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Several animal studies have demonstrated functional roles of dopamine (DA) D1 and D2 receptors in amygdala activity. However, the
contribution of DA D1 and D2 receptors to amygdala response induced by affective stimuli in human is unknown. To investigate the
contribution of DA receptor subtypes to amygdala reactivity in human, we conducted a multimodal in vivo neuroimaging study in which
DA D1 and D2 receptor bindings in the amygdala were measured with positron emission tomography (PET), and amygdala response
induced by fearful faces was assessed by functional magnetic resonance imaging (fMRI) in healthy volunteers. We used multimodality
voxelwise correlation analysis between fMRI signal and DA receptor binding measured by PET. DA D1 binding in the amygdala was
positively correlated with amygdala signal change in response to fearful faces, but DA D2 binding in the amygdala was not related to
amygdala signal change. DA D1 receptors might play a major role in enhancing amygdala response when sensory inputs are affective.

Introduction
The amygdala plays a central role in processing affective stimuli,
and in particular, threatening stimuli in the brain (LeDoux,
2000). The amygdala receives a moderate innervation of dopami-
nergic fibers (Asan, 1998), and both dopamine (DA) D1 and D2
receptors are expressed in this region (Ito et al., 2008), although
the latter exhibit lower expression (Scibilia et al., 1992). DA re-
lease in the amygdala is increased in response to stress (Inglis and
Moghaddam, 1999). It has been shown in animal studies that DA
potentiates the response of the amygdala by augmenting excita-
tory sensory input and attenuating inhibitory prefrontal input to
the amygdala (Rosenkranz and Grace, 2002). Systemic and local
applications into the amygdala of D1 agonist and antagonist are
known to potentiate and decrease fear response in animals, re-
spectively. Although some studies reported that applications of
D2 agonist and antagonist induced similar effects, the results
were less consistent compared with D1-mediated effects (for re-
view, see Pezze and Feldon, 2004; de la Mora et al., 2009).

A human functional magnetic resonance imaging (fMRI)
study reported that doparminergic drug therapy such as levo-
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dopa or DA agonists partially restored amygdala response due to
emotional task in Parkinson’s disease patients who showed no
significant amygdala response during drug-off states (Tessitore et
al., 2002). In addition, another fMRI study of healthy volunteers
has demonstrated that amphetamine potentiated the response of
the amygdala during an emotional task (Hariri et al., 2002). More
recently, Kienast et al. (2008) reported that dopamine storage
capacity in human amygdala, measured with 6-[ '*F]fluoro-L-
DOPA positron emission tomography (PET), was positively cor-
related with functional magnetic resonance imaging (fMRI)
signal changes in amygdala. However, the contribution of DA D1
and D2 receptors to amygdala response induced by affective stim-
uli is unknown in human. To investigate the relation between
amygdala reactivity and dopamine receptor subtype, we con-
ducted a multimodal in vivo neuroimaging study in which DA D1
and D2 receptor bindings in the amygdala were measured with
PET, and amygdala response by novel faces with either neutral or
fearful expression was assessed with fMRI. Based on animal phar-
macological studies, we hypothesized that D1, but not D2 recep-
tors, would predict amygdala response.

Materials and Methods

Subjects

Twenty-one male volunteers [mean age 23.1 = (SD) 3.6 years] were
studied. They did not meet the criteria for any psychiatric disorder based
on unstructured psychiatric screening interviews. None of the controls
were taking alcohol at the time, nor did they have a history of psychiatric
disorder, significant physical illness, head injury, neurological disorder, or
alcohol or drug dependence. All subjects were right-handed according to the
Edinburgh Handedness Inventory. All subjects underwent MRI to rule out
cerebral anatomic abnormalities. After complete explanation of the study,
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written informed consent was obtained from all subjects, and the study was
approved by the Ethics and Radiation Safety Committee of the National
Institute of Radiological Sciences, Chiba, Japan.

