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Development/Plasticity/Repair

Global Deprivation of Brain-Derived Neurotrophic Factor in
the CNS Reveals an Area-Specific Requirement for Dendritic
Growth
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Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role
in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF
levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific
gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the
CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly
altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is
required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine
density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of
CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was
moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal
neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part

of a neuron-intrinsic program.

Introduction

Because of its lesser complexity and greater accessibility com-
pared with the CNS, the peripheral nervous system (PNS) has
extensively been used as a model to understand basic principles of
vertebrate neural development and to get insights into relevant
molecular mechanisms. For example, peripheral sympathetic
and sensory ganglia played a key role in the discovery of nerve
growth factor (NGF) and in the delineation of its physiology,
which in turn greatly contributed to our current understanding
of how target tissues regulate their own degree of innervation
(Levi-Montalcini and Hamburger, 1951; Levi-Montalcini and
Cohen, 1960; Korsching and Thoenen, 1983). As neuronal sur-

Received Oct. 13, 2009; revised Nov. 25, 2009; accepted Dec. 7, 2009.

This work was supported by a grant from the Max Planck Society (Hartmut Wekerle, Y.-A.B.), Swiss National
Foundation Grants 31003A_124902 (Y.-A.B.) and 3100A0-112583 (N.S.-W.), and Deutsche Forschungsgemein-
schaft Grants FOR471 (M.K.) and SFB 581, B4 (M.S., S.W.). We thank Michaela Krug and Dr. Gurumoorthy Krish-
namoorthy for help with quantitative RT-PCR experiments.

Correspondence should be addressed to Yves-Alain Barde, Biozentrum, University of Basel, 50/70 Klingelberg-
strasse, CH-4056 Basel, Switzerland. E-mail: yves.barde@unibas.ch.

S. Rauskolb’s present address: Department of Neuroimmunology, Max Planck Institute, D-82152 Munich,
Germany.

T. Matsumoto’s present address: Department of Psychiatry and Neurosciences, Division of Frontier Medicine,
Graduate School of Medical Sciences, Hiroshima University 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.

S. Wiese's present address: Department of Cell Morphology and Molecular Neurobiology, Ruhr University,
D-44780 Bochum, Germany.

DOI:10.1523/JNEUR0SCI.5100-09.2010
Copyright © 2010 the authors ~ 0270-6474/10/301739-11$15.00/0

vival and the growth of dendrites depend both in the PNS and the
CNS on successful target innervation and synaptic contacts (for
review, see Purves, 1988), brain-derived neurotrophic factor
(BDNF) is often assumed by analogy to be a critical retrograde
survival and growth factor for CNS neurons. However, the in vivo
role of BDNF has been very difficult to explore in the postnatal
brain as bdnf '~ mouse mutants die too early for the role of
BDNE to be assessed after its marked postnatal increase caused by
neuronal activity (Maisonpierre et al., 1990; Zafra et al., 1990;
Castrén et al., 1992).

To circumvent this problem, a number of mouse lines have
been generated using Cre-mediated excision of bdnf (Rios et al.,
2001; Gorski et al., 2003; Baquet et al., 2004; He et al., 2004; Chan
et al., 2006, 2008; Monteggia et al., 2007; Unger et al., 2007).
However, exploration on the global role of BDNF in CNS devel-
opment requires a strategy allowing gene excision in all cells con-
tributing to BDNF levels in the CNS. This is a challenging
objective, as BDNF is anterogradely transported throughout the
brain (Altar et al., 1997) and into the CNS from peripheral sen-
sory ganglia (Zhou and Rush, 1996; Balkowiec and Katz, 2000).

We report here on the generation of a new mouse line with a
bdnf excision mediated by Cre recombinase inserted in the tau
locus, a gene expressed in postmitotic neurons (Tucker et al.,
2001). This leads to the almost complete disappearance of BDNF
in the brain and spinal cord as assessed by immunoassay. Detailed
morphological analyses of these conditional mutants revealed an
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unexpected selectivity in the brain areas requiring BDNF for nor-
mal postnatal development.

