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A Neural Basis for Motor Primitives in the Spinal Cord

Corey B. Hart and Simon F. Giszter
Neurobiology and Anatomy, College of Medicine and School of Bioengineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania 19104

Motor primitives and modularity may be important in biological movement control. However, their neural basis is not understood. To
investigate this, we recorded 302 neurons, making multielectrode recordings in the spinal cord gray of spinalized frogs, at 400, 800, and
1200 pm depth, at the L2/L3 segment border. Simultaneous muscle activity recordings were used with independent components analysis
to infer premotor drive patterns. Neurons were divided into groups based on motor pattern modulation and sensory responses, depth
recorded, and behavior. The 187 motor pattern modulated neurons recorded comprised 14 cutaneous neurons and 28 proprioceptive
neurons at 400 wm in the dorsal horn, 131 intermediate zone interneurons from ~800 wm depth without sensory responses, and 14
motoneuron-like neurons at ~1200 ywm. We examined all such neurons during spinal behaviors. Mutual information measures showed
that cutaneous neurons and intermediate zone neurons were related better to premotor drives than to individual muscle activity. In
contrast, proprioceptive-related neurons and ventral horn neurons divided evenly. For 46 of the intermediate zone interneurons, we
found significant postspike facilitation effects on muscle responses using spike-triggered averages representing short-latency postspike
facilitations to multiple motor pools. Furthermore, these postspike facilitations matched significantly in both their patterns and
strengths with the weighting parameters of individual primitives extracted statistically, although both were initially obtained without
reference to one another. Our data show that sets of dedicated interneurons may organize individual spinal primitives. These may be akey

to understanding motor development, motor learning, recovery after CNS injury, and evolution of motor behaviors.

Introduction

If movement organization was a simple problem, biomorphic
robots would arguably be more animal like, more agile, and re-
semble robots of popular imagination. The degrees of freedom
(DOF) problem may be a factor in this disparity. Musculoskeletal
redundancy and neural complexity represent control problems
for motor systems, as first discussed by Bernstein (1967). Such
complexity remains a concern (Abbott, 2006). However, animals
cope efficiently with their degrees of freedom. A newborn wilde-
beest can walk shortly after birth. The spinal cord of a headless
frog or a spinalized turtle can organize complex trajectories
(Fukson et al., 1980; Giszter et al., 1989) (for review, see Stein,
2005), and rapidly correct for perturbations (Kargo and Giszter,
2000b). Such remarkable spinal cord capacities may originate in
modular control schemes. Spinal-driven motions may be con-
structed with small sets of primitives and pattern generators
(Grillner and Wallen, 1985; Mussa-Ivaldi, 1992; Mussa-Ivaldi et
al., 1994; Kiehn et al., 1997; Lemay et al., 2001; Schouenborg,
2002; d’Avella et al., 2003; Grillner, 2003; Hart and Giszter, 2004;
Lemay and Grill, 2004; d’Avella and Bizzi, 2005; Chhabra and
Jacobs, 2006; Bizzi et al., 2008). Modularity impacts how flexible
motor behaviors arise and evolve (Wagner and Altenberg, 1996;
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Bateson, 2004; Schlosser and Wagner, 2004) and interactions of
brain and spinal cord (Callebaut and Rasskin-Gutman, 2005).
The neural basis of modularity affects development of skilled
movements (Burdet and Milner, 1998; Sosnik et al., 2004; Schaal
and Schweighofer, 2005) and determines how flexibly the ner-
vous system copes with injury and aging (Krebs et al., 1999; Ro-
hrer et al., 2002). These ideas may extend from motor control,
into development, morphology, vocalization, and evolutionary
psychology (Mowrey and MacKay, 1990; Samuels, 2000), but
modularity is controversial (Giszter et al. 2009, Tresch and Jarc,
2009). Modularity could simply represent task structures and/or
optimal control outcomes using a redundant limb (Sanger, 1994,
2000; Todorov, 2004; Todorov et al., 2005; Chhabra and Jacobs,
2006). Conversely, modularity might represent strategies built
into the CNS structure a priori. Support for modularity comes
from statistical analysis of motor patterns (Hart and Giszter,
2004; d’Avella and Bizzi, 2005; Cappellini et al., 2006; d’Avella
et al., 2006; Krouchev et al., 2006), from stimulation (Bizzi et al.,
1991; Giszter et al., 1993; Mussa-Ivaldi et al., 1994), and from phys-
iological tests (Kargo and Giszter 2000b, 2008; Lafreniere-Roula
and McCrea, 2005). Experimentally, discrete units in motor pat-
terns can be adaptively recruited or deleted in behaviors (Giszter
and Kargo, 2000; Kargo and Giszter, 2000b; Stein, 2005, 2008).
However, the precise neural underpinnings of the modularity
observed are unknown.

We here attack this issue using multielectrode neural record-
ing and information-based analyses of motor patterns. We hy-
pothesized that specific neural activities associate with primitives.
Following our previous work, we define a primitive as a pulsed
premotor drive of fixed duration that recruits a covarying set
of muscles, yielding force patterns typical of force-field prim-
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itives (Kargo and Giszter, 2000b, 2008; Hart and Giszter,
2004). Activity strongly matching such drives would be con-
sistent with a relatively direct implementation of discrete
modules in the neural circuitry, possibly as result of evolution-
ary selection and constraints.

Materials and Methods

All work was conducted in accordance with United States Department of
Agriculture and National Institutes of Health guidelines for animal use
and with Institutional Animal Care and Use Committee approval and
oversight. We recorded neural activity from 16 spinalized frogs, proceed-
ing as follows.

Surgical methods. We anesthetized large adult bullfrogs using 0.3 ml of
5% tricaine and placed them on a bed of ice to quicken the anesthetic
effect. Making an incision along the dorsal midline of the skin on the skull
from the midpoint of the eyes to the midpoint of the ears, we reflected
back the skin and held it in place with forceps. We made an incision in the
muscles behind the base of the skull along the midline, deepened it, and
deflected the musculature at the incision using a retractor, until the fo-
ramen magnum was exposed. After opening the foramen, we cauterized
the vascular dura over the fourth ventricle and pulled aside the cauterized
dura. We then aspirated a section of spinal tissue in a straight, lateral line
immediately below the medulla of the frog, taking care not to rupture any
of the remaining dura or large blood vessels along the sides of the incision
or underlying the spinal tissue. After completing the transection, we filled
the cavity with a piece of Gelfoam and closed the incision. We next made
a small opening over the brain and decerebrated the frog at a low level
through repeated applications of heat cautery to the tectum and rostral
structures. Packing the small holes with Gelfoam, the incision was closed
with wound clips and then sealed with vet bond. We inserted bipolar
intramuscular electromyogram (EMG) electrodes, as described in previ-
ous work (Hart and Giszter, 2004), in 10 muscles of the frog right hind-
limb. These muscles are as follows: the rectus anterior (RA), rectus
interior (RI), adductor magnus (AD), semimembranosus (SM), gluteus
(GL), vastus internus (VI), biceps (BI), sartorius (SA), vastus externus
(VE), and semitendinosus (ST).

To expose the spinal cord for recording with our probe, we made an
incision on the mid-to-lower back of the frog’s skin and musculature and
reflected the skin back. We incised fascia and with blunt dissection sep-
arated the back musculature and kept the muscles deflected via retrac-
tors. Other vertebral musculature was cleared using blunt dissection and
iridectomy scissors until the bone of the vertebral arches was cleanly
exposed. After clearing connective tissue, we used rongeurs to cut away
the spinal arch and spinous processes, revealing the dura beneath. We
removed between two and three arches, exposing the L2/L3 border re-
gion of the frog spinal cord.

We covered the dura with moistened Gelfoam and a cotton ball. The
frog was allowed to recover for 1 d. On the day a recording was to be
made, we used electrocautery to cauterize small patches of blood vessels
in the vascular dura. We then opened a small hole in the dura using an
additional electrocautery, which we expanded until it became possible to
deflect the dura and the attached blood vessel back, revealing the spinal
cord pia mater for a length of two or even three spinal segments. This
allowed full access to approximately half the width of the spinal cord,
from the midline to the right lateral extreme of the cord.