fMRI procedure

Stimulus materials were taken from the Karolinska Directed Emotional
Faces (KDEF) (Lundqvist et al., 1998). Thirty neutral and 30 fear faces
were used, with half of them being male faces. The pictures were pro-
jected via a computer and a telephoto lens onto a screen mounted on a
head-coil. The experimental design consisted of 5 blocks for each of the 2
conditions (neutral, fear) interleaved with 21 s rest periods. The order of
presentation for the 2 conditions (neutral and fear) was randomized.
During the baseline condition, subjects viewed a crosshair pattern pro-
jected to the center of the screen. In each 21 s block, 6 different faces of the
same emotional class were presented for 3.5 s each. During the scans, the
subjects were instructed to judge the gender of each face using selection
buttons.

fMRI scanning

The images were acquired with a 3.0 Tesla Excite system (General Elec-
tric). Functional images of 126 volumes were acquired with T2*-
weighted gradient echo planar imaging sequences sensitive to the blood
oxygenation level-dependent (BOLD) contrast. Each volume consisted
of 40 transaxial contiguous slices with a slice thickness of 3 mm to cover
almost the whole brain (flip angle, 90° echo time, 50 ms; repetition time,
3500 ms; matrix, 64 X 64; field of view, 24 X 24 cm).

Analysis of fMRI data
Data analysis was performed with the statistical parametric mapping
software package (SPM2) (Wellcome Department of Cognitive Neurol-
ogy, London, UK) running with MATLAB (MathWorks). All volumes
were realigned to the first volume of each session to correct for subject
motion and were spatially normalized to the standard space defined by
the Montreal Neurological Institute (MNI) template. After normaliza-
tion, all scans had a resolution of 2 X 2 X 2 mm . Functional images were
spatially smoothed with a three-dimensional isotropic Gaussian kernel
(full-width at half-maximum of 8 mm). Low-frequency noise was re-
moved by applying a high-pass filter (cutoff period = 128 s) to the fMRI
time series at each voxel. A temporal smoothing function was applied to
the fMRI time series to enhance the temporal signal-to-noise ratio. Sig-
nificant hemodynamic changes for each condition were examined using
the general linear model with boxcar functions convolved with a hemo-
dynamic response function. Statistical parametric maps for each contrast
of t-statistic were calculated on a voxel-by-voxel basis.

We assessed the contrasts of fear and neutral minus baseline (F&N-B).
A random effects model, which estimates the error variance for each
condition across the subjects, was implemented for group analysis. The
contrast images were obtained from single-subject analysis and entered
into the group analysis. A one-sample ¢ test was applied to determine
group response for each effect. Significant amygdala activations were
identified if they reached the extent threshold of p < 0.05 corrected for
multiple comparisons, with a height threshold of p < 0.001, uncorrected.

PET scanning

After the fMRI session, each participant underwent PET scanning. The
interval between fMRI session and PET scan was 3-5 h. PET studies were
performed on ECAT EXACT HR+ (CTI-Siemens). The system provides
63 planes and a 15.5 cm field of view. To minimize head movement, a
head fixation device (Fixster) was used. A transmission scan for attenu-
ation correction was performed using a germanium 68—gallium 68
source. Acquisitions were done in three-dimensional mode with the in-
terplane septa retracted. For evaluation of D1 receptors, a bolus of
219.7 = 6.9 MBq of [ ''C]SCH23390 with specific radioactivities (95.7 *
35.5 GBq/pumol) was injected intravenously from the antecubital vein
with a 20 ml saline flush. For evaluation of extrastriatal DA D2 receptors,
abolus of 218.1 + 14.7 MBq of [ ''C]FLB457 with high specific radioac-
tivities (221.6 = 94.9 GBq/uwmol) was injected in the same way. Dynamic
scans were performed for 60 min for [''C]SCH23390 and 90 min for
[''C]JFLB457 immediately after the injection. All emission scans were
reconstructed with a Hanning filter cutoff frequency of 0.4 (full-width at
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half-maximum, 7.5 mm). MRI was performed on Gyroscan NT (Philips
Medical Systems) (1.5 T). T1-weighted images of the brain were obtained
for all subjects. Scan parameters were 1-mm-thick, three-dimensional T1
images with a transverse plane (repetition time/echo time, 19/10 ms; flip
angle, 30°% scan matrix, 256 X 256 pixels; field of view, 256 X 256 mm;
and number of excitations, 1).