Materials and Methods

Generation of conditional bdnf knock-out mice. The mice were maintained
in the animal facility of the Biozentrum, University of Basel. Mice were
housed for 2 months before the start of experiments under conditions of
controlled temperature (21-22°C) and humidity (50%) under a 12 h
light/dark cycle (lights on at 6:00 A.M.). The mice had ad libitum access to
food and water. All experiments were performed in accordance with the
Swiss regulations for animal experimentation. LoxP sites were inserted
and flanked exon IX (5" loxP at bp 906, 5" loxP at bp 3449 locus
AY057907), the single protein coding exon of bdnf. Conditional bdnf
knock-out animals (cbdnf ko) were generated by breeding mice carrying
two floxed bdnf alleles with mice expressing Cre from one allele of the tau
locus (tau::cre line) (Korets-Smith et al., 2004) and also carrying one
bdnf'"* allele. Genotypes of mice were determined by PCR using a tail
biopsy. Wild-type and targeted alleles of the transgenic lines were ampli-
fied with specific primer combinations: floxed and wild-type BDNF al-
lele: forward, 5'-GTT GCG TAA GCT GTCTGT GCA CTG TGC-3',and
reverse, 5'-CAG ACT CAG AGG GCA CTT TGA TGG CTT G-3'; BDNF
null allele: forward, 5'-GTT GCG TAA GCT GTC TGT GCA CTG TGC-
3’, and reverse, 5'-CAT GGG CAG TGG AGT GTG AG-3'); Cre allele:
forward, 5'-GCC GAA ATT GCCAGG ATC AG-3',and reverse, 5 -AGC
CAGCAGCTT GCATGATC-3'". Thirty-five cycles were used to amplify the
floxed and wild-type bdnf, bdnf-null, and Cre alleles. The PCR products
could be distinguished by size on a 1% agarose gel. Unless specifically men-
tioned, all experiments with mutant and wild-type animals were performed
8 weeks postnatally. Wild-type animals were either bdnf **/** or bdnf . In
ELISA measurements, no difference in the BDNF levels were found in the
CNS of bdnf ™" compared with WT animals. The mice used in the present
study were kept on a C57BL/6]-SV129 genetic background.

Immunoassay and immunoprecipitation. BDNF extraction from tissues
and quantification by ELISA was performed as previously described
(Kolbeck et al., 1999). The ratio of pro-BDNF versus BDNF was deter-
mined in hippocampi of postnatal day 1 (P1), P4, P7, P21, and P84
wild-type animals lysed in Tris-HCI (50 mm), pH 7.4, with NaCl (150
muM), EDTA (1 mm), Triton X-100 (1%), Na-deoxycholate (1%), and
SDS (0.1%) in the presence of a protease inhibitor mixture (Roche). The
lysates were incubated with the BDNF monoclonal antibody no. 9 for
48 h at 4°C as described by Matsumoto et al. (2008), and the immuno-
precipitates analyzed by Western blot developed with the BDNF anti-
body N20 (Santa Cruz).

Volumetric analyses. Animals were heavily sedated by intraperitoneal
injection of Ketalar (5 mg/kg) and Rompun (100 mg/kg) and perfused
transcardially with 4% ice-cold paraformaldehyde (PFA) in 1 X PBS. The
brains were removed and kept in fixative overnight at 4°C. Serial coronal
30- to 35-um-thick sections were prepared with a vibratome (Leica; VT
1000 S). Consecutive sections were stained with cresyl violet, dehydrated
in graded ethanol and xylene, and coverslipped using Eukitt (Kindler).
Sections were examined with a light microscope (Leica; 6 X objective).
Strict morphological criteria were used consistently in all mice to deter-
mine the boundaries of striatum, hippocampus, and cortex (Franklin
and Paxinos, 1997). The dorsal boundary of the striatum was defined by
the corpus callosum, the lateral boundary by the external capsule, and the
medial boundary by the lateral ventricle and the corpus callosum, and its
ventral boundary by the anterior commissure, excluding the nucleus
accumbens. For the cortex, the primary ventral boundary was the corpus
callosum. A line connecting the rhinal fissure to the corpus callosum was
used in more medial sections to define the anterior ventral portion of the
neocortex. Entorhinal cortex was also included in cortical volume mea-
surements. Hippocampal outlines encompassed the dentate gyrus, the
CA1-CA4 fields of Ammon’s horn, the subiculum, the presibiculum, and
the fimbria of the hippocampus. Starting with one of the most anterior
sections, every fourth section was analyzed through the anterior—poste-
rior extent of both hemispheres, and between 15 and 25 sections per
brain were analyzed. All volumetric quantifications were performed with
a Leica microscope (6 X objective) equipped with a camera and volumes
determined according to the Cavalieri method.
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Immunohistochemistry and cell counts. Mice were killed by cervical
dislocation, and the brains were extracted, embedded in OCT medium
(Electron Microscopy Sciences), and stored at —80°C. Serial coronal
sections (10 wm) were prepared both from cbdnf ko and wild-type mice
using a cryostat (Leica; CM 30505). Neurons and oligodendrocytes were
stained after quenching of endogenous peroxidase activity with 0.3%
H,0,/MeOH (Sigma-Aldrich; 32338-1) for 30 min. Sections were
blocked and permeabilized for 1 h with 5% normal goat serum and 0.5%
NP-40 in 1X PBS. Primary antibodies against NeuN (1:500) or Olig-2
(1:500) (Millipore Bioscience Research Reagents; MAB377 and AB9600)
were applied in blocking solution overnight at 4°C, followed by incuba-
tion with secondary antibodies and staining revealed with the Vectastain
Elite ABC kit (Vector Laboratories; PK-6101, PK-6102), and with AEC
substrate (Vector Laboratories; SK-4200). To compare the number of
neurons and oligodendrocytes in the striatum of cbdnf ko and wild-type
mice, the number of NeuN- and Olig-2-immunoreactive cell bodies was
counted in eight 10 wm sections, 120 wm apart using a 40X objective.
NeuN- and Olig-2-positive cells were visualized using a Leica microscope
equipped with a camera. Cell bodies were counted in stored images using
the measuring module of the AnalysisD software program. Statistical
significance was determined using an unpaired  test, and all values rep-
resent mean = SEM.