EMG recording. EMGs were recorded from the right hindlimb. They
were high-pass filtered using A-M Systems amplifiers, with a low-
frequency cutoff at 100 Hz. EMGs were amplified by a gain 0of 10,000, and
recordings were made at a sampling rate of 2 kHz using the analog chan-
nels of a 128 channel Cerebus recording device from Cyberkinetics and
saved to the hard drive of the computer. Wiping movements were elicited
through light pinch stimulations delivered via blunted and insulated
forceps to the frog’s ankle or brief electrical skin stimulation at the ankle
dorsum. Unlike previous work on wiping, multiple stimuli were applied
in succession: the frog spinal cord was thus not fully quiescent at the time
of the last stimulus given. This regimen elicited more rich motor patterns
than previous stereotyped wiping recordings (Kargo and Giszter, 2000b,
2008), consistent with that described by Hart and Giszter (2004). Neural
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recordings were made in a 10-30 s interval after stimulus delivery. Be-
tween 50 and 100 stimuli were delivered in the course of an experiment,
with at least 30 s between stimulus applications. EMGs and neural
records were concatenated for the ensuing analysis, with the number of
records/trials concatenated ranging between a minimum of 20 and a
maximum of 100. Unfiltered rectified EMG records were checked for
evidence of crosstalk by examining the independent components analysis
(ICA) results for unfiltered EMG [the identity matrix results in the ab-
sence of crosstalk (Hart and Giszter, 2004)] and examining short-latency
cross-correlation. We found no evidence for significant EMG crosstalk
with our electrode placements.

Probe construction and neural recording. Probes that comprised collec-
tions of up to six tetrodes (thus 24 channels) arrayed uniformly around a
central tungsten shaft were used to record neural activity. Tetrode im-
pedances were set to between 1 and 1.5 M) by controlled gold plating.

Probes were inserted at the L2/L3 border at 500 wm lateral from the
midline and the cluster of tetrodes advanced to 400, 800, or 1200 wm
depth. The placement at 800 wm was squarely in the intermediate zone.
This location placed the probe near the region described by Bizzi et al.
(1991) and Giszter et al. (1993): a location where microstimulation
proved highly effective at evoking relevant, primitive associated force
fields. After placement of the probe in the spinal cord at each level, we
checked isolated neural activity for cutaneous or proprioceptive re-
sponses by stroking and pinching regions of the frog’s skin and by pal-
pating leg muscles. Offline cluster cutting was performed using Plexon
Neurotechnology Research System’s Offline Sorter. We identified the
principal components (PCs) of 1.6- ms-long waveforms centered on
each recorded spike and used the identified factor loadings to sort spikes.
Spikes were sorted using clustering of the first four PCs of the activity of
the tetrodes. Wave shape variability was modeled by a ¢ distribution, and
this was used in an automated, expectations maximization-based sorting
(Wheeler, 1999; Shoham et al., 2003; Gold et al., 2006).

In 12 frogs, we recorded up to 24 channels of neural activity at a time in
a single six-tetrode probe. In four additional frogs, we implanted and
recorded simultaneously from two probes. One probe and its electrodes
were always placed at the border of the L2/L3 spinal segment in all 16
frogs. In total, we recorded 302 neurons (10-30 per frog in each of the 16
frogs). Of these 302 neurons, 187 responded to sensory stimuli in the
quiescent frog or were actively modulated in firing rate during spinal
behaviors.

Sensory classification. We qualitatively assigned neurons into catego-
ries by sensory modality, classifying them as having cutaneous, proprio-
ceptive/limb configuration related or mixed responses. We qualitatively
surveyed responses to gentle skin stimulation with a stylus or stiffer von
Frey hair (cutaneous), to muscle palpation (muscle proprioceptive), and
to gentle limb motions (joint related/proprioceptive).

We defined as “strongly rate-modulated units” those units whose fir-
ing rate was deviated by >2 SDs from their mean resting rate, either when
the frog was stimulated in sensory testing or in elicited active behaviors
(see below).

Analysis focused on the 187 strongly rate-modulated neurons we re-
corded. The 131 neurons recorded in intermediate zone displayed no
simple and repeatable sensory fields, in contrast to many of the 400 wm
depth recordings and no clear 1:1 muscle responses that might indicate
that they were motoneurons, in contrast to some of the recordings at
1200 pm. The 131 selected neurons thus qualified as putative interneu-
rons (INs). A subset of these were likely premotor interneurons based
on spike-triggered averaging (STA) tests (see below). Apart from their
depth and status as potential interneurons, this population was un-
identified in terms of whether they were ipsilaterally or contralaterally
projecting neurons, excitatory or inhibitory neurons, or any other
classes of interneuron known before our analyses. However, we do
know they did not respond proprioceptively or cutaneously in quies-
cent frogs, suggesting no strong group I or II inputs at rest. Spike-
triggered averaging (see below) also indicated functional connections
of some such interneurons to motor pools, either directly or through
other intervening INs.

EMG analysis/identification of components or primitives. To examine
modularity of motor pattern, we here used the same statistical techniques
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Table 1. The stability and correlation of the muscle ratio parameters for components across frogs

Top 3 muscles Mean M, /M, Mean M; /M, Median top three muscle Coefficient of variation (%) of
in component M, /M, ratio SE M; /M, ratio SE parameter correlations across frogs activation level across trials
BI, SA, VE 0.4472 0.1587 0.9597 0.1697 0.8932 52.1895

SM, AD, RA 1.0347 0.2229 1.8072 0.3195 0.9587 85.9654

ST,RA, VE 12514 0.4092 0.8790 0.1554 0.9466 90.0926

GL, SA, AD 0.3916 0.1910 1.5994 0.2827 0.9934 57.5303

VI, SA, AD 1.2254 0.2073 1.1324 0.2002 0.7030 65.8259

RI, AD, SA 12973 0.2726 0.9789 0.1731 0.9360 81.2818

as we used previously (Hart and Giszter, 2004) (see Figs. 1, 2). We began
with raw and rectified and filtered EMG.

We define a primitive as a premotor drive that recruits a covarying
group of muscles that remain in fixed proportions through their recruit-
ment, occurring in a fixed-duration pulse (for mathematical description,
see Kargo and Giszter, 2008, their Appendix). In all studies to date in
frogs, we have always observed pulsed activation of such premotor drives
in 250275 ms bursts. Such a pulsed drive acting alone leads to a muscle
activation, which in isometric conditions generates a scaled constant-
structure force field at the limb endpoint (Kargo and Giszter, 2000b). In
free-limb conditions, the effect can be described as a viscoelastic force
field. These premotor drives can be examined physiologically (Kargo and
Giszter, 2000b, 2008) or extracted from the motor pattern with various
techniques (Hart and Giszter, 2004).

We extracted such primitives [corresponding to “premotor drives”
(Hart and Giszter, 2004)] from the muscle patterns using the statistical
signal processing method of ICA (Bell and Sejnowski, 1995; Brown et al.,
2001; Hart and Giszter, 2004). We used an 80-point tapered root mean
square filter to the 2 kHz EMG recordings and downsampled the results
to 250 Hz for ICA. The specific implementation of this infomax algo-
rithm can be found at http://sccn.ucsd.edu/eeglab/. This implementation
uses the observation that mixtures of sources tend toward Gaussian-
shaped distributions. Independent components are identified by itera-
tively extracting components whose distributions are less Gaussian than
those of the preceding step. ICA as used here extracts estimates of the
synchronous drives to sets of EMGs by assuming that they represent
distinct information sources. The resulting extracted independent com-
ponents found here strongly resembled the data already published by
Hart and Giszter (2004), in both their temporal patterns and the compo-
nent weights in their weight matrices (see below). The ICA-extracted
groups of muscles also closely matched the groups of muscles identified
by other means. For example, we have shown that groups of muscles in
muscle activation patterns in spinal frogs during adjustments, correc-
tions, and deletions in motor patterns behaved as units (Giszter and
Kargo, 2000; Kargo and Giszter, 2000b, 2008). ICA extracted these same
units. We retained the top six components, which reconstructed 85-95%
of variance. We constructed a global template matrix representing the
average contribution of each extracted primitive to the set of muscles
using data from 24 previously recorded frogs. The average column-by-
column (columns correspond to the weights of each component) corre-
lation of each mixing matrix obtained here with this template matrix
from previous work was 0.85 (median, 0.84), with an SD of 0.0709. In
addition, we tested the stability of parameter ratios in the top three mus-
cle parameters matched in the extracted components across frogs in the
data used here, using the ratiometric method developed by Kargo et al.
(2009, their Fig. 10). We also examined the correlation of the muscle ratio
parameters. Median correlations range from 0.7 to 0.99. This analysis is
presented in Table 1. The coefficient of variation of each corresponding
component activation pattern across the frogs’ activations is presented in
the last column. To examine the richness of activations of components
relative to one another in the frogs tested, we then performed a principal
components analysis (PCA). We used PCA on the top six activations
from the data (i.e., those with their component weights analyzed in Table
1). Our rationale for this analysis was that it was conceivable that, despite
the informational measure independence discovered with ICA, there
could nonetheless be significant stereotypic covariance of components
in, for example, very standard wiping (Kargo and Giszter, 2000b, 2008),

which would be revealed in a PCA-type analysis. Although this is usually
not the case in such analyses (Cappellini et al., 2006; Tresch et al., 2006),
it was nonetheless possible. An isometric wipe with three primary com-
ponents would then have a significant fraction of the total variance in the
component activation patterns captured with the first two or three com-
ponents, implying a dimensionality of two or three in the PCA. We found
that the PCA showed variance fairly evenly distributed among the
orthogonal principal components, i.e., dimensionality reduction to a
simpler linear subspace was not possible. We also plotted independent
components directly against one another and saw that trajectories
showed significant space filling and little obvious simple structure (sup-
plemental Fig. 1, available at www.jneurosci.org as supplemental mate-
rial). The independent component activations thus ranged over the
activation space and showed rich combinations of activation patterns. If
only highly stereotyped patterns were elicited, with strong muscle co-
variation, the dimensionality of activation would have been significantly
reduced in the principal component space and likely revealed in cross-
plots of component activations.

We thus used the results of ICA decompositions to obtain rich drive
patterns (the activations) representing primitives, which were used to
compare how the recorded neural activity was related to the extracted
drives and to the original EMG recordings. Raw (unfiltered) EMG activ-
ity and simple unfiltered but rectified EMG activity were retained for the
spike-triggered averaging (described below) without down sampling.

Smoothing and binning of neural activity for rate measure. Neural activ-
ity of single neurons was binned (15 ms bins) using standard criteria
(Moddemeijer, 1997; Paninski, 2003) to obtain firing rates estimates.
Continuous neural firing rate functions were estimated by binning neu-
ral time stamps using a sliding window of 15 ms width. We used a unity
Gaussian weighting of spikes as a function of distance from the window
center (with a Gaussian o or SD of 2 ms). To estimate rate at the center,
we then summed the weighted values of the spikes in the window. Effec-
tively, this rate calculation ignored spikes >7.5 ms (or 3.75 o for the
Gaussian) away. This scheme follows the work of Abeles (1982). Contin-
uous waveforms were created by advancing the window, one time stamp
at a time, to the end of the record, performing this smoothing operation
at each step. The mean value of the resulting continuous waveform across
fixed-duration (15 ms) bins was then used in subsequent discretization
and binning. Firing rates were highly variable over time, with very sparse
firing the rule rather than the exception. After application of the wipe stim-
ulus, firing rates usually increased dramatically. Similar stimulus-locked
variability in firing rate is also seen in cortical neurons (Schaette et al., 2005).
We examined the fano factor F (the ratio of the variance of a process to its
mean) for the rates. It represents a measure of departure of the rate process
from Poisson statistics, wherein the mean and variance are equal:

F=du, (1)
where o2 is the rate variance and g is the mean rate.

For binning intervals of 10, 15, 30, and 50 ms, the average = SD fano
factors were 0.9915 = 0.095, 1.0566 * 0.0580, 1.1029 * 0.1542, and
1.2193 * 0.3226, respectively.

Linear regression measures of association. Regression coefficients, and
variance accounted for, were used to examine and compare linear
associations of neural activity, EMG, and components. These were
calculated in MATLAB using standard methods. Multivariate regres-
sions, when used, were obtained using the MATLAB mvregress func-
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tion for diagonal parameter models and the GLMfit function for full
parameter matrix fits.

Estimation of information measures. Shannon information is a measure
of the capacity of the firing pattern of a neuron (i.e., a communication
channel) to encode information or patterns of symbols and the novelty
and probability of these patterns. Mutual information (MI) is a measure
of how much of the Shannon information is held in common between
two or more channels, or neurons (Moddemeijer, 1989, 1997, 1999;
Paninski, 2003). The idea is that low probability patterns that occur in
both of two channels may represent significant common messages in the
channels and a relationship between the channels.

Measures of MI examine linear and nonlinear correlations among
neurons and are agnostic about the precise timing between the patterns
of information among the channels or neurons. As such, mutual infor-
mation measures can form a broad “net” to capture and compare many
different associations of activity across a population of active neurons,
without any a priori selection or classification of the neurons. We used
the measures in this way in populations of neurons to compare their
associations with EMG and components at different depths and after
sorting into groups, e.g., based on sensory field responses (see Fig. 2).

The patterning of symbols that is used for making estimates of infor-
mation and mutual information depends both on spike binning and how
symbols are assigned to the spike rates of the bins, i.e., how it is assumed
that information is encoded. We do not yet know how best to think about
the neural coding of movement in spinal interneuron populations. Ac-
cordingly, we performed analyses of mutual information using both nor-
malized and absolute firing rates. In the normalized analysis, the peak
firing rates of all neurons were scaled to 1. For absolute firing rates, the
level binning for all neurons was based on the highest rate observed
across recordings of neurons in that frog (i.e., relative to the fastest firing
neuron in the recordings). This second method of setting levels was for us
most relevant in interneuron clusterings of information, which are not
presented here. However, we note the method here because basic find-
ings presented here did not differ qualitatively between analyses with the
two different methods of symbol generation. Firing rates were converted
to a symbol string representation following the methodology of Abeles
(1982). Amplitudes were divided into eight level ranges, each level cor-
responding to a unique symbol. The time axis of each waveform was
divided into bins of width 15 ms (as in the Gaussian smoothing step). The
mean amplitude of each firing rate waveform within each bin was calcu-
lated, and the resultant number was, depending on its value, assigned to
the appropriate level range and to one of the eight symbols defined above.
EMG or component activity was converted to a symbol string represen-
tation according to identical criteria. We also tested mutual information
using 12 level ranges, but this did not alter our results. Our basic findings
also did not differ in any major ways between the 15 and 30 ms binnings.

We here present the analysis of normalized firing rates for 15 ms bins
chosen for calculation of mutual information using the methods out-
lined by Paninski (2003) and Moddemeijer (1997). We used the Modde-
meijer algorithm for calculation of mutual information (code available at
http://www.cs.rug.nl/~rudy/matlab/), which incorporates both bias es-
timation and its removal. Mutual information was calculated between
symbol string representations of spike firing rates, EMG, and IC, using
the information toolbox for MATLAB developed by Rudy Moddemeijer
(http://www.cs.rug.nl/~rudy/matlab/index.html).

Information was estimated by binning the number of occurrences of
each symbol in a two-dimensional histogram. One axis of the histogram
represents either the EMG or IC variable, whereas the other axis repre-
sents the neural firing rate. The mutual information between the two
series of variables is then estimated by the double sum over the joint
probability of the two variables times the logarithm of the quantity rep-
resented by joint probability divided by the marginal probabilities of
those variables, that is:

N N
P(xh}’j) >
MI = — xpy)log)| ————~), 2
SSpns(ilinn) ©
where each x; represents a range of values (i.e., binned and transformed
into a given symbol) for the EMG (or IC), and each y; represents a range
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of values for the firing rate and p(x;) the probability of x;, p(y;) the prob-
ability of y,, and p(x;,y;) the joint probability of x;and y;. Because each cell
in the histogram may not necessarily be occupied, the estimate of the
mutual information may incur a not insignificant bias (Miller, 1955). A
bias correction term, proportional to the number of occupied cells di-
vided by the number of counts in those cells, may be subtracted off to
improve the mutual information estimate (Moddemeijer, 1997):

(number of cells, — 1)(number of cells, — 1)
Total Counts ’

(3)

bias =

Jackknifing of the concatenated symbol string data was performed by
dropping out a portion of the data, here a single trial for each iteration
and calculating the MI as described above. We then repeat the procedure,
dropping out another trial portion of the string and recalculating the ML
This procedure was performed for all trials in a frog recorded with the
neuron (15-50 trials), and the average and SD of the set of jackknifed
mutual information values were calculated. The median to mean ratio of
these mutual information estimates always lay in the interval 0.8—1.2,
and, in 90% of neurons, median to mean ratios lay in the interval 0.9-1.1,
which we took as an indication of near symmetric distributions and
approximate normality.

We constructed a matrix of mutual information values between sym-
bol string representations of each independent component/primitive de-
rived from the EMG and the symbol string representation of the firing
rate of each cell. The best associated (highest mutual information) com-
ponent—cell pairing of each cell was identified from this matrix. The
dominant four muscles present in each component/primitive and mu-
tual information values with these muscles were then also examined for
each muscle—cell pairing. The mutual information (with the cell firing
rate) of the best associated and worst associated muscle in each set of four
were retained for comparison with the highest mutual information val-
ues for the component.

Mutual information comparisons. To compare mutual information
values in our data analysis, we used a jackknife procedure to determine
statistical significance of mutual information differences. We then clas-
sified cells as significantly better related to components/primitives, sig-
nificantly better related to individual muscles, or indeterminate. We
examined the variance in the mutual information estimates in our data
by successively omitting each of the trials of the 15-30 trials in a frog, as
described in the preceding section. We used the individual variances of
two series MI estimates, in combination, to calculate whether the esti-
mated value difference was significant. We calculated the perpendicular
distance d of the coordinate pair [MI,, ML,] (of the mean mutual infor-
mation values from jackknifing) from the equality line. We then com-
pared this with the distance defined by 2 SDs, estimated from the
summed variance. The difference thus was considered significant if

Abs(MI, — MI,)
d= — 5 > 2/(Var, + Var,). (4)
!

If d for jackknifed mutual information comparisons was >2 SDs and the
difference was positive, then the difference of cell/component and cell/
EMG were identified as “associated with series 1.” If the difference was
>2 SDs below 0, they were identified as “associated with series 2.” If d was
<2 SDs, the cells were considered indeterminate. In practice, variance
was low in MI estimates, and few to no cells were “indeterminate.” We
then compared the numbers of cells in specific recorded populations
(e.g., cutaneous dorsal horn cells) that fell in each of the two significant
difference categories, assuming equal probability of each type of signifi-
cant difference and used standard Z scores to test the population for
significant differences from chance under this assumption.

Comparison of proportions of mutual information. Proportions of mu-
tual information were estimated and compared for the best components
and for the highest and lowest information EMGs associated with the
component. The mutual information as a proportion of the lowest Sh-
annon information obtained from either the component or EMG series
was then calculated.
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Shannon self-information or entropy of each series was calculated in
the standard manner as

N
I= - EP(xi)Ing(P(Xi)), (5)

i=1

where p(x;) is the discrete probability of symbol x;.

The rationale for this comparing of proportions as well as absolute
values is as follows: MI obeys some basic constraints. If we examine
MI(A, B) for two sequences of variables A and B, then MI(A, B) cannot
exceed the lesser of I( A) and I( B), where I is the Shannon information.
The difference of MI( A, B) from total information of I(A) or I(B) is a
noise entropy term, which we will term I(Noise):

I(A) = MI(A,B) + I(Noise,),

, (6)
I(B) = MI(A,B) + I(Noisej).

Conceivably, a neuron series N could have a higher mutual informa-
tion with one series A of high entropy but also have a high noise entropy,
although having lower mutual information with a second series B but
also a very low noise entropy.

The fractional mutual information for a neuron series N with a series
A, forI(N) >1(A), [which mostly held true (see Fig. 4 A)], is given by the
following:

MI(A,N)/I(A) = MI(A,N)/(MI(A,N) + I(Noise,)). (7)

For the second series ( B), the fractional mutual information from Equa-
tion 7 would be close to 1, whereas for the first series (A), it would be
much smaller. Most information in series B would be accounted for by
the information in N, whereas proportionately much less in series A was
captured. To account for these possible disparities, which intuition
suggests could potentially be functionally important, we examined
fractional as well as absolute mutual information in our comparisons
here. Jackknifing was used to estimate variance of the proportion
values calculated as it was for mutual information and thus to evalu-
ate significant differences.

Spike-triggered averaging analysis. In a final phase of analysis, we ex-
amined all neurons with strongly modulated firing rates for STA effects
in motor pools. STA can often reveal short-latency neural postspike fa-
cilitations to motor pools, by averaging the EMG signals (Fortier, 1994).
This approach allowed us to look more directly at the relation between
neural spiking and muscle recruitment in the recorded interneurons. We
used STA applied to raw and to rectified, but unfiltered, variance nor-
malized EMGs. Following Fortier (1994), significance of STA effects was
calculated by standard methods based on preceding baseline variance to
obtain confidence intervals and persistence of the average signal above
this level for several successive samples. A 30 ms interval of EMG record
of 15 ms before each spike and 15 ms after each spike was excised and
retained for averaging. Baseline activity and its variance were calculated
using a 10 ms window of points between —15 and —5 ms from each spike
used in the calculation. Significant peaks in the resulting spike-triggered
averages were identified using Fortier’s criterion of at least three points
above a threshold defined by 2 SDs above the mean baseline value, using
at least 500 spikes. Chronux, a package of analytical tools available at
http://www.chronux.org/, was used to perform the spike-triggered aver-
aging on EMG data and to determine the significance of spike-triggered
averaging results in this way. Chronux determines significance of STA by
a bootstrap technique for baseline variance, compiling 20 windows of
EMG data before the spike time to estimate SD for the baseline. Forty-six
neurons were recorded from the intermediate zone with firing patterns
that supported significant STA effects. Several (14) neurons recorded in
the ventral horn were also examined for comparison, and these each had
significant facilitations to only one muscle at shorter latency. We cannot
definitively state that these were motoneurons because we did not back-
fire them from muscle, but the response latency is consistent with this
classification. All 46 intermediate zone neurons with strong and signifi-
cant facilitations either had >500 spikes across the recording sessions
(most neurons) or showed statistically significant STA results using the
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Chronux analysis package criteria (http://www.chronux.org) with
slightly fewer spikes. Finally, we compared the similar shapes of STA
waveforms from these interneurons with those obtained from spike-
triggered averaging of EMGs that were obtained from STA triggered by
individual muscle motor units recording with single-unit intramuscular
electrodes (supplemental Fig. 2, available at www.jneurosci.org as sup-
plemental material).

Comparisons of STA and component matching. Vectors of parameters
from STA and from ICA were compared by binary inner product corre-
lations and by regression analysis. For binary inner product correlations,
a vector of length 10 (the number of recorded muscles) with all but the
four most significant weights of the component set to 0 and the four most
significant weights set to 1 was constructed. This binary component vec-
tor was then correlated with the binary STA vector. The binary STA
vector was also of length 10. For all significant STA facilitations, the value
was 1 and 0 elsewhere. The number of STA facilitations observed did not
exceed six. A standard correlation from 0 to 1 was then obtained for the
best binary component and STA vector pairings. The distribution of
these correlations was next compared with the distributions of correla-
tions of components to randomly generated distributions of STA vectors.
We made 1000 drawings from two random distributions: (1) drawing
four muscles from a uniform distribution with equal likelihood of each
muscle and (2) drawing from a distribution with each muscle repre-
sented in proportion to the number of times it occurred in components
multiplied by the number of occurrences of each such component in the
best mutual information associations with neural data. The cumulative
distribution of the measured data and the cumulative distributions of the
randomly generated data were compared with the Kolmogorov—Smirnov
test. The random draws were not significantly different from each other,
but each differed significantly from the observed data.

For regression analysis, we proceeded as follows. We regressed in log—
log coordinates to allow for nonlinear effects in the data. First, we simply
regressed significant STA facilitation levels above baseline with the
matching component weight ignoring the other STA or component
weights. That is, each weight/facilitation match was treated indepen-
dently. Next, we performed a multi-input multi-output multivariate re-
gression with each neuron having four components and weights and the
regression parameters constrained to be diagonal. Finally, we relaxed this
constraint and allowed off-diagonal parameters in a similar regression.
The diagonal parameters of all regressions were large and significant, and
variance accounted for was 0.44 or better in each regression.

Results

We made simultaneous recordings of EMG activity and multi-
electrode neural activity in the superficial gray (400 um), the
deep intermediate zone (800 wm), and the upper ventral horn
(1200 wm) of the spinal bullfrog. Recordings were made at the
L2/L3 border at ~500 wm lateral to the midline. Figure 1 shows
examples of EMG and isolated interneuron spike train rasters
from deep intermediate zone in a frog. Recordings occurred un-
der isometric but unparalyzed conditions. We extracted indepen-
dent components from muscle activity using infomax ICA (Bell
and Sejnowski, 1995; Hart and Giszter, 2004). These extracted
components represent estimates of premotor drives. All time se-
ries (EMG, components, and neural rates) were normalized to a
range from 0 to 1. We then proceeded to relate neural activity to
the EMG and to the components-based representations of motor
activity using the analysis scheme in Figure 2. No strongly rate-
modulated active neurons were omitted from this analysis, but
analyses were performed with cells grouped by region of gray
based on depth and by presence or absence of quiescent sensory
responses within a region.

We tested both linear methods and mutual information-
based analyses. When we compared multiple linear regressions of
neural firing with independent components and with associated
EMG, we found that regression coefficients were generally very
weak (Fig. 4 B examines regression coefficients in the population
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Figure1.  Datatypesand processing used in the study. 4, Recordings were made using a custom tetrode system. Individual units were
isolated using PCA and EM algorithms incorporating the tetrode co-occurrence and covariations. Sample waveforms of four units from the
highest amplitude tetrode channels are shown in each trace 1— 4 for units whose rasters are shown with all 17 channelsisolated ina frog in
B. Multielectrode single and multiunit activity was recorded at 400 -500, 700 — 800, and 1000 —1200 wum depth at the L2/L3 segment
borderin a spinalized frog. B, Typical rasters of spike activity in a frog. (~G show sample data recorded in two trials (Trial 1, (=E; Trial 2, F,
G): G, raw EMG; D, integrated and filtered EMG recordings; E, rasters on the corresponding trial; F, rasters on a second trial in the frog. Note
general crude resemblance of firing structures in E-G from a second frog. G, Estimated rate from a unitin F using a Gaussian filter. H, Sites
in spinal cord from which data were obtained: dorsal horn (DH), 400 wm; intermediate zone (IZ) gray, 800 wm; ventral horn

(VH), 1200 um. Recording occurred along penetrations at the L2/L3 border 500 pm from the midline.
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of cells recorded in intermediate zone at
800 wm depth). On average, recorded
spiking activity accounted for <10% of
motor pattern variance. There were also
no significant differences in any tested re-
gion of gray among the number of cells in
the population that were evaluated as sig-
nificantly better related to either muscle
activity or independent components us-
ing linear regression. We therefore fo-
cused on information-based techniques
in subsequent analysis.

Response patterns across depths

Results with Shannon information were
significantly different in different regions
of gray and showed differences between
the association of neurons with muscles
and components, contrasting with the lin-
ear regressions. Three sensory tests were
performed before the initiation of wiping
and other behaviors at each recording
depth. We were concerned that cells sen-
sitive to different sensorimotor modalities
might relate differently to EMG and com-
ponent activity at different recording
depths and we expected different modali-
ties to have disparate representations at
different depths. We first examined neu-
ral responses to gentle palpation of mus-
cles of the hindlimb. We second examined
cutaneous responses using gentle stroking
with a blunt wooden stylus along the
length of the skin of the thigh and shank,
applying minimal pressure during the
stimulation. We third observed responses
to slowly moving the limb around the
workspace. In each instance, neural re-
cordings and evoked EMG activity were
obtained and spikes were sorted as de-
scribed in Materials and Methods. In no
instance did we observe any limb move-
ment or systematic EMG responses dur-
ing gentle palpations or light touch, nor
any systematic EMGs in response to slow
and gentle imposed limb movement.

Dorsal horn

At the shallowest depth (400-500 wm),
significant neural activity was observed in
response to all sensory/proprioceptive
manipulations. One hundred nine total
units, as identified from tetrode classifica-
tions using the Shoham algorithm, were
recorded at this depth. Of these 109 units,
42 units demonstrated strongly rate-
modulated activity (as defined previ-
ously) during the sensory stimulation
regimens described above. The remaining
units fired very infrequently (fewer than
30 spikes) or were tonically active but un-
modulated. Muscle palpation resulted in
strongly modulated firing rates in eight
recorded neurons in dorsal horn (i.e.,
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better associated with EMG activity, and 9
cells were more closely associated with IC
activity. Using a Z score for frequency
counts to test for a significant difference
for these neurons alone, we found a Z sta-
tistic of 0.44, and the distribution thus did
not differ significantly from pure chance
atan o = 0.05. Combining these neurons
and the proprioceptive cells identified by
palpation did not alter this. However, the
14 neurons that were clearly modulated
by cutaneous inputs differed from this
pattern. These cells were uniformly (14 of 14) better associated
with ICs than EMGs (p < 0.001, binomial test distribution).
Figure 3D shows this comparison. This strong association for
light touch-responsive neurons may indicate that stronger skin
stimuli recruited these neurons to initiate recruitment of parts of
flexion and the wipe patterns and thereby initiate particular mo-
tor primitives (represented by the independent component in
question) present early in the wiping or flexion sequence. We
were not able to find any significant spike-triggered averaging
effects for any of the cells we recorded at the 400-500 wm depth.
Combining all neurons in the dorsal horn into a single set, 29 of
42 related better to components (Z score of 2.62, p < 0.005), but
this was clearly a result dominated by the set of cutaneously re-
sponsive cells.

Figure 2.

Ventral horn

In the ventral horn (14 neurons), we found no clear responses to
passive leg manipulation, palpation, or light cutaneous stimula-
tion in the quiescent frog, as seen in Figure 3A. The neurons
recorded divided evenly among those related best to compo-
nents and those related best to EMG (Fig. 3B). Several cells
appeared to relate to specific muscles, with high firing rates well
suited to spike-triggered averaging (see below).

Intermediate zone

In the recordings in intermediate zone (700—800 um) (Fig. 3A),
the cutaneous and proprioceptive manipulations we used in the
spinal frog generated very little activity, similar to ventral horn
responses (1000—1200 wm). We could not evoke more than a few
spikes over the entire testing period (usually 10-30 spikes). This
observation matches the weak primary afferent effects reported

{w..w}
1 J

DData analysis step

Data analysis approach. Spike data were converted from analog recordings (type A in each analysis) to isolated unit
spike times (type B) used in spike-triggered averages, to continuous rate estimates (type A) used for linear correlation based
methods and to symbol string representations (15 ms bins, 8 symbols for level, type C) used for information-based analyses.
Electromyograms were rectified filtered and used in ICA to obtain activation patterns of independent components or sources (type
A) and their projection weights to muscles (type D). The resulting (type A) EMG and component waveforms were used in linear
correlation methods and converted to symbol strings (15 ms bins, 8 symbols for level) for use in information techniques. Raw and
rectified unfiltered EMG was used in spike-triggered averages to obtain significant facilitations and their magnitudes (type D).
Comparisons and statistical tests of hypotheses were then made using the symbol string representations (C), the analog time series
(A), and the projection weights and STA facilitation weights (D).

in the quiescent frog for many interneurons in published data
(Simpson, 1973). However, clear patterns emerged when we ac-
tivated the wiping behavior using brief strong skin stimulation.
In the intermediate zone depths (700 —800 wm), when record-
ing during brisk wiping behaviors, a clear relationship of neurons
to components that was stronger than that to individual muscles
emerged. The various mutual information measures with the
motor pattern that we obtained for individual neurons at this
depth were consistently and significantly greater for premotor
drive components than for individual EMGs. One hundred
thirty-one interneurons were tested in the intermediate zone.
The significance of association comparisons was tested using a
jackknifing procedure (see Materials and Methods). We made
comparisons of the numbers of the intermediate zone neurons
with significant differences in mutual information between in-
dividual muscle electromyograms and components. The absolute
mutual information of 102 of 131 neurons tested (Z score of
—6.29, p < 0.0001) was significantly higher with at least one
component than with the most information-rich individual
EMG (Fig. 4D). One hundred eleven of 131 also had a higher
fraction of the maximum possible mutual information with one
component rather than with the most information-rich EMG
(Fig. 4C) (Z score of —7.86, p < 0.0001). Furthermore, we found
that, in 45 of these neuron tests, the most information-rich EMGs
exceeded the corresponding components in their total informa-
tion. A significant number of these 45 cases nonetheless had
higher fractions of mutual information with components (32 of
45, Z score of —2.683, p < 0.005). The mutual information of
these neurons with components was also greater when compared
with the lowest information EMGs (124 of 131 higher absolute
MI, Z score of —9.63, p < 0.0001; 131 of 131 higher fractions of
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Figure3.  Comparisons across depths. Units responses were evoked in response to muscle palpation, light touch stimulation, or manipulation of limb position around the workspace in quiescent

frogs or by activating spinal behaviors with strong skin stimulation. 4, Quiescent responses. We obtained a range of neuron responses at 400 —500 ..m depth with muscle palpation (“muscle palp”),
light touch (“light touch”), and passive limh movements (“limb movement”) of quiescent spinal frogs, but no neurons responded clearly and repeatably in this way at 700 — 800 or 1000 —1200 wum.
B, Informational comparisons between neurons recorded at different depths. Mutual information was not higher with components or EMGin neurons at 1000 —1200 .m or neurons at 400 —500 p.m
with the exception of light touch responses (plotted in (—E). At 700 — 800 r.m, there was a strong preference for components (as elaborated further in Fig. 4 and here in C~E). DH, Dorsal horn; 1Z,
intermediate zone; VH, ventral horn. , Neurons with responses to muscle palpation showed no clearly stronger relationship in their fractional mutual informational with either EMGs or ICs, with four
neurons possessing better associations to EMG (points above line) and four neurons possessing better associations to the ICs (points below the equality line). D, Neurons responding to light touch
stimuli had mutual information fractions uniformly better associated with ICs. All points were below the equality line (binomial distribution probability <<0.001). E, Cells responding to manipulation
of the limb showed no clearly better fractional mutual information association to either EMGs or ICs (Z score of 0.44 for frequency counts, p = 0.67,n = 20).

M1, Z score of —11.53, p < 0.0001). Together, these several tests
comparing components with both higher and lower information
EMG time series showed that the larger absolute and fractional
mutual information of neurons with components did not simply
reflect variations in the total information of sources from which
mutual information was calculated, i.e., this result was not attrib-
utable to the information content of the components themselves
being larger or smaller than individual EMGs. Neurons had both
higher mutual information and higher fractions of mutual infor-
mation with components than with individual EMGs. Neurons
were best related to the independent components on the basis of
mutual information, not to individual muscles or simply to ag-
gregated muscle activity.

In deep gray matter and in upper ventral horn (at depths of
1000-1200 um), the association of neural activity divided
equally between components and individual muscles using mu-
tual information measures as described above.

As a graphical representation of the association between com-
ponent/primitive activity and interneuronal firing obtained by
the mutual information methods we used, we looked at the dis-
tribution of spike times relative to the onset in motor activity of

the three main phases of the motor patterns observed during a
wiping behavior: hip flexors (HF), knee flexors (KF), and hip
extensors (HE) (Kargo and Giszter, 2000a,b, 2008). These three
muscle groups were identified in a survey of the three largest
contributing muscle groups performed over 30 frogs. The muscle
groups were defined as follows: KF: ST, BI, and SA; HE: RA, R],
SM, and ST; and HF: IP (iliopsoas), GL, ST, and SA. These cor-
respond to muscle groups in the study by Hart and Giszter (2004)
and to muscle groups in wiping in the studies by Kargo and
Giszter (2000a,b, 2008). Extracted independent components
were assigned to one of these three groups based on the strength
of their projections onto all the muscles in the set. The muscle
group for which the component possessed the largest mean pro-
jection was used to assign the status of that component as a hip
flexor, hip extensor, or knee flexor primitive. Onsets of compo-
nent bursts were defined by a significant increase in the activity of
each component to >3 SDs above baseline noise levels. Recorded
neurons were segregated into three categories based on which of
the three groups of components above were best associated with
those neurons (with respect to mutual information). Population
histograms for each were constructed (Fig. 5).
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The mutual information-based classi-
fication is broad, including neurons
related in numerous ways to the compo-
nents, and these different kinds of firing
patterns are all combined in the popula-
tion histograms for components. As il-
lustrated in Figure 5A, there were some
neurons in intermediate zone that
clearly modulated their spiking directly
with component activity (hip extensor
component-related activity is shown for
sample neurons from two frogs; these cells
also qualified for the STA presented in the
next section). Figure 5B shows neurons
preceding onset of component activity.
There were also a variety of other firing
patterns that could lead to high mutual
information. These kinds of patterns were
all combined in the population histogram.
Figure 5C shows the aggregate activity of
the population of hip flexor component-
associated cells, averaged across all frogs.
This combination of cells types in a single
histogram has the potential to obscure the
relationships of different sets of neurons to
components as remarked already. How-
ever, it can be seen that there was a peak of
firing at early onset, as well as strong firing
through the averaged peak of the compo-
nent. Note also that there was a second
period of elevated firing in the population
of component-related neurons that oc-
curred after the cessation of the component
and the more directly component-related
firing. These later peaks likely indicate
that, although the population of cells re-
lated best to a particular component on
the basis of mutual information, the pop-
ulation included substantial strongly rate-
modulated activity (see definition above)
of some neurons that occurred during the
termination or as a result of particular se-
quencing of burst phases. The variability
of firing patterns is perhaps not surprising
given the potential complexity of connec-
tion patterns between intermediate zone
interneurons and ventral horn motor
neurons and within intermediate zone
networks themselves. We briefly note this
here but plan to analyze this further in
future work because it is not the focus of
this study.

Topography of

component representations

In each frog, at each probe placement in
intermediate gray at the L2/L3 border, we
always saw neurons related to most of the
six components. We never observed a sit-
uation in which all neurons on 24 elec-
trodes associated with only one or two
components. This differs strongly from
the expectation suggested with micro-
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Figure4.

Comparisons of relations of 131 interneurons recorded in intermediate zone at 700 — 800 m (diagram at bottom) with EMG

and with components. Units had no clear sensory fields in quiescent frogs as shown in Figure 3. The neurons were related to components
and to the associated individual EMGs comprising the component projection, and the relationships were calculated and compared. We
tested bothlinear regression and mutual information measures. In each plot, only those neurons in which jackknifing of mutual information
measures showed could be compared and differed with 95% confidence are shown (131 in all C=F). A, Comparison of Shannon self-
information or entropy in the three sets of muscle-derived time series with which neuron Ml is compared in (—F. These are not significantly
different from one another (SDs shown). The neural entropy is also shown and on average was significantly larger than the EMG derived
series. B, Lag 0 linear regression (and lagged regressions not shown) of neuron firing to components and EMG using a 15 ms window
showed no significant differences between variance captured by EMG or components. €, Fraction of possible Ml of neurons with compo-
nents were routinely higher for the best-matched component than with the highest information EMG found in the projection of the
component (1110f 131, p << 0.0001). D, The absolute Ml of the neurons with best-matched component was greater than with the highest
information EMG found in the projection of the component (102 of 131, p << 0.0001). E, The fraction of possible MI of neurons with the
best-matched component for the neuron was routinely higher with components than with the lowest information EMG found in the
projection of the component (1310f131,p <<0.0001). F, Absolute Ml of neurons with the best-matched component was greater than with
the lowest information EMG found in the projection of the component (124 of 131, p << 0.0001). Mutual information measures for
intermediate zone thus support spinal representation of pattern and motor drive in intermediate zone neurons in terms of premotor drive
components, not individual muscles EMGs. DH, Dorsal horn; IZ, intermediate zone; VH, ventral horn.
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Interneurons segregated into groups based on mutual information matching to componentsin intermediate zone (IZ; 800 um depth). Components were related to primitives identified

previously by both statistical and physiological means (Hart and Giszter, 2004; Kargo and Giszter, 2008; Kargo et al., 2009). Interneuronal firing was phasically related to primitive/component group
activity. A, Rasters of two neurons in two frogs with strong relationships to the hip extensor component/primitive are shown. The rates of the neurons clearly relate to component amplitudes and
the burst or pulse-like behavior. These neurons were also used in STA analysis. B, Two neurons best related to the period preceding (above) or the onset (below) of the hip extensor component burst.
€, Neurons best related to one of the most frequent components (the hip flexor component) were aligned with component burst/pulse onsets (defined as 3 SDs above baseline noise). The neural
activity was then binned to form a population peri-onset time histogram (PSTH), and the component burst/pulses that were aligned in this way were also averaged. It can be seen that the aggregate
activity of the informationally related neuron population can be related especially well to the motor burst onsets and duration. However, strong preceding and following population activity can also
be seen as might be expected based on the mutual information criteria for selection used (see Results). DH, Dorsal horn; IZ, intermediate zone; VH, ventral horn.

stimulation (Bizzi et al., 1991; Giszter et al., 1993, 2000a,b) or
NMDA iontophoresis (Saltiel et al., 2005). However, the current
data were collected using a very focused recording strategy. More
work is needed to fully understand the relationship of these
data to stimulation results.

Spike-triggered average effects from neurons to

muscle activity

In a final stage of our analysis, we tested all neurons from the
dorsal horn, ventral horn, and deep intermediate zone using the
STA technique (Cheney and Fetz, 1985; Botteron and Cheney,
1989; Schieber and Rivlis, 2005). STA of EMG activity can often
reveal short-latency neural projections to motor pools. This ap-
proach allowed us to look more directly at the relation between
neural spiking and muscle recruitment in a subset of suitable
recorded interneurons. Many neurons had too few spikes to be
expected to allow for any significant STA effects or, despite high
rates, showed no effects. There were no significant STA effects
from any neurons recorded in the dorsal horn. However, 46 neu-
rons recorded in intermediate zone showed significant facilita-
tions with spike-triggered averaging of the EMG. We analyzed the
STA postspike facilitations of these neurons using both unrecti-
fied and conventional rectified but unfiltered EMG. STA using
unrectified EMGs provides slightly more stringent statistical test-
ing of connectivity. Unfortunately, STA of unrectified EMG is
unable to distinguish excitation from suppression (Botteron and
Cheney, 1989). Significant facilitations using both rectified and
unrectified EMG were judged to be those that persisted above the
97.5% confidence level (obtained from the baseline preceding the
spike) for >1.6 ms (or three sample points) (Botteron and
Cheney, 1989; Fortier, 1994). In our data, the results of both
analyses were very similar. When we compared facilitation effects
with both approaches, it was clear from the STA of the rectified
EMGs that all the significant postspike facilitations found in the
unrectified data were excitatory. In the ventral horn, all signifi-

cant STA postspike facilitations examined were to single muscles.
These ventral horn neurons showed these single muscle facilita-
tion effects at latencies of ~2.5-3.5 ms in STA (Fig. 6A). In in-
termediate zone, all postspike facilitations in the 46 neurons with
significant effects were to multiple muscles at a longer latency
(Fig. 6B). We found no STA suppression. The spike-triggered
averaging analysis of the 46 neurons from intermediate zone
showed significant peak onsets at average latencies of ~5.5 ms.
These results fit with the known physiology: a calculated 2—3 ms
conduction delay for large-caliber motor axons over the 6—-12 cm
of peripheral nerve from the spinal cord to the motor points of
thigh muscles in our bullfrogs and ~0.5 ms delay at the neuro-
muscular junction at 25°C. The ~5.5 ms latencies for the EMG
potentiation in STA seen in testing the interneurons are consis-
tent with polysynaptic (or more likely disynaptic) projections to
motoneurons. All of the interneurons tested had significant si-
multaneous or nearly simultaneous peaks in multiple muscles at
these latencies.

We next examined whether the postspike facilitation patterns
detected with STA analysis in the intermediate zone interneurons
showed any matching with the motor projection patterns of
primitives extracted with ICA (tested in Fig. 6C). To test this
correspondence, we first used a binary matching. The binary in-
ner product-based correlation that we used (ranging from 0 to 1,
with 0 being no match and 1 being a perfect match) compared the
qualitative matching of the patterns of significant STA peaks with
the patterns of the EMG projections of the significant compo-
nents (Figs. 5B, 6A). This analysis revealed a good correspon-
dence between the significant STA peaks and the significant
weightings of EMG in the extracted ICA component drives.
Sixty-one percent (28 of 46) of the cells in the STA analysis had
binary inner products that were 0.75 or better. That is, most of
their significant STA effect peaks matched with the correspond-
ing significant projection weights of the independent component
onto EMG. Furthermore, 86% (40 of 46) of cells had better than
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a 0.5 inner product (or a 50% match, at
least two of four significant correspon-
dence). We tested whether this result clearly
differed from the distribution expected
if connections to motoneurons were
formed randomly for these interneu-
rons. We compared our observed data
with the results that would be expected
based on 1000 random samples of (1)
random connections of uniform likeli-
hood that occurred to similar numbers of
muscles and (2) connections to muscles
that were drawn randomly from distribu-
tions matching the frequency of occur-
rence of components found with the
information measures. The cumulative
distributions under these two random
connectivity assumptions were both sig-
nificantly different from the observed cu-
mulative distribution in the data (Fig.
6C). The Kolmogorov—Smirnov test dif-
fered significantly ( p < 0.01, n = 46) for
the peak differences in cumulative distri-
butions of observed unrectified EMG
with the two random models (uniform,
25.93 *= 0.563; component distribution,
22.25 * 0.483). Similarly, the observed
rectified EMG differed significantly ( p <
0.01, n = 46; uniform, 20.25 * 0.44; com-
ponent distribution, 23.93 = 0.52). The
significant matching of the postspike fa-
cilitations that we observed to component
weights was thus highly unlikely to have
arisen by chance.

The matching of postspike facilita-
tions extended beyond the qualitative pat-
tern of component projection weights, as
tested with the binary inner product mea-
sure. More detailed analysis showed that
peak heights of each of the STA facilita-
tions also showed significant parametric
correlation with the corresponding com-
ponent projection weight when regressed
and plotted on log—log axes (r = 0.65, t =
12.513,p < 1le” '°,n=214) (Fig. 6 D) (for
raw plots, see supplemental Fig. 3). This
again was unlikely to have arisen by
chance. In a perfect correspondence, there
would have been 186 (46 X 4) peaks in
STA data. There were slightly more signif-
icant STA peaks than expected. On aver-
age, there were 4.6 STA peaks per neuron,
~16% more than expected for an average
matching of four per neuron. To more
stringently examine the significance of the
correspondences of the peak, instead of
considering individual postspike facilita-
tions as independent observations, we
considered only individual neurons as in-

dependent observations (n = 46, DOF of 44). We used two mul-
tivariate regression tests, one constrained to diagonal parameters
(regression coefficient, 0.44; diagonal parameters, p < 0.05; DOF
of44) and one unconstrained (regression coefficient, 0.55; diagonal
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Figure 6.  Spike-triggered averaging of EMG postspike facilitations of interneurons. We used both STA of raw EMG that mini-

mizes likelihood of false positives and STA of rectified unfiltered EMG to examine facilitation or inhibition. All effects were facili-
tatory. A, Spike-triggered average of raw EMG for a putative motor unit from the ventral horn (1200 m depth) to the gluteus
muscle of a frog. Shown for comparison with interneuron spike-triggered averages. B, Spike-triggered averages of raw recorded
EMG with aninterneuron in which we recorded 505 spikes. The best tetrode channel waveform is displayed at the top. The average
waveform, the significant peaks (asterisks), and the Chronux calculated confidence limits are shown. The unit had significant STA
peaks for RA, SM, GL, and VE. Each postspike facilitation effect was excitatory and also significant in STA of rectified EMG. The most
closely related component had significant projections to RA, SM, GL, and RI. The binary inner product correlation measure of the
two would thus be 0.75. €, Comparison of the distribution of binary inner product correlations of 46 neurons with significant STA
postspike facilitations matched to best components (rectified EMG distributions shown) are compared with those predicted by
distributions of (1) random connections or (2) random connections drawn from the distribution of observed components from
mutual information matches in our data (calculated with Monte Carlo simulations with 1000 iterations). Cumulative distributions
are shown. These were used in Kolmogorov—Smirnov tests. The high number and distributions of good matches of components to
STA postspike facilitations were unlikely to have arisen by chance sampling of the random distributions ( p < 0.01). D, Log—log
correlation of the STA postspike facilitation peak strengths with the component weight strengths. Open circles represent the
corresponding STA peaks measured at the same latency. Correlation of STA peak strengths with component weights were 0.65. The
significance of the relation can be calculated assuming that each connection and its strength is an independent observation [r =
0.65, t statistic of 12.4, n = 214 (taken from STA peaks), p << Te ~ '°]. Alternatively, only individual neurons are considered
independent observations (significant STA peaks:  statistic of 5.5, DOF of 45, p = Te — ©;all matched STA peaks: ¢ statistic of 2.04,
n=34,p<<0.05). The regression presented here provides a good visual representation by collapsing all parameters onto a plane.
More correct multiple input/output regressions were also performed, and outcomes are given in Results. Together, these results
support a specific interneuronal distribution system providing drive for primitives.

parameters all significant, two significant off diagonal parame-
ters, p < 0.05; DOF of 44). In the unconstrained regression, we
found that diagonal terms remained strongest and significant, in-
dicating a significant relationship between each of the neural fa-
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cilitation strengths and the corresponding premotor drive
projection strengths. In addition, two of four significant relations
of weights to STA remained purely diagonal with no cross terms
from other weights significant in the regression parameter ma-
trix. Our data thus support the existence of a collection of drive
distributing neurons in the spinal cords of frogs. These neurons
possess functional projection patterns (revealed as postspike
facilitations using STA) that closely matched individual compo-
nents both qualitatively (shown by binary matching) and quan-
titatively (shown by the significant correlation of STA facilitation
to component weights). Before this study, the existence of such
focused neural effects in multiple motor pools, and occurring in
patterns closely related to motor primitives detected by other
means, was simply a speculation.

Discussion

Our data demonstrate that, with respect to information mea-
sures, neurons in the intermediate zone of spinal cord relate sig-
nificantly better to the motor primitives (or premotor drives)
than to the activities of the individual muscles. Furthermore,
using spike-triggered averaging, we showed that a subset of inter-
mediate zone neurons had short-latency postspike facilitations to
muscles that closely and directly match primitives. These neurons
matched with primitives in both their connectivity pattern and
the strength of their detected STA facilitations. Neurons recorded
in the dorsal horn showed different patterns of activity; only
cutaneous-related cells showed similar stronger mutual informa-
tion with primitives. No dorsal horn neurons had significant STA
effects. These results suggest that dedicated sets of interneurons
in intermediate gray are associated with each drive or primitive.
These circuits and their primitives are shared across behaviors.

The need for modularity in motor behavior and perspectives
on the neural bases of modularity

Modularity is frequently observed in motor behaviors (Gottlieb,
1998; Bracha et al., 1999; Zaal et al., 1999; Earhart and Stein,
2000a,b; Flash and Hochner, 2005; Ting and Macpherson, 2005;
Torres-Ovideo et al., 2006). It has been a conundrum to relate
activity in the CNS to the modularity observed in execution tasks.
A priori, many neural models could generate modular primitive-
like behavior. David Marr (1982) divided computational analyses
of CNS operation into levels of task, algorithm, or implementa-
tion. Which of these are represented by motor primitives? We
here hypothesized that spinal modularity might be directly em-
bodied in the neural circuitry (i.e., modular circuitry at Marr’s
implementation level). To test this hypothesis, we sought to iden-
tify and test the relations of the interneurons to motor pattern
structure. Mutual information measures provided a broad and
relatively assumption-free means to do this. Furthermore, spike-
triggered averaging also supported the existence of specialized
short-latency premotor effects in motor pools. The patterns of
these match the pattern of muscles in primitives that can be iden-
tified by other statistical, physiological, and behavioral means in
the motor pattern (Giszter and Kargo, 2000; Kargo and Giszter,
2000a, 2008; Hart and Giszter, 2004).

Specialized populations of neurons supporting primitives,
as supported by the presented data, might be attributable to
evolutionary constraints (Giszter et al., 2009). There are
strong evolutionary arguments for constructing primitives
early in development and even for hardwiring primitives. A
motor system, like a computer, may need a “bootstrap.” Initial
movements and building blocks for useful movement are needed
early on in many animals. However, the necessary initial motions
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would be hard to identify “tabula rasa.” Conceivably, needed
primitives might be built into the CNS and its development by
evolution. Early experience in utero or in ovo during critical peri-
ods might then further shape the modularity (Schouenborg,
2002, 2004; Bradley et al., 2005). This would support early motor
functions and could “seed” subsequent motor learning, thus
helping, for example,, the wildebeest calf to walk almost de novo
and to rapidly learn agile movements. However, a competing
perspective suggests that modularity represents a natural out-
come of online optimal controls, implemented in the CNS and
operating on a fast timescale (Giszter et al., 2009; Tresch and Jarc,
2009). It has been shown that optimal controls and neural net-
work mechanisms may lead naturally to low dimensional repre-
sentations (Sanger, 1994; Todorov and Jordan, 2002; Ijspeert et
al., 2003; Todorov and Ghahramani, 2003; Todorov et al., 2005;
Chhabra and Jacobs 2006). Our data indicate that, if such opti-
mizations drive modularity, then their physiological outcome isa
quite focused selection, or tuning, of a set of premotor neurons.
To choose between evolutionary and online optimization, it will
be necessary to understand the plasticity, cellular, and develop-
mental physiology of the neuron populations recorded here.

Spinal interneuron systems and recordings in other lower
tetrapod vertebrates
As noted by Berkowitz (2008), both shared and dedicated neurons
contribute to multiple motor behaviors in most invertebrates.
Examination of both extracellular and intracellular recordings in
turtle fictive and nonfictive preparations by Stein, Berkowitz,
Currie, Hounsgaard, and others also show both shared and ded-
icated neurons recruited in fictive vertebrate motor patterns
(Berkowitz, 2001, 2002, 2008; Alaburda et al., 2005; Stein, 2005,
2008; Berg et al., 2007; Samara and Currie, 2008). However, their
data cannot or did not examine modularity in terms of premotor
drive, or examine EMG and force patterns as we did here. None-
theless, close but qualified correspondences exist. Berkowitz
(2005, 2006, 2008) found shared neurons deeper in gray. Many of
these neurons were recruited across many behaviors in the turtle.
Our multielectrode data from unparalyzed spinal frogs pro-
vide a multineuron picture of the neural supports of nonfictive
spinal behaviors. Although our recordings here are extracellular,
they are accompanied by active electromyograms, force genera-
tion, and fully operating sensory feedback, albeit under isometric
conditions in this study. The relationship of the extracellularly
recorded firing patterns to muscle activation can be assessed. Our
data show that some of the shared multifunctional activity re-
ported in fictive preparations of vertebrate spinal cord may rep-
resent neurons driving specific muscle group assemblies or
primitives. Such neurons and their primitives are reused across
behaviors. We found a subset of 46 cells in intermediate gray in
which STA identified short-latency postspike facilitations indicating
functional monosynaptic, disynaptic, or perhaps trisynaptic con-
nections to motor pools. Like Berkowitz’s (2008) intracellular
study in turtle, these interneurons would be reused across behav-
iors, reflecting the activation of the same motor pattern in mul-
tiple contexts. Berkowitz showed direct anatomical projections of
such reused neurons into the motor pools. Our data show specif-
ically patterned physiological postspike facilitation effects of the
neurons recorded that match primitives or premotor drives. Our
data show that motor neuron connectivity and postspike facilita-
tion strengths of some (shared) interneurons can be very specific,
(i.e., they can likely act as conduits for drive across behaviors).
It is not currently possible to discount neuronal synchrony as
a part of the basis of the matched STA postspike facilitations
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observed (Kutch et al., 2007, 2008). However, it is nonetheless
clear that, in this case, our data support the existence of specific
coordinated neural ensembles with effective connectivity or even
projections matching components or premotor drive.

Mutual information-based classification grouped a range of
neuron firing types. We found that the drive-related neurons
showed strong burst-related specificity as a population, despite
these broad mutual information criteria used to group them.
Some neurons fired strongly during component bursts, and some
of these showed STA responses. However, the population average
response included some neurons that fired strongly around the
onsets (or early in bursting) of primitives and some after termi-
nation. This is similar to some neurons from Berkowitz’s intra-
cellular data (Berkowitz, 2008) and to Stein’s OFF and ON units
(Stein, 2008).

The information-based techniques revealed several types of
neural activity related to spinal modules or primitives. As noted,
they related to onset, offset, transitions between primitives in a
patterned sequence, and some more directly related to the acti-
vation and the drive to motor pools as subsequently captured by
STA analysis. All related well to the decomposition of the motor
pattern into primitives in broad information terms. However, we
believe that the core reusable elements are likely to be the drive-
related neurons, revealed by STA. We do not yet know how
closely associated these and the other different neural elements
are. Itis conceivable that these different neurons might form tight
modules with reusable activity of neurons in triggering, termina-
tion, and sequencing circuits. Alternatively, each type might be
only loosely associated and be independently controlled and re-
used. Selection of neuron sets could then depend only on context
and task. Only additional research can address this.

Spinal microstimulation maps and neural recordings

Our multielectrode recordings were made at a specific segmental
location, providing a localized picture. We found overlapping
component representations in this segmental location. At least
three components, and usually more, were represented at each
probe placement. Prima facie, this seems incompatible with
strongly spatially segregated circuitry or simpler interpretations
of microstimulation maps (see microstimulation of Bizzi et al.,
1991; Tresch and Bizzi, 1999; Giszter et al., 2000a,b; Saltiel et al.,
2001, 2005). How microstimulation low-threshold regions and
“hotspots” relate to underlying circuit organization is an open
question. We now know that microstimulation maps can be la-
bile with experience (Boyce and Lemay, 2009) or as a result of
contralateral interactions (Giszter et al., 2000a). It should be
noted that the presence of a modular neural organization and of
collections of circuits supporting primitives (as discussed here
and by Kargo and Giszter, 2000a, 2008; Hart and Giszter, 2004;
Kargo et al., 2009) is not wedded to any specific spatial map
organization, and these concepts are quite separate, as discussed
in some recent reviews (Giszter et al., 2007; Giszter, 2009). More
details of the spatial topography of multiple-neuron activity will
be important to address this in the future.

Pattern generation and primitive organization: spinal
hierarchical organization

Our data are consistent with the modular schemes of Cappellini
etal. (2006) and d’Avella et al. (2006) in man and with Krouchev
etal. (2006) and McCrea and Rybak and their colleagues in the cat
(Quevedo et al., 2005; McCrea and Rybak, 2007). They suppose
that locomotor pattern generation comprises separated rhythm
generation and pattern shaping with layered connections. This

Hart and Giszter ® Neurons Related to Premotor Drive and Primitives

division of labor in organizing motion in spinal cord is also sup-
ported by our previous work in frog (Kargo and Giszter, 2000 a,b,
2008; Hart and Giszter, 2004; Giszter et al., 2007) and by the
results here. The neurons with STA facilitation effects here that
may operate to construct motor drive would likely form elements
in the pattern-shaping layers of Rybak and McCrea. The activity
of these neurons would be deleted or suppressed in deletions of a
primitive or recruited in a phase in which the primitive was ex-
pressed or added. This would be similar to the results of Stein and
Daniels-McQueen (2002, 2003, 2004) for propriospinal inter-
neurons in turtle and Lafreniere-Roula and McCrea (2005) in the
cat. Our data could also relate to the ideas of Lundberg regarding
modularity of group II interneuron systems in the cat spinal cord
(Lundberg et al., 1987a,b) and to the developmental scaffolding
of spinal neural circuits (Grillner and Jessel, 2009). Our data are
consistent with the testable hypothesis that pattern shaping in
reflex or spinal behaviors comprises primarily selection and
graded recruitment of populations of neurons dedicated to indi-
vidual primitives but shared across behaviors and that act as uni-
tary conduits and/or initiators of modular drives.

Spinal interneurons and their associated premotor drives as
compositional elements

Our data provide a first clear linkage between motor primitives
and structured neural activity. As noted above, it has been spec-
ulated that motor primitives represent a successful evolutionary
strategy for dealing with the “degrees of freedom problem,” by
helping solve difficult but evolutionarily predictable motor tasks
de novo. This strategy is also attractive because of its simplicity in
adding and subsuming spinal controls in new behaviors. Pools of
cells, available for activation of particular primitives by descend-
ing controls, could simplify problems of neural control for more
rostral neural structures.

Conclusion

We have identified populations of interneurons recruited during
the execution of spinal behaviors and intimately related to motor
primitives and premotor drive. The pools of interneurons tested
with spike-triggered averaging primarily corresponded to single
components, drives, or primitives. Such modular premotor cir-
cuits will support well defined biomechanical effects in the limb.
They could thus potentially act as compositional elements for
voluntary motor behaviors, for pattern generators, and for reflex
adjustments, and they could help to seed and organize early mo-
tor learning. In summary, our data support the notion that neu-
rons dedicated to act as specific premotor drive conduits and
circuits may comprise the low-level building blocks of many mo-
tor patterns and behaviors.
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