Quantification of DA DI and D2 receptors

Quantitative analysis was performed using the three-parameter simpli-
fied reference tissue model (Lammertsma and Hume, 1996; Olsson et al.,
1999). The cerebellum was used as a reference region because it has been
shown to be almost devoid of DA D1 and D2 receptors (Farde et al., 1987;
Olsson et al., 1999; Suhara et al., 1999). The model provides an estima-
tion of the binding potential (BPyp (yondisplaceable)) (INnis et al., 2007),
which is defined by the following equation: BPy, = ky/k, = f, B,../1Ky
[1 + 3, F/K]}, where k; and k, describe the bidirectional exchange of
tracer between the free compartment and the compartment representing
specific binding, £, is the “free fraction” of nonspecifically bound radio-
ligand in brain, B, is the receptor density, K is the equilibrium disso-
ciation constant for the radioligand, and F, and Ky are the free
concentration and dissociation constant of competing ligands, respec-
tively (Lammertsma and Hume, 1996). Tissue concentrations of the ra-
dioactivities of [ ''C]SCH23390 and [ ''C]FLB457 were obtained from
regions of interest (ROIs) defined on PET images of summated activity
for 60 min and 90 min, respectively, with reference to the individual
MRIs coregistered on summated PET images and the brain atlas. Given
our hypothesis of amygdala activation during viewing novel neutral and
fearful faces, ROIs were set on the bilateral amygdala. The method for
defining the boundaries of the amygdala was adapted from previously
described methods (Kates et al., 1997; Convit et al., 1999). In short, the
amygdala ROIs consisted of three axial slices. The anterior and posterior
boundaries were identified at the level of the optic chiasm and the tem-
poral horn of the lateral ventricle, respectively. The superior and inferior-
lateral boundaries were identified at the level of the mammalian body
and the temporal lobe white matter and extension of the temporal horn,
respectively. We also created parametric images of BPy, using the basis
function method (Gunn et al., 1997) to conduct voxelwise SPM analysis
in addition to ROI analysis.

Statistical analysis

ROI correlation analysis. Estimates of percentage signal change of fear vs
baseline condition were extracted from the amygdala for each participant
using the MarsBaR toolbox (Brett et al., 2002). The bilateral amygdala
ROIs were defined from the WFU-Pickatlas SPM tool (Maldjian et al.,
2003) with the aal atlas (Tzourio-Mazoyer et al., 2002). Correlation
between BPy, of [ 'C]SCH23390 and [ ''C]FLB457 in the bilateral
amygdala and bilateral amygdala fMRI signal change were calculated
using SPSS.

Confirmatory SPM correlation analysis. Parametric images of BP, of
[''C]SCH23390 and [ ''C]FLB457 were analyzed using SPM2. Exactly
the same image preprocessings of normalization and smoothing that
were used in fMRI data analysis were applied to parametric images of
BPyp- To conduct multimodality voxelwise correlation analysis between
the BOLD signal and DA receptor binding, we used the biological para-
metric mapping toolbox for SPM (Casanova et al., 2007). Significant
clusters were identified if they reached the extent threshold of p < 0.05
corrected for multiple comparisons, with a height threshold of R > 0.6
(p < 0.003 uncorrected).

Results

Since the face pictures consisted of Caucasian faces (racial out-
group), even novel neutral faces produced amygdala response in
several participants (Hart et al., 2000; Schwartz et al., 2003), lead-
ing to a blunted contrast of fear minus neutral. Therefore, we
combined neutral and fear conditions and used F&N-B contrast
for analyses. Group analysis of F&N-B contrast revealed signifi-
cant bilateral amygdala responses [right amygdala (26, 0, —26),
t = 4.43, 93 voxels, left amygdala (—20, —2, —26), Z = 4.96, 101
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Figure 1. Images showing brain response induced by fear and neutral minus baseline con-
dition. Bilateral amygdala responses are shown. The bar shows the range of the t-value.
Rindicates right.

voxels] (Fig. 1). The mean BPy, of [ ''C]SCH23390 in the right
and left amygdala were 0.38 == 0.08 and 0.39 = 0.11, respectively.
The mean BPy, of [''C]FLB457 in the right and left amygdala
were 2.49 * 0.50 and 2.50 * 0.44, respectively.