Electron microscopy. For electron-microscopic analysis, mice were
deeply anesthetized with Ketalar (5 mg/kg) and Rompun (100 mg/kg)
and fixed by transcardiac perfusion with 0.1 M cacodylate buffer, pH 7.4,
containing 3% glutaraldehyde and 3% formaldehyde. The optic nerves
from 2-month-old wild-type and cbdnf ko mice were dissected and kept
overnight for postfixation in 2% glutaraldehyde in 0.1 M cacodylate
buffer at 4°C. Tissue sections were extensively washed with washing
buffer (0.5% sodium chloride, 0.1 M cacodylate buffer, pH 7.2) and post-
fixed in 1% osmium tetroxide/1.5% potassium hexanoferrate rinsed in
0.1 M cacodylate buffer for 3 h. After dehydration through graded ethanol
solutions (70, 80, 96, and 100%), the optic nerves were soaked in pro-
pylene oxide for 1 h. After infiltration for 2 h in propylene oxide and
Epon (1:1), samples were infiltrated in propylene oxide and Epon (3:1) at
room temperature overnight. Samples were then embedded with plastic
molds and polymerized at 37°C for 2 h, followed by 45°C for 24 h. Finally,
the samples were polymerized at 65°C for 3 d. Semithin sections (1 um)
were cut in a plane orthogonal to the longitudinal axis of the optic nerve
with an ultramicrotome (Reichart-Jung) and were stained with toluidine
blue for light microscopy (DMRE; Leica). Selected areas were further
sectioned at 60—70 nm (ultrathin sections) for transmission electron
microscopy. Ultrathin sections were collected on 200 mesh grids and
stained with uranyl acetate and lead citrate. Immediately after staining,
the grids were thoroughly washed with water and the grids air-dried
before examination. Ultrathin sections were examined with an electron
microscope (Philips EM400) at an accelerating voltage of 80 kV. Electron
micrographs were randomly taken from the optic nerve without know-
ing the genotype of the mice. The total area of the optic nerve was mea-
sured from semithin sections stained with toluidine blue using AnalysisD
software. Counts of axons were made at a final magnification of 8600X.
For each probe, the sample consisted of 15 pictures corresponding to a
total area of 18.33 um?. The axon size and thickness of myelin sheaths
were measured by using AnalysisD software. The statistical analysis was
performed using GraphPad Prism 4. All data are presented as mean *
SEM. Values of p < 0.05 were considered to be significant. All the graphs
were generated in GraphPad Prism 4, with the exception of axonal size
distribution generated in Excel.

DiOlistics and morphological analysis. Hippocampal and striatal neu-
rons from cbdnf ko and wild-type mice were labeled using DiOlistic on
acute slices. Briefly, the mice were anesthetized and decapitated, and the
brain was quickly transferred into ice-cold carbogenated (95% O,, 5%
CO,) artificial CSF. For striatal analyses, brains were cut coronally in 300
um sections throughout the striatum with a vibratome (Leica VT 1000
S). Hippocampi were dissected and cut into 400-um-thick transversal
slices. Vibratome slices were immediately fixed in 4% PFA overnight at
4°C. Tungsten particles (50 mg; 0.7 and 1.7 wm in diameter; Bio-Rad)
were spread on a glass slide, and 100 ul of dye solution prepared by
dissolving 3 mg of lipophilic dye Dil (Invitrogen) in 100 wl of methylene
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Figure1.  Determination of BDNF levels. 4, The hippocampi of wild-type animals were lysed,

incubated with a monoclonal antibody recognizing both pro-BDNF and mature BDNF, and ex-
amined by Western blot analysis. Note the marked increase of BDNF levels during the first
postnatal weeks. B, Quantification of the ratio mature BDNF over pro-BDNF (== SEM) (n = 3).
C, BDNF determination by ELISA at P56 in various CNS areas. All results are presented as a mean
determined from the analysis of four mice per genotype ( p << 0.001, unpaired ¢ test). The white
bars represent wild type, and the black bars represent cbdnf ko mice.
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using a hand-held gene gun (Bio-Rad; Helios Gene Gun System). A
membrane filter (3 wm; Millipore) was inserted between the gene gun
and the preparation to prevent clusters of large particles from landing on
the tissue. After shooting, brain and slices were kept in PBS overnight at
4°C (striatum) or for 5 d at room temperature (hippocampus) to allow dye
diffusion. The slices were postfixed with 4% PFA, washed, and mounted
using an antifading water-based mounting medium (Biomeda). The neu-
rons were imaged with an Axioplan 2 imaging microscope (Zeiss) equipped
with an ApoTome (Zeiss). Each neuron was first imaged with a 20X objec-
tive with a z-sectioning of 0.975 um. Morphological reconstruction of the
neurons and their processes was achieved with the Neurolucida software
(MicroBrightField) and the Sholl analysis, number, length, and volume of
the dendrites with the Neuroexplorer software (MicroBrightField). Spine
density of medium spiny neurons was measured on secondary dendrites.
The spine density of pyramidal cells was measured for mid-apical den-
drites. The selected dendrite segments were imaged using a 63X ob-
jective with 0.475 um increments. The number of spines was
normalized per micrometer of dendritic length. For the analysis of den-
dritic spine types, the images were acquired with a LSM510 Meta confo-
cal microscope (Zeiss) using a 40X water-immersion objective and a
zoom 4 and were z-sectioned at 0.3 wm. The Neurolucida software was
used to measure length, as well as head and neck diameter of each spine.
The three measurements were used to fit each spine within the three
classical spine types (Harris et al., 1992): stubby (type I), mushroom
(type II), and thin (type III). The statistical analysis was performed using
GraphPad Prism 4. All data shown are presented as mean = SEM. The
data obtained were compared between two different experimental con-
ditions using a two-tailed Student ¢ test. Asterisks indicate the signifi-
cance levels as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.
Neuronal cultures. The hippocampus and striatum of embryonic day
16 (E16) mice were dissected in PBS containing glucose (0.2%) and BSA
(0.1%), treated with 0.5% trypsin for 10 min at 37°C followed by me-
chanically dissociation. After centrifugation (5 min at 1000 rpm), cells
were plated on glass coverslips, coated overnight with poly-p-lysine (70—
150 kDa; Sigma-Aldrich), and cultured in Neurobasal medium supple-
mented with B-27 (2%), L-glutamine (200 uMm), penicillin (5 ug/ul), and
streptomycin (12.5 ug/ul). The initial density was 125,000 cells/cm? in a
final volume of 1 ml/well. Twenty-four hours after plating, cells were
transfected with 0.5 ug of the reporter plasmid pLL-SYN-SYN-GFP
(Gascon et al., 2008) using Fugene reagent (Roche) according to manu-
facturer’s instructions. On day in vitro 2 (DIV 2), the neurons were
treated with cyclosporin A (CsA) (1 um) or tacrolimus (FK506) (100 nm)
1 hbefore BDNF (40 ng/ml) application. BDNF (40 ng/ml) was reapplied
after 2 d. On DIV 7, cells were fixed for 10 min
using 4% PFA in PBS and processed for immu-

A Latency to enter the light compartment B Transition dark to light C Time spent in the light compartment nocytochemistry using mouse anti—green fluo-
400 - 20 _ 100 rescent protein (GFP) (1:1000; Cell Signaling)
- wl T f’ % and rabbit anti-GAD65/67 (1:5000; Sigma-

g ™ Aldrich) primary antibodies. Appropriate

§ 200 § 10 g © —— secondary antibodies, fluorochromes, and

100 T % © ) filters were selected for double immunofluo-
. ° rescence analysis. For the measurements of

0 " chdnf ko 0 - b ko 0 wt chdnf ko dendritic morphology and soma area, labeled
. - . nss 6 n=s neurons were visualized using standard epiflu-

Figure 2.

per genotype (**p < 0.01, ***p << 0.001, unpaired ¢ test).

chloride (Sigma-Aldrich). The dried dye-coated particles were removed
from the glass slide, resuspended in 3 ml of distilled water, and sonicated.
The dye solution was subsequently diluted 1:60 for the striatum or 1:100
for the hippocampus. To improve the bead attachment, the tube walls
were precoated with a solution of PVP (polyvinyl-pyrrolidone) (stock
solution: 0.05 mg/ml in ethanol; Bio-Rad), and the bullets were stored at
room temperature. Dye-coated particles were delivered to the acute slices

cbdnf ko mice have a markedly decrease exploratory behavior. 4, Latency of first entry into the light compartment
during the dark/light exploration test. B, Number of dark/light compartment transitions during the dark/light exploration test.
C, Total time spent in the light chamber during the dark/light exploration test. Each wild-type (white columns) and mutant animal
(black columns) was tested for a period of 6 min. All results are presented as mean == SEM determined from the analysis of n mice

orescence under a 5X Neofluar objective.
Analyses of soma area and dendrite morphol-
ogy were performed manually with the help of
the NIH Image]J software. For striatal cell mea-
surements, only double-stained cells were se-
lected (GFP- and GADG65/67-positive cells).
Because of the heterogeneity of morphologies
typically encountered with such cultures, only
neurons with one primary neurite longer than
250 wm were analyzed and selected as GFP-positive, GAD65/67-negative
cells. For dendritic measurements, concentric circles centered on the cell
soma and separated by 10 wm were projected onto the GFP-labeled
neuron. Primary dendritic length and number of intersections were ex-
pressed as the number of concentric circles crossed by dendrites. Primary
dendrites were identified by their direct association with the cell soma.
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Figure 3.  The pan-CNS BDNF deprivation unequally affects postnatal brain growth. 4, Ex-
amples of a brain of a wild-type and of a cbdnfko animal at 2 months. B, The brain wet weight
of cbdnf ko mice was significantly different from wild-type mice. C, D, Volumes were deter-
mined using Nissl-stained sections of P14 and P56 hippocampi and striata from wild-type and
cbdnf ko mice by Cavalieri analysis. All results are presented as mean == SEM determined from
the analysis of n mice per genotype (*p << 0.05, unpaired t test). The white bars represent wild
type, and the black bars represent cbdnf ko mice.

Statistical analysis was performed with the GraphPad Prism 4 software,
and the data were presented as mean = SEM. Significance was assessed
with Student’s # test for comparison between differences in soma area, and
ANOVA with post hoc Bonferroni’s test for comparison of dendrites length.
Asterisks indicate the significance levels as follows: *p < 0.05,**p < 0.01,and
***p < 0.001. To assess the efficacy of the cyclosporin A and FK506 treat-
ments, NFATc4 nuclear localization was quantified by confocal microscopy
using rabbit polyclonal antibodies against NFATc4 (1:50; Santa Cruz) and
MAP2 (1:500; Cell Signaling), and the nuclear stain Hoechst. At least 270
neurons were counted on two different coverslips.

The proportion of neurons expressing tau was quantified in cerebral
cortical, hippocampal, and striatal neurons dissected from E16 embryos
from tau::gfp mice (Tucker etal., 2001). Cells were fixed after 3 d with 4%
PFA in PBS and analyzed for MAP2 immunocytochemistry to identify
neurons (1:1000; Cell Signaling) and a GFP monoclonal antibody (1:
1000; Cell Signaling). More than 500 cells from two different coverslips
were counted, and the results are expressed as the percentage = SEM of
MAP2- and GFP-positive cells.

Results
Generation of cbdnf ko mice
A major objective of our study was to examine the impact of
BDNEF deprivation after the period of postnatal increase of BDNF
expression in the CNS (Maisonpierre et al., 1990; Kolbeck et al.,
1999). As recent results indicate that there may be a shift in the
ratio of pro-BDNF versus mature BDNF during brain matura-
tion (Yang et al., 2009), we first used immunoprecipitation and
Western blot analysis to monitor their respective levels. In the
hippocampus, the levels of BDNF were found to increase by
12.05 * 1.03-fold (SEM) (n = 3; p > 0.001), in line with previous
ELISA results (Kolbeck et al., 1999). They remained high until 12
weeks, the latest time point examined. Between P1 and 12 weeks,
the levels of BDNF are significantly higher than those of pro-
BDNF at all time points (Fig. 1A, B), suggesting that neurons
increase their capacity to process pro-BDNF in parallel with
increased levels of BDNF expression.

Mice homozygous for bdnf'** (bdnf'**/"*) are viable and fer-
tile, and at 2 months, BDNF protein levels are indistinguishable
from WT in the cerebral cortex, the hippocampus, and the stria-
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Figure4. Numberand density of neurons and oligodendrocytes in the striatum of 2-month-
old mice. Representative images of the striatum of wild-type and cbdnf ko mice immunostained
for NeuN (A) and for Olig-2 (D). B, Number of NeuN-positive cells in the striatum of wild-type
and cbdnf ko mice. No significant differences were detected between the genotypes. C, Neuro-
nal density in the striatum is higher in cbdnf ko mice compared with wild-type animals. E,
Number of Olig-2-positive cells in the striatum of wild-type and cbdnf ko mice. No significant
differences were detected between the genotypes. F, Oligodendrocyte density in the striatum
of cbdnfko mice compared with wild-type animals was not significantly different. All results are
presented as a mean == SEM determined from the analysis of n mice per genotype (*p << 0.05,
unpaired t test). The white bars represent wild type, and the black bars represent chdnf ko mice.

tum (data not shown). Conditional bdnf knock-out (cbdnf ko) mice
were generated by mating tau“’*; bdnf'*'* mice with the bdnf">’
“xJine, This mating scheme led to 8% of the progeny with the
expected cbdnf ko genotype (tau“"'"; bdnf'**""**) with the re-
maining 17% being bdnf ~' ~. Indeed, the levels of Cre seem to be
sufficiently high in some embryos to cause deletion of bdnf al-
ready in the zygote, as previously observed with some, but not all
conditional reporter lines (Korets-Smith et al., 2004). BDNF lev-
els were determined by ELISA and found to be at most 5% of
wild-type levels in the cerebral cortex of cbdnf ko animals, and not
significantly different from background in all other CNS areas
(Fig. 1C). We also quantified the proportion of postmitotic neu-
rons expressing Cre from the tau locus using a mouse line ex-
pressing GFP from this promoter (Tucker etal.,2001). E16 brains
were dissociated and a small percentage of the MAP2-positive
cells failed to express GFP: 2.12 * 0.14% in the cerebral cortex,
1.06 = 0.01% in the striatum, and 0.72 = 0.03% in the hip-
pocampus. These results suggest that, in fau::cre animals, most
neurons express Cre shortly after they are born (Giacometti et al.,
2007). To assess the tissue specificity of bdnf excision, we also
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10 compared with wild type at 2 months. In
g contrast, males were slightly lighter than
- wild type by 4 weeks but by 8 weeks could
5057 no longer be distinguished by body weight
E from wild type. We have no explanation
o . . .
S for this sex specificity (Lyons et al., 1999;
. 0.0 , Kernie et al., 2000). In addition, the cbdnf
G b chdnflo H n"fs °b:'=‘f6k° ko animals all exhibited a clasping pheno-
0201 10- type at 8 weeks, which is also seen in mice
’ with bdnf deletion in the cerebral cortex
E 015 o 0.8 (Baquet et al., 2004; Strand et al., 2007).
£ £ 06 The light/dark exploration behavior of
% 04107 & g mutant animals was also dramatically im-
§,005_ ' paired (Fig. 2).
E” 02
0.00 T 0.0 T BDNEF deprivation unevenly affects
n=6 ebd 2f6k° - °b:2fek° postnatal brain growth, not cell
| ] Axon size spectrum numbers and myelination
" Auxon size spectrum " P At 2 months, the brains of cbdnf ko ani-
g5 215 mals were slightly smaller and measurably
J10 H H H H H g lighter compared with wild-type animals
- :’hﬂ L ‘Hﬂ‘mﬂ‘m‘hm‘ ‘ = : (0.44 = 0.01 vs 0.37 = 0.02 g; unpaired ¢
g 8 & 2 3 3 8 8§ g 8 & & 3 3 8 8§ test, p = 0.0004) (Fig. 3A,B). Compara-
axondiameter of wt (um) axondiameter of cbnf ko (um) tive volume measurements of all major
brain areas using Nissl-stained sections
Figure5. Comparative analysis of the optic nerve from wild-type and cbdnf ko mice. A, Light micrographs of semithin sections ~ revealed that the volume of the striatum

stained with toluidine blue of wild-type and cbdnf ko mice. Total area of the optic nerve (B), axonal density (€), and axonal numbers
(D) in the optic nerve of cbdnf ko mice were not significantly different from wild-type values. E, Representative EM pictures of
myelinated fibers in cross-sections of the optic nerve from wild-type and cbdnf ko animals. Axonal diameters (F), myelin sheath
thickness (), and G ratio (H) of cbdnf ko animals were not significantly different from wild type. Axonal diameters distribution of
the optic nerve for a total of 455 axons (/). The frequency histogram indicates a unimodal pattern in both wild-type and cbdnf ko
animals. All results are presented as mean == SEM determined from the analysis of n mice per genotype (unpaired ¢ test). The white

bars represent wild-type, and the black bars represent cbdnf ko mice.

determined the levels of BDNF by ELISA in heart, lung, and
skeletal muscle and found these to be indistinguishable from
wild-type animals (data not shown).

This profound and widespread reduction of BDNF levels
throughout the CNS was compatible with the survival of the an-
imals for up to at least 8 months after birth. In line with previous
results reported by others (Ernfors et al., 1994; Jones et al., 1994),
we also observed that bdnf '~ littermates die during the first
weeks after birth. We also measured by quantitative real time

was most affected in cbdnf ko animals
(19.98 + 2.10 vs 13.26 + 1.21 mm?; un-
paired ttest, p = 0.001) (Fig. 3D), whereas
the hippocampus was unchanged (29.18 =
2.77vs$28.85 * 3.10 mm?>; unpaired t test,
p = 0.40) (Fig. 3C). At 2 weeks, the stria-
tum of cbdnf ko animals was not signifi-
cantly different from wild type, indicating
that BDNF is needed for the postnatal growth of some, but not all
brain areas. No significant differences were found in the number
of striatal neurons stained with NeuN (unpaired t test, p = 0.40)
(Fig. 4A,B), although as expected, the neuronal density was in-
creased (933 * 33 vs 1333 *+ 88 cellsymm? p = 0.013) (Fig.
4A,C). The number of oligodendrocytes was unchanged in the
striatum of cbdnf ko mutants compared with wild-type animals
(unpaired t test, p = 0.33) (Fig. 4D,E) and their density not
significantly increased (1480 * 153 vs 1636 * 47 cells/mm?
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p = 0.32) (Fig. 4B, D, F). As the striatum
harbors many more myelinated axons wt
than the hippocampus, we tested the |
possibility whether the lack of BDNF may 1
affect axonal diameter and myelination as e
previous results indicate that the optic ‘\‘i
nerve of bdnf~’~ animals is hypomyeli- L :
nated and axonal diameters reduced (Cel- N
lerino et al., 1997). In the cbdnf ko
mutants, we did not detect any significant
reduction in the cross-sectional area of the
optic nerve (73,960 = 6546 vs 61,480 =
6837 um?; unpaired ¢ test, p = 0.25) (Fig.
5A,B) nor in the number of axons C
(25,210 *= 2865 vs 22,320 = 2082; un- 8
paired ¢ test, p = 0.44) (Fig. 5D) and ax- —
onal density (0.36 £ 0.02 vs 0.37 = 0.01
axon/pm?; unpaired ¢ test, p = 0.67) (Fig.
5C), a result confirmed by the lack of sig-
nificant differences in the mean size of
myelinated axons (wild type, 0.89 = 0.06
pm; cbdnf ko, 0.83 = 0.04 wm; unpaired ¢ 0 :
test, p = 0.79) (Fig. 5F). In addition, the wt
. . n=30 n=21
myelin sheath of the optic nerve appeared
to be normal (Fig. 5E), as was its thickness
(0.14 £ 0.01 vs 0.15 = 0.01 wm; unpaired
t test, p = 0.78) (Fig. 5G) and the ratio
between axonal diameter and myelin
sheath thickness (G-ratio, 0.76 * 0.01 vs
0.74 = 0.01; unpaired ¢ test, p = 0.33)
(Fig. 5H). The distribution of axonal di-
ameter was unimodal both in cbdnfko and
wild-type animals (unpaired ¢ test, p >
0.05) (Fig. 5I). Additional quantitative e
analyses of myelinated axons in cross- n=30 n=21
sections of the corpus callosum and the
spinal cord similarly indicated that the ax-
onal diameter and myelination were not
affected in cbdnf ko animals at 2 months
(data not shown). These observations in-
dicate that CNS myelination does not re-
quire BDNF in the CNS.

number of dendrites

n
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o
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Figure6.

. . striatal neurons.
cbdnf ko striatal neurons fail to

grow postnatally

As the volume reduction of the mutant striatum cannot be ac-
counted for by cell loss or decreased myelination, we then per-
formed detailed analyses of medium spiny neurons using a
DiOlistic approach to label single neurons in acute slices (Fig.
6A). In comparison with wild-type neurons (n = 30), mutant
neurons (n = 21) were markedly smaller. Total dendritic com-
plexity was determined by Sholl analyses and found to be reduced
by ~50% in cbdnf ko mutants (127.06 * 6.67 vs 64.76 * 4.53 wm;
unpaired ¢ test, p = 0.001) (Fig. 6 B). When the number of inter-
sections was plotted against the distance from the cell body, a
significant decrease in dendritic complexity was observed be-
tween 30 and 150 wm from the cell body (Fig. 6 B) (unpaired ¢
test, p < 0.001). Both the number of dendrites (5.74 * 0.31 vs
4.09 = 0.2; unpaired ¢ test, p = 0.001) (Fig. 5C) and the total
dendritic length were reduced in cbdnf ko neurons, the latter by
~50% (1669.05 = 84.28 vs 793.38 * 58.27 wm; unpaired ¢ test,
p = 0.001) (Fig. 6 D). The volume occupied by all branch orders
of dendrites was reduced (337.76 + 61.42 vs 125.97 = 26.28 um>;

A Medium spiny neuron

cbdnf ko

cbdnf ko

Rauskolb et al. @ BDNF Deprivation in the Postnatal CNS

Medium spiny neuron B
chdnf ko
20- *kk
%]
c
2
it B 157
i % Q
! P @
TN s
AT S 10
g "6
! i
1 *%
£ .
'\\‘ 35 N
. mn
\ 0 T T T * 1
T _100um 0 50 100 150 200 250
pm from soma
—o— wt n=30 —e— cbdnf ko n=21
2000 . 100+ o BEE
L— m
= T =
£ € B
2 15001 58
£ 2 *
2 £ 60 —
< 1000 g ey
£ 2 40
3 3
= i c
g s00 $ 20
0 T 0-
wt cbhdnf ko 1 2 3 4 5 6 7
n=30 n=21 3 wt n=30 EE cbdnf ko n=21
g 107 150 wak
5 1 s [ —
c = 4 ==
3 0.8 é
£ S ond
2 06- g 100
3 £
c
— n
2 0.4+ 5
s g 50
3 0.2 £
Qo
E 2
=]
< 0.0 T o
wt cbdnf ko hd wt cbdnf ko
n=30 n=21 n=30 n=21

Dendritic morphology of striatal neurons from wild-type and cbdnf ko animals. Confocal image consisting of stacks of
multiple optical sections showing the morphology of wild-type and cbdnf ko striatal neurons (4). Note the smaller size of striatal
neurons in cbdnfko mice. B, Sholl analysis comparing dendritic complexity in wild-type and cbdnfko striatal neurons. Total number
of dendrites (C), total dendritic length (D), total volume of the dendrites within the different branch orders (E), total cell body
volume (F), spine density (G), and total number of spines per neuron (H) in wild-type and cbdnfko striatal neurons. All results are
presented as mean == SEM determined from the analysis of n striatal neurons per genotype (*p << 0.05, **p << 0.01, and ***p <
0.007; Student’s t test). Scale bar, 100 rum. The open circles/bars represent wild type, and the black circles/bars represent cbdnfko

unpaired ¢ test, p = 0.001) (Fig. 6 E), whereas the volume of the
cell bodies was smaller (99.19 * 0.69 vs 84.52 = 0.85 um?; un-
paired rtest, p = 0.001) (Fig. 6 F). As dendritic spines are the main
targets of excitatory synapses formed by cortical afferents, we
determined spine densities and total number of spines and found
that both were significantly decreased (0.84 * 0.02 vs 0.70 * 0.02;
unpaired ¢ test, p = 0.001) (Fig. 6G,H).

Minimal morphological alterations of cbdnf ko

hippocampal neurons

In view of the profound alterations observed in medium spiny
neurons in the striatum deprived of BDNF, we also analyzed
single pyramidal neurons in the hippocampus even though its
overall size was unchanged when compared with wild-type ani-
mals (Fig. 3C). We selected CA1 as it is one of the most investi-
gated brain region with regard to the role of BDNF in functional
synaptic plasticity. Pyramidal neurons were labeled with Dil in
month-old acute hippocampal slices and when qualitatively
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Figure 7. Dendritic morphology of hippocampal CA1 neurons from wild-type and cbdnf ko

animals. A, Confocal image consisting of stacks of multiple optical sections showing the mor-
phology of wild-type and cbdnf ko pyramidal neurons. Note the essentially unchanged dendrite
complexity and length of pyramidal neurons in cbdnf ko compared with wild-type mice. B, D,
Number of apical and basal dendrite intersections in wild-type and cbdnfko pyramidal neurons.
G, E, Sholl analysis comparing both apical and basal dendrites in wild-type and cbdnf ko pyra-
midal neurons. Spine density (F) and distribution of different spine types (G) in wild-type and
cbdnf ko hippocampal CA1 neurons. All results are presented as mean = SEM determined from
the analysis of n CA1 pyramidal neurons per genotype (*p << 0.05, Student’s t test). Scale bar,
100 wm. The open circles/bars represent wild-type CA1 pyramidal neurons, and the black
circles/bars represent cbdnf ko CA1 pyramidal neurons.

compared with wild-type CA1 pyramidal neurons, no apparent
alterations in dendritic orientation or gross neuronal architec-
ture were observed in cbdnf ko animals (Fig. 7A). This first im-
pression was confirmed by comparing the total dendritic
complexity using the Sholl analysis. In view of their different
morphology and connectivity, we analyzed the complexity of api-
cal and basal dendrites separately. The apical dendrite complexity
was analyzed up to a distance of 400 um from the cell body.
Mutant CA1 neurons revealed only a slight, nonsignificant re-
duction in complexity when compared with wild-type cells
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(188.75 = 12.52 vs 169.41 * 9.15) (Fig. 7B, left) (wild-type, n =
25; cbdnfko, n = 29). A more detailed Sholl analysis performed by
plotting the number of intersections against the distance from the
cell body confirmed these results (Fig. 7C) and revealed a limited,
but significant, decrease in complexity of the apical dendrites of
cbdnfko CA1 cells versus CA1 wild-type cells (unpaired ¢ test, p <
0.05, between 220 and 240 um and between 270 and 290 um)
(Fig. 7C). For the basal dendrites, the same analysis indicated a
similar, but even milder trend (wild-type, n = 14; cbdnf ko, n =
16) (Fig. 7D, E). The volume of the cell body revealed no differ-
ences between wild-type and mutant CAl neurons (data not
shown). We also compared the density of dendritic spines at the
mid-distal portion of the apical dendrite of cbdnf ko animals and
found a slight, nonsignificant reduction compared with wild-
type neurons (1.41 = 0.03 vs 1.36 * 0.02 spines/um of dendrite)
(Fig. 7F). Spines subtypes were also analyzed (Fig. 7G) and a
significant reduction in the proportion of mushroom (type II;
53.95 * 2.34% vs 47.23 = 1.88%; unpaired ¢ test, p < 0.05;
wild-type, n = 26; cbdnf ko, n = 23) spines was observed with a
correspondingly higher proportion of thin (type III; 13.87 =
1.67% vs 19.11 £ 1.66%; unpaired t test, p < 0.05; wild-type, n =
26; cbdnf ko, n = 23) spines. No changes were observed in the
proportion of stubby (type I) spines (Harris et al., 1992; Koh et
al., 2002). These results thus indicate that BDNF deprivation fails
to cause major alterations in the fine structure of 2-month-old
CA1 pyramidal neurons, in marked contrast with striatal me-
dium spiny neurons.

BDNF promotes the growth of cultured striatal, but not
hippocampal neurons

To examine whether the differential growth-promoting effects of
BDNEF on striatal versus hippocampal neurons may reflect intrin-
sic differences, we next investigated the response to BDNF of
cultured neurons dissociated from the corresponding brain re-
gions at E16. These experiments revealed that, after 5 d of expo-
sure to BDNF (40 ng/ml), striatal neurons react with a strong
growth response (Fig. 8A,B,E). Quantitative Sholl analysis re-
vealed that BDNF increased the number and length of primary
dendrites as well as the total number of intersections with signif-
icant differences in the number of branches at a distance between
20 to 120 wm from the cell body (Fig. 8 F). When cultured hip-
pocampal neurons were similarly treated, no significant morpho-
logical changes were observed after BDNF application. Both cell
body size and primary dendritic length, