPFC: AP, �3.0 from bregma; L, �0.7 from
bregma; DV, �2.0 from dura; NAc: AP, �1.7 from bregma; L, �1.9 from
bregma; DV, �2.2 from the skull. The incisor bar was set at �3.3 mm
relative to the interaural line for a flat skull position. Three small

screws and cranioplastic cement secured the guide cannulae to the
skull. Removable stylets (Plastics One) were placed into the guide
cannulae to prevent occlusion and were held in place with a screw-on
dust cap. After surgery, the animals were housed individually and
allowed 7–9 d of recovery.

Intracranial drug infusions
Infusions took place before each experimental session. The rats were held
gently and habituated to the infusion procedure 1 d before behavioral
training, where they were lightly restrained and the stylet was removed
and then replaced. The following day, the behavioral task was intro-
duced: rats received a drug or vehicle infusion (PBS) immediately before
behavioral testing.

During intracranial infusions, rats were gently restrained while stainless-
steel injectors (28 gauge; Plastics One) extending 2, 1.5, or 5 mm below
the length of the guide cannulae were inserted into the OFC, mPFC or
NAc, respectively. The injectiors were attached by polyethylene tubing
(Portex) to 10 �l Hamilton syringes that were mounted on an infusion
pump (Harvard Apparatus). One minute elapsed after inserting the in-
jectors to the relevant brain structure before beginning the infusions of
vehicle or drug (0.5 �l), after which the injector was left in place for 1 min
to allow diffusion of the drug into the tissue surrounding the injector.
The injector was then slowly removed, and the stylet was replaced.

Drugs
6-Chloro-5-methyl-1-[2(2methylpyridyl-3-oxy)-pyrid-5-yl carbamoyl]
(SB 242084; Solvay) and R-(�)-�-(2,3-dimethoxyphenyl)-1-[2-(4-
fluorophenylethyl)]-4-piperidine-methanol (M100907) were tested in
six different experiments. Before drug infusions, animals were divided in
four (OFC infusions) or three (mPFC and NAc infusions) groups,
matched for their performance during the discrimination phase before
surgery. Each group received infusions of either SB 242084 (experiment
1: 0, 0.1, 0.3, 1.0 �g; experiments 2 and 3: 0, 0.3, 1.0 �g) or M100907
(experiment 4: 0, 0.1, 0.3, 1.0 �g; experiments 5 and 6: 0, 0.3, 1.0 �g). All
drugs were infused daily immediately before the start of the behavioral
task.

SB 242084 was dissolved in 25 mM citric acid and 8% cyclodextrine in
0.9% saline, and the pH was adjusted to 6.4 using 0.1 M NaOH. M100907
was dissolved in 0.01 M PBS and 0.1 M HCl, and the pH was adjusted to 6.4
using 0.1 M NaOH.

Histology
After the completion of behavioral testing, animals were given a lethal
dose of sodium pentobarbitone (1.5 ml per rat; Euthatal, 200 mg/ml;
Genus Express) and perfused transcardially with 0.01 M PBS followed by
4% paraformaldehyde. The brains were removed, postfixed in 4% para-
formaldehyde for 24 h, and dehydrated in 20% sucrose in 0.01 M PBS
overnight. Coronal sections of 60 �m were cut on a freezing microtome
and mounted on double-subbed glass slides. They were then stained with
cresyl violet and coverslipped with DePeX mounting medium (BDH).
The sections were then used to verify cannulae placement. The location
of the cannulae was mapped onto standardized sections of the rat brain,
the cytoarchitectonic borders and nomenclature of which were taken
from Paxinos and Watson (1998).

Behavioral procedure
Rats were trained on the instrumental two-lever spatial discrimination
and serial reversal learning task as described and illustrated previously
(Boulougouris et al., 2007, 2008, 2009) (see Fig. 1). Briefly, rats were
initially trained to nose-poke in the central magazine to trigger presen-
tation of the retractable levers and to respond on them under a fixed ratio
3 (FR-3) schedule for food delivery (pretraining). The FR-3 schedule was
used to preclude the possibility of reinforcing single accidental presses on
the correct lever and to render the reversal task more difficult, as the
change in reversal contingencies cannot be detected from a single lever
press.

Acquisition of spatial discrimination. Training continued with the ac-
quisition of a two-lever discrimination task. Now both levers were pre-
sented at trial onset, and the rat had to learn that three lever presses on
only one of these levers would result in reward. Each session lasted 20 min

Table 1. Summary of animals used in each experiment

Experiment Drug Dose (�g)
Number
of rats Number of rats excluded Final n

1 SB 242084, OFC Vehicle 8 1, died on surgery 7
0.1 7 7
0.3 8 1, cannula misplacement 7
1.0 9 1, died on surgery 8

2 SB 242084, mPFC Vehicle 9 3, sickness 6
0.3 8 2, sickness 6
1.0 9 4, sickness 5

3 SB 242084, NAc Vehicle 9 9
0.3 10 1, sickness 9
1.0 9 9

4 M100907, OFC Vehicle 8 8
0.1 8 1, sickness 7
0.3 8 2, sickness 6
1.0 8 8

5 M100907, mPFC Vehicle 8 2, died on surgery 6
0.3 8 2, sickness 6
1.0 8 8

6 M100907, NAc Vehicle 9 9
0.3 10 2, dysfunctional 8
1.0 9 9
Total 164 Total animals for analyses 148
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and consisted of a maximum of five 10-trial
blocks. Each trial began with the presentation
of both levers and a visual stimulus [a lit light-
emitting diode (LED)]. The lit LED was used as
a distractor, and its location (left/right) varied
from trial to trial according to a pseudo-
random schedule so that the light was pre-
sented an equal number of times on each side
for the session. Thus, the only stimulus with
informational value for the discrimination at
this phase was the spatial position of the re-
tractable levers. Throughout the session, three
lever presses on one lever (lever A) would pro-
duce a single pellet reward (correct responses)
and the retraction of both levers, whereas three
responses on lever B would result in lever re-
traction without reward delivery (incorrect re-
sponses). The position of the reinforced lever
(left or right) was kept constant for each rat,
but was counterbalanced between subjects.

Each rat had one training session per day
and was trained to a criterion of nine correct
trials in one block of 10 trials (binomial dis-
tribution p � 0.01, likelihood of attaining
criterion in a 10-trial block). Once this crite-
rion was reached, this initial discrimination
phase was considered complete, and the an-
imal was returned to the home cage. If the
criterion was not achieved, this phase was repeated the next day until
criterion attainment. Animals needed 1–3 d for criterion attainment
during this phase.

Within-session serial reversal learning task. In the next training session,
reversal learning was introduced. By definition, reversal learning presup-
poses retention of a previously acquired discrimination. Accordingly, in
the reversal session, animals were again exposed to the initial discrimination
task described above (with the same lever rewarded as before: discrimination
retention). This initial retention phase preceding reversal also comprised a
maximum of five 10-trial blocks. Once the criterion of nine correct trials in a
10-trial block was achieved, the position of the reinforced lever was reversed
(reversal phase). The reversal phase also consisted of a maximum of five
10-trial blocks. The learning criterion was the same as in the initial phase
(nine correct trials in a 10-trial block). Animals always required more than
one session to reach criterion on the reversal phase. Thus, they received
multiple separate training sessions, the data of which were summed together
to produce the final results. During these sessions, the initial contingency was
determined by retention performance: for example, day 1: A�, B� (reten-
tion without reversal-criterion achieved); day 2: A�, B� (retention preced-
ing reversal-criterion achieved), A�, B� (reversal phase-criterion NOT
achieved); day 3: A�, B� (retention preceding reversal-criterion achieved),
A�, B� (reversal phase-criterion achieved). Trials and incorrect responses
to criterion would be added for days 2 and 3 in the example.

On day 3 of the example, the session began with the original A�, B�
stimulus. This is because pilot studies had shown that if the session on
day 3 began with the reversal contingency (A�, B�) of day 2, animals
started responding to the lever A (having the A�, B� contingency in
mind). After very few lever presses on the (nonreinforced) lever led the
animals to extinguish lever pressing, the session resulted in omissions
only. For this reason, we decided to use the previously acquired contin-
gency (A�, B�) as an initial phase for reinforcing lever pressing before
reversal contingency was introduced. In terms of analyses, we have three
different phases: retention without reversal phase (A�, B�: animals have
not experienced the reversal contingency), retention preceding reversal
phase [animals have experienced the reversal contingency (A�, B�) the
day before, but they need to respond according to the initial retention
contingency (A�, B�) to get food], and reversal phase [after the previ-
ous phase, animals have achieved the criterion on the retention contin-
gency (A�, B�) and they are required to adapt their responding to the
new reversed contingency (A�, B�) to get food].

Given that the opposing effects of 5-HT2C and 5-HT2A receptors were
observed in the first reversal only (Boulougouris et al., 2008), one reversal
was given.

Statistical analysis
The main measures of the animals’ ability to learn the discrimination and
reversals were as follows: (1) the number of trials to criterion; (2) the total
number of incorrect responses to criterion on completed (correct and
incorrect) trials (i.e., one incorrect trial equals three incorrect responses);
and (3) the total number of errors (i.e., incorrect trials) to criterion. The
type of errors was also analyzed: six or more consecutive errors during
the entire session were termed “perseverative errors” (i.e., reversal per-
formance significantly worse than chance), whereas all other errors were
termed “learning errors” (i.e., reversal performance above chance; an
example is provided in the supplemental material, available at www.
jneurosci.org). Additional secondary measures recorded for each trial
were (4) the latency to respond, (5) the latency to collect the reward, and
(6) the number of omissions.

Data for each variable were subjected to a repeated-measures ANOVA.
Where significant interactions were detected, they were further explored
through planned comparisons (contrast testing) to establish simple ef-
fects. For all comparisons, significant difference was assumed at p � 0.05.
The between-subject factor was group (experiments 1 and 4, four levels:
three different doses of each drug plus vehicle; experiments 2, 3, 5, and
6, three levels: two different doses of each drug plus vehicle), and the
within-subject factors were initial retention phase without reversal, sub-
sequent retention phase preceding reversal, or reversal phase. Persevera-
tive and learning errors were subjected to one-way ANOVAs followed by
contrast testing. The between-subject factor was group as described
above.

It should be noted here that the analyses and figures provided in Re-
sults below are for the measures of trials to criterion and type of errors.
Additional analyses and figures for the measure of incorrect responses to
criterion are provided in the supplemental material (available at www.
jneurosci.org).

Results
Histological results: experiments 1– 6
Figure 2 shows a schematic reconstruction of the actual position
of injector tips in the OFC, mPFC, and NAc. Animals were ex-
cluded from data analyses if the cannula position was not correct

Figure 1. Flow diagram of the behavioral procedure. Rats responded to levers under a FR-3 schedule to obtain a pellet reward.
After surgery, drug infusions were given before each experimental session. The�and� symbols indicate which lever was correct
and incorrect at each stage. The correct lever was counterbalanced across rats.
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or if the cannula revealed tissue damage beyond local physical
damage around the injector tract. Figure 3 presents photomicro-
graphs of coronal sections taken from representative rats.

Behavioral results: performance before drug infusions
Before intracerebral drug infusions, the groups did not differ in
the number of incorrect responses to reach performance crite-
rion in the acquisition of spatial discrimination (F � 1; NS; data
not shown).

Experiment 1: effects of intra-OFC infusions of SB 242084 in
reversal learning
Number of trials to criterion
A repeated-measures ANOVA yielded significant main effects of
group and phase (F(3,25) � 6.24, p � 0.0026 and F(2,50) � 128.89,
p � 0.001, respectively) and a significant group � phase interaction
(F(6,50) � 4.30; p � 0.0014) (Fig. 4A). After planned comparisons,
there were no significant differences between drug groups on the
initial retention (without reversal) of the spatial discrimination
acquired before drug administration. Although no significant
differences between drug groups were noted on the subsequent
retention preceding reversal phase, the highest dose of SB 242084
(1.0 �g) did significantly decrease trials to criterion (vehicle vs 1.0
�g: F(1,25) � 10.04; **p � 0.004) (Fig. 4A). In the reversal learn-

ing phase, animals infused with SB 242084
exhibited a highly significant improve-
ment of performance. Specifically, SB
242024 significantly reduced trials to cri-
terion at all doses used compared with ve-
hicle controls (vehicle vs 0.1 �g: F(1,25) �
8.42, **p � 0.008; vehicle vs 0.3 �g: F(1,25)

� 10.6, **p � 0.003; vehicle vs 1.0 �g:
F(1,25) � 17.56, ***p � 0.0003) (Fig. 4A).

Perseverative versus learning errors
One-way ANOVAs showed that there was
a marginally significant main effect of
group in the perseveration stage (F(3,25) �
2.33; p � 0.098) and a significant main
effect of group in the learning stage (F(3,25)

� 5.62; p � 0.001). Animals infused with
the two highest doses of SB 242084 (0.3
and 1.0 �g) made significantly fewer per-
severative errors than controls in reversal
phase (vehicle vs 0.3 �g: F(1,25) � 5.36, p �
0.029; vehicle vs 1.0 �g: F(1,25) � 5.23, p �
0.03) (Fig. 5). The highest dose (1.0 �g)
also reduced the number of learning er-
rors (vehicle vs 1.0 �g: F(1,25) � 16.56; p �
0.0004) (Fig. 5).

Experiment 2: effects of intra-mPFC
infusions of SB242084 in
reversal learning
Number of trials to criterion
A repeated-measures ANOVA showed
that there was no significant main effect of
group (F(2,14) � 0.29; p � 0.756), but
there was a significant main effect of phase
(F(2,28) � 98.76; p � 0.001). No significant
group � phase interaction was noted
(F(4,28) � 2.20; p � 0.084) (Fig. 4B). No
significant differences between drug
groups were noted on any experimental

phase. However, it is noteworthy that the highest dose (1.0 �g)
reduced the number of trials compared with controls, but this
difference was nonsignificant (vehicle vs 1.0 �g: F(1,14) � 2.68;
p � 0.124).

Perseverative versus learning errors
One-way ANOVAs showed that there was no main effect of
group in either the perseverative stage (F(2,14) � 0.84; p � 0.45) or
learning stage (F(2,14) � 0.44; p � 0.65) (Fig. 5).

Experiment 3: effects of intra-nAcc infusions of SB 242084 in
reversal learning
Number of trials to criterion
A repeated-measures ANOVA showed that there was no signifi-
cant main effect of group (F(2,24) � 1.1; p � 0.348), but there was
a significant main effect of phase (F(2,48) � 178.8; p � 0.001). No
significant group � phase interaction was noted (F(4,48) � 0.3;
p � 0.905) (Fig. 4C). No significant differences between drug
groups were noted on any experimental phase.

Perseverative versus learning errors
One-way ANOVAs showed that there was no main effect of
group in either the perseverative stage (F(2,24) � 0.33; p � 0.72) or
learning stage (F(2,24) � 0.65; p � 0.53) (Fig. 5).

Figure 2. Schematic diagrams showing the location of the injector tips in the OFC (experiments 1 and 4), mPFC (experiments 2
and 5), and NAc (experiments 3 and 6). Data are reconstructed from Paxinos and Watson (1998).
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Experiment 4: effects of intra-OFC infusions of M100907 in
reversal learning
Number of trials to criterion
A repeated-measures ANOVA yielded that there was no signifi-
cant main effect of group (F(3,25) � 0.46; p � 0.712), but there was
a significant main effect of phase (F(2,50) � 71.79; p � 0.001). No
significant group � phase interaction was noted (F(6,50) � 0.87;
p � 0.53) (Fig. 6A). No significant differences between drug
groups were noted on any experimental phase.

Perseverative versus learning errors
One-way ANOVAs showed that there was no main effect of
group in either the perseverative stage (F(3,25) � 1.73; p � 0.19) or
learning stage (F(3,25) � 0.774; p � 0.52) (Fig. 7).

Experiment 5: effects of intra-mPFC infusions of M100907 in
reversal learning
Number of trials to criterion
A repeated-measures ANOVA showed that there was no signifi-
cant main effect of group (F(2,17) � 0.07; p � 0.935), but there was
a significant main effect of phase (F(2,34) � 53.60; p � 0.001). No
significant group � phase interaction was observed (F(4,34) �
0.59; p � 0.67) (Fig. 6B). No significant differences between drug
groups were noted on any experimental phase.

Perseverative versus learning errors
One-way ANOVAs showed that there was no main effect of
group in either the perseverative stage (F(2,17) � 1.25; p � 0.31) or
learning stage (F(2,17) � 0.114; p � 0.89) (Fig. 7).

Experiment 6: effects of intra-NAc infusions of M100907 in
reversal learning
Number of trials to criterion
A repeated-measures ANOVA yielded that there was no signifi-
cant main effect of group (F(2,23) � 0.07; p � 0.93), but there was
a significant main effect of phase (F(2,46) � 79.85; p � 0.001). No
significant group � phase interaction was observed (F(4,46) �
0.27; p � 0.89) (Fig. 6C). No significant differences between drug
groups were noted on any experimental phase.

Perseverative versus learning errors
One-way ANOVAs showed that there was no main effect of
group in either the perseverative stage (F(2,23) � 0.86; p � 0.43) or
learning stage (F(2,23) � 0.62; p � 0.55) (Fig. 7).

Discussion
Local blockade of the 5-HT2C receptors in the OFC produced
dose-dependent effects similar to those of systemic administra-
tion (Boulougouris et al., 2008). Specifically, intra-OFC infusions
of the 5-HT2C receptor antagonist SB 242084 improved spatial
reversal learning by reducing the number of trials compared
with vehicle controls. This improvement occurred in the early
phases of reversal learning (i.e., perseverative phase) without
affecting the late learning phase (apart from the highest dose),
suggesting that it is a circumscribed effect, rather than gener-
alized improvement. This facilitatory effect of 5-HT2C recep-
tor blockade in the OFC was observed in reversal learning after
all doses (0.1, 0.3, and 1.0 �g) of the 5-HT2C receptor antag-
onist in the number of trials to criterion. Although no signif-
icant differences were noted during the initial retention
(without reversal) phase, the highest dose (1.0 �g), apart from
its facilitatory effects on reversal learning by reducing both
perseverative and learning errors, also appeared to promote
the ability to retain associative relationships between stimuli
and rewards once the reversal phase had been experienced
(i.e., retention preceding reversal phase). These nonselective
effects may be attributable to the improved reversal learning
performance (i.e., increased flexibility) of this group, which in
turn led to improved retention and less reversal trials. Another
possibility might be that the 1.0 �g dose of the 5-HT2C recep-
tor antagonist SB 242084 has been reported to offer decreased
pharmacological specificity, or a preferential activation of a
subpopulation of 5-HT2C receptors in different cellular com-
partments and/or phenotypes (Marek et al., 2005).

In contrast to intra-OFC infusions, intra-mPFC and intra-
NAc infusions of SB 242084 did not produce any significant
effects on any behavioral measure. This suggests that reversal
learning facilitation after the 5-HT2C receptor antagonist is
mediated by sites within the OFC (but not the mPFC or NAc).

Figure 3. Photomicrographs of coronal sections taken from representative rats: A, OFC;
B, mPFC; C, NAc.
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As for SB 242084, the 5-HT2A receptor antagonist M100907
also failed to affect reversal when infused in mPFC and NAc.
However, in contrast to SB 242084, intra-OFC infusion of
M100907 also failed to affect significantly any behavioral mea-
sure at any stage of the experiment. This supports the hypothesis
of a specific involvement of 5-HT2C receptors within the OFC in
certain aspects of cognitive flexibility and response inhibition,
particularly in those pertaining to compulsive responding. The
absence of M100907 effects on this behavioral paradigm does not
necessarily exclude the possibility that 5-HT2A receptor blockade
participates in the control of behavioral flexibility (even at the
doses used here). However, it may modulate aspects beyond
the scope of this study such as impulsive responding (Win-
stanley et al., 2004).

Another issue that needs to be considered is the contribution
of other brain structures in the mediation of behavioral flexibility
and response inhibition. Pilot studies have shown that lesions of
the dorsomedial striatum (but not the NAc) impair performance
in the same spatial reversal learning paradigm (Castane et al., in
press). Moreover, it has been reported that NMDA and cholin-
ergic receptor blockade in the dorsomedial striatum also disrupts
reversal learning (Palencia and Ragozzino, 2004; Ragozzino et al.,
2009). In light of this evidence, the involvement of the 5-HT2C

and 5-HT2A receptors in the dorsomedial striatum needs to be
investigated further.

There are relatively few studies investi-
gating the behavioral effects of serotoner-
gic manipulations within the OFC.
Roberts and colleagues have shown that
OFC 5-HT depletion in marmosets im-
pairs behavioral flexibility. In line with
this, OFC 5-HT depletion, produced by
5,7-dihydroxytryptamine, resulted in a
perseverative deficit in a detour-reaching
(Walker et al., 2006) and a visual discrim-
ination reversal learning task [marmosets
(Clarke et al., 2004, 2005, 2007, 2008),
rats (O. Lehmann, D. M. Eagle, D. H.
Theobald, J. W. Dalley, T. W. Robbins,
unpublished observations)]. Addition-
ally, OFC 5-HT depletion has also been
shown to produce stimulus-bound re-

sponding on other tests assessing flexible behavior such as con-
ditioned reinforcement and discrimination extinction (Walker et
al., 2009).

The results reported in the present study, namely that 5-HT2C

receptor blockade reduced perseverative responding by promot-
ing spatial reversal learning, is apparently at odds with the lesion
studies mentioned above. However, they are in line with the find-
ings of another study that assessed the effects of intra-OFC infu-
sions of a 5-HT2C receptor antagonist in an animal model of
OCD. In that study intra-OFC infusions of the 5-HT2C receptor
antagonist RS 102221 decreased “surplus” lever pressing in the
signal attenuation model, whereas a 5-HT2A receptor antagonist
did not produce any significant effects (Flaisher-Grinberg et al.,
2008).

This is not the only instance in which contrasting effects be-
tween 5-HT depletion and 5-HT receptor antagonism have been
reported. For example, recent studies showed no effect of 5-HT
depletion on the delayed discounting task (Winstanley et al.,
2003), whereas the 5-HT1A receptor agonist 8-OH-DPAT (shown to
turn off 5-HT release at autoreceptors) produces impulsive
choice (Winstanley et al., 2005). Therefore, although the discrep-
ancy could be attributed to task differences between lesion and
antagonist studies (e.g., differences in the modalities of the rever-
sal learning task used here and in Roberts and colleagues (Walker
et al., 2006; Clarke et al., 2004, 2005, 2007, 2008): object vs spatial
response reversal), such explanations would appear rather super-
ficial. A more interesting hypothesis could be that incomplete
5-HT depletion from OFC may result in 5-HT2C receptor super-
sensitivity [as may occur in OCD (Graf et al., 2003; Yamauchi et
al., 2004)], a possibility that could perhaps be investigated
through infusions of 5-HT2C and 5-HT2A receptor antagonists in
5-HT-depleted animals. However, the result may well depend on
a more complex interaction among 5-HT receptors that may
leave the antagonist to boost 5-HT neurotransmission in the
OFC. One way of addressing this speculative possibility is to ex-
amine the regional distribution and function of 5-HT receptor
subtypes in this structure, which, to our knowledge, has not yet
been done. It seems very likely, based on other functional studies
of OFC, that this structure contains many 5-HT receptor sub-
types (e.g., 5-HT1 postsynaptic, 5-HT1B, 5-HT2A and 5-HT2C,
5-HT4, 5-HT6 etc.). Unfortunately, there are no studies of ultra-
structural neuronal localization in OFC, although there are in the
mPFC; for example, Liu et al. (2007) showed how the 5-HT2A and
5-HT2C receptors are localized on different classes of GABA-
inhibitory and glutamatergic neurons. An important new study
by Calcagno et al. (2009) showed that there is a balance of 5-HT2A

Figure 4. A–C, Experiments 1–3. Number of trials to criterion through the retention phase (without reversal) (A), retention
(initial) phase (preceding reversal) (B), and reversal phase (C). Data are presented as mean values � SEM. Asterisks denote
significant differences (ANOVA; ***p � 0.001; **p � 0.01) from vehicle controls.

Figure 5. Mean error score � SEM of all groups (experiments 1–3) during each learning
stage of reversal performance (perseveration and learning). Asterisks denote significant differ-
ences (ANOVA; *p � 0.05; **p � 0.001) from vehicle controls.
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and 5-HT2C receptor activity in this re-
gion, which regulates the impulsivity re-
sponse to glutamate manipulations,
presumably via opposite effects on pyrami-
dal cells. Unfortunately, we cannot find any
evidence of an opposite effect of the 5-HT2A

receptor antagonist M100907 intra-OFC,
although we have shown that such an effect
occurs with systemic administration (Bou-
lougouris et al., 2008).

An understanding of how the 5-HT2C

antagonist benefits reversal learning will
ultimately depend on a closer under-
standing of how these receptors affect
neuronal function within the OFC. As
mentioned above, Liu et al. (2007) showed that these receptors
definitely occur in certain parts of the rat PFC and have charac-
teristic neuronal locations: this may suggest a similar pattern in
the OFC and remains an issue to be addressed in future. One
possibility is an involvement of 5-HT6 receptors, as it has been
shown that 5-HT6 receptor antagonists also enhance reversal
learning, although they appear to do so by affecting monoamines
and acetylcholine release in the cortex (Hatcher et al., 2005).
Another possibility worth considering arises from the finding
that 5-HT2C antagonists enhance neuronal activity in the dorsal
raphé, although this has so far been demonstrated to depend on
the descending influence of the habenula rather than the OFC
(Sharp et al., 2007). If this regulation also results from descending
influences from mPFC (Amat et al., 2005), then this may imply a
descending modulation of the dorsal raphé by OFC 5-HT2C re-
ceptors. Such an influence could actually enhance dorsal raphé
activity, which would help to explain the apparent paradox be-
tween our findings and the established effects of OFC 5-HT de-
pletion on reversal learning.

Reversal learning and OCD
The present findings may be relevant to various neuropsychiatric
disorders in which inflexible behavior is a feature. Although
OCD patients are not markedly impaired on simple reversal
learning that has been associated in animal studies with damage
to the OFC and to 5-HT-modulated mechanisms there, they have
impairments in other tasks sensitive to OFC function such as
alternation learning, a task related to reversal learning (Freedman
et al., 1998). They also show impairments on laboratory tests of
frontal lobe function involving response shifting and inhibitory
processing that correlate with the severity of their symptoms
(Veale et al., 1996; Rosenberg et al., 1997; Schmidtke et al., 1998;
Hollander and Rosen, 2000).

The serotonergic system is heavily implicated in OCD, for
example, via the therapeutic effects of the selective serotonin re-
uptake inhibitors (SSRIs) (Baumgarten and Grozdanovic, 1998;
El Mansari and Blier, 2006) and the 5-HT2 receptor families in the
pathophysiology of OCD as well as in the mediation of the anti-
obsessive effects of SSRIs (for discussion, see Boulougouris et al.,
2008). Neuroanatomically speaking, OFC is also implicated in
reversal learning and OCD, since abnormally reduced activa-
tion of the lateral OFC was recently reported during reversal
learning in OCD patients and their clinically unaffected close
relatives, supporting the existence of an underlying previously
undiscovered endophenotype for this disorder (Chamberlain
et al., 2008). Under these lines of evidence, the present finding
that the anticompulsive effect of 5-HT2C receptor blockade is
neuroanatomically specific and mediated within the OFC is crit-

ical for the clinical setting, as it bears on the issue of whether
5-HT2C receptor antagonism within the OFC might help under-
stand the biological substrate of a number of neuropsychiatric
disorders in which cognitive deficits are a feature (including
schizophrenia, depression, and OCD) and offer the potential for
additional therapeutic advances. The suggestion that blockade of
5-HT2C receptors in the OFC might alleviate obsessive-
compulsive symptomatology is in accordance with the hypersen-
sitivity of the 5-HT2C receptors noted in OCD patients (de Leeuw
and Westenberg, 2008) and the exacerbation of their symptoms
after activation of the same receptors (for discussion, see Boulo-
ugouris et al., 2008). However, a recent study assessing the effects
of chronic SSRI administration in rodents has suggested that the
anticompulsive effects of the SSRIs is mediated by enhanced
5-HT release in the OFC that activated normosensitive postsyn-
aptic 5-HT2 receptors (El Mansari and Blier, 2006).

Compulsivity versus impulsivity
The orderly effects described in this study with respect to persis-
tent behavior are of great interest in terms of the pharmacology of
the 5-HT2 receptors. Furthermore, they acquire additional be-
havioral and clinical importance because they define a pattern
that is quite opposite to that observed in corresponding studies of
measures of impulsive responding. Specifically, it has been shown
previously that it is the 5-HT2A receptor antagonist that reduces

Figure 6. A–C, Experiments 4 – 6. Number of trials to criterion through the retention phase (without reversal) (A), retention
(initial) phase (preceding reversal) (B), and reversal phase (C). Data are presented as mean values � SEM.

Figure 7. Mean error score � SEM of all groups (experiments 4 – 6) during each learning
stage of reversal performance (perseveration and learning).
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impulsive responding in the 5CSRTT, whereas the 5-HT2C

receptor antagonist exacerbates it (Winstanley et al., 2004).
These opposing effects on impulsivity have been shown to
be mediated in the NAc, but not in the OFC, prelimbic cortex,
or infralimbic cortex (Robinson et al., 2008). Moreover, intra-
mPFC M100907 mimicked the effects of its systemic administra-
tion in opposing changes in extracellular glutamate induced by
the NMDA antagonist CPP [3-(2-carboxypiperazin-4-yl)propyl-
1-phosphonic acid] and attentional performance deficits in the
5CSRTT, indicating that 5-HT2A receptors of the mPFC are
mainly involved (Ceglia et al., 2004; Carli et al., 2006). These
reports, combined with our finding that the enhancing effects of
5-HT2C receptor antagonism in reversal learning is mediated in
the OFC, suggest that it is possible to dissociate, neuroanatomi-
cally and neurochemically, impulsive from compulsive behavior
in the relationship of which sustains much debate in the psychi-
atric literature relevant to OCD and attention-deficit hyperactiv-
ity disorder.
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