Correlation analysis of biological parametric mapping re-
vealed that the BPyp, value of [ ''C]SCH23390 in the right amyg-
dala was positively correlated with the BOLD signals in the right
amygdala of F&N-B contrast [peak (28, 2, —28), 24 voxels] (Fig.
2A). ROIs analysis also revealed a similar significant correlation
(r =0.59, p = 0.005) in the right amygdala (Fig. 2B), but not in
the left amygdala (r = 0.18, p = 0.43). According to biological
parametric mapping analysis, the BPyp, value of [ ''C]FLB457 in
the amygdala was not correlated with BOLD signals in the amyg-
dala of F&N-B contrast. ROIs analysis showed that right and left
amygdala D2 binding was not correlated with the BOLD signals
in the right (r = 0.26, p = 0.27) and left amygdala (r = 0.28, p =
0.23), respectively. Both biological parametric mapping analysis
and ROIs analysis showed that D1 binding in the right and left
amygdala was not correlated with D2 binding in the right (r =
0.24, p = 0.30) and left amygdala (r = 0.16, p = 0.49), respec-
tively. We used anatomically defined ROIs of the amygdala rather
than functional ROIs defined by fMRI in the ROI correlation
analysis because it is difficult to place functionally defined ROIs
on individual PET data. Anatomically defined ROIs of the amyg-
dala were larger than functionally defined amygdala ROIs. This
fact was advantageous in increasing the signal-to-noise ratio in
the PET analysis, but led to blunted BOLD signal changes in the
amygdala. However, BOLD signal changes derived from both
ROI methods were highly correlated with each other. For exam-
ple, very high correlation (r = 0.80, p < 0.001) was observed in
the right amygdala. Thus, regardless of ROI definition method,
we obtained similar results from ROI correlation analyses be-
tween BOLD signal changes and DA receptor binding in the
amygdala.

Discussion

Using a multimodality in vivo neuroimaging approach, we first
directly compared amygdala DA D1 and D2 receptor bindings,
indices of receptor availability, with amygdala response evoked
by novel or fearful stimuli in human. We found that DA D1
receptors, but not D2 receptors, predicted amygdala response
induced by novel facial stimuli with either neutral or fearful ex-
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Figure 2. A, SPM correlation analysis revealed significant positive linear correlations be-
tween D1 binding in the right amygdala and right amygdala signal change. The bar shows the
range of the correlation coefficient. B, ROl correlation analysis also revealed similar correlations.
Rindicates right.

pression. Our findings broaden our knowledge about dopami-
nergic transmission in amygdala response beyond the recent
study (Kienast et al., 2008) that elucidated the relation between
presynaptic dopamine synthesis and amygdala reactivity.
Human neuroimaging studies reported that DA potentiated
amygdala response evoked by affective stimuli (Hariri et al., 2002;
Tessitore et al., 2002). In rat studies, Rosenkranz and Grace
(2002) demonstrated that DA enhances the response of the
amygdala by augmenting excitatory sensory input via DA D2
receptor stimulation and attenuating inhibitory prefrontal input
to the amygdala through DA D1 receptor stimulation. More re-
cently, it was demonstrated that both D1 and D2 receptor stim-
ulations directly enhanced the excitability of amygdala projection
neurons via postsynaptic mechanism (Rosenkranz and Grace,
2002; Kroner et al., 2005; Yamamoto et al., 2007). Amygdala
projection neurons are under inhibitory control by GABAergic
interneurons (Royer et al., 1999). Both projection neurons and
interneurons in the amygdala express DA D1 and D2 receptors
(Rosenkranz and Grace, 1999). It has been shown that DA and D1
receptor stimulation augments interneuron excitability and in-
creases the frequency of IPSC in amygdala projection neurons
(Kroner etal., 2005). This is a counterintuitive result, considering
the fact that DA disinhibits amygdala response in vivo. However,
Marowsky et al. (2005) found that a subpopulation of amygdala
interneurons (paracapsular intercalated cells), located between
the major input and output stations of amygdala, is suppressed by
DA through D1 receptor stimulation. DA D2 receptors also play
a role in disinhibiting amygdala response by decreasing inhibi-
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tion onto projection neurons and increasing inhibition onto in-
terneurons (Bissiere et al., 2003).

Although detailed examination of subnuclei of the amygdala
is difficult in this imaging method, the dorsal portion of the
amygdala roughly corresponds to the central nuclei of amygdala
(CeA) and the ventral portion of the amygdala corresponds to the
basolateral nuclei of amygdala (BLA) and intercalated cell masses
(ICM) (Whalen et al., 2009). The amygdala clusters identified
both in fMRI task effect analysis and in correlation analysis be-
tween D1 binding and amygdala reactivity were located in the
ventral portion of the amygdala. Thus, our findings seem to
mainly reflect BLA and ICM properties. It is worth mentioning
that the highest density of D1 receptors within the amygdala was
found in the ICM, followed by BLA, and the expression of D1
receptors is low in CeA (de la Mora et al., 2009; Muly et al., 2009).
In contrast, D2 receptors are mainly distributed in CeA (de la
Mora et al., 2009). Both D1 and D2 receptors are expressed both
postsynaptically in dendrites and presynaptically in axon termi-
nals (Pinto and Sesack, 2008; Muller et al., 2009; Muly et al.,
2009), but D1 receptors in BLA are mainly expressed in the den-
drites, indicating that DA directly modulates the excitability of
BLA projection neurons and interneurons. At the same time, DA
also acts on presynaptic D1 receptors to increase the probability
of neurotransmitter release from glutamatergic terminals (Muly
et al., 2009). Thus, the net DA effect on D1 receptors in the
amygdala is a complex mixture of post- and presynaptic actions
at several sites.

Although both DA D1 and D2 receptors contribute to poten-
tiating amygdala response via various mechanisms as described
above, our finding suggested that DA D1 receptors play a major
role in the overall potentiation of amygdala response. Ata behav-
ioral level, previous animal studies repeatedly reported that D1
agonist and antagonist applications into the amygdala potenti-
ated and decreased fear response, respectively. However, the ef-
fects of D2 agonist/antagonist on fear response have not been well
established (Pezze and Feldon, 2004; de la Mora et al., 2009).
Thus, the current finding could be regarded as being consistent
with previous behavioral pharmacological studies. The combina-
tion of PET molecular imaging and fMRI seems to represent a
powerful approach for understanding molecular functions in
system neuroscience. However, this study has several limita-
tions. First, current PET techniques for human do not have
enough spatial resolution to distinguish subnuclei of the
amygdala. Although analysis of parametric images of BP, has
become well established (Gunn et al., 1997) and is used in many
["'C]SCH23390 and [ ''C]FLB457 studies (Cervenka et al., 2006;
Takahashi et al., 2008; Karlsson et al., 2009; McNab et al., 2009),
a very small region or a single voxel is susceptible to partial vol-
ume effect. Thus, it is recommended that parametric image anal-
ysis should be used in combination with ROI analysis. At the
same time, current results merit further investigation with a
higher resolution PET scanner. Second, PET imaging cannot tell
us the exact location of DA receptors expressed in projection
neurons and interneurons. Future animal studies or in vitro stud-
ies would complement our findings to determine which D1
receptor-mediated mechanism is most responsible for the overall
amygdala response. Third, differences in DA receptor occupan-
cies by endogenous DA might affect BP, leading to different ex-
citabilities of neurons. It is known that BP of [11C]SCH23390 is
not sensitive to competitive endogenous dopamine even if mas-
sive dopamine is released by amphetamine (Abi-Dargham et al.,
1999; Chouetal., 1999). However, it is possible that differences in
receptor affinity might contribute to differences in DA receptor
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occupancies, although Farde et al. (1995) reported that vari-
ability in D2 receptor affinity is smaller than that in D2 recep-
tor density. Finally, gender and race effects might also be
possible. Any generalization should be approached with cau-
tion. Notwithstanding these limitations, we expect our finding
to contribute to a broadening of the knowledge of the molec-
ular mechanism of functional abnormalities of the amygdala
implicated in neuropsychiatric disorders such as schizophre-
nia (Takahashi et al., 2004), depression (Drevets, 2000) and
Parkinson’s disease (Tessitore et al., 2002).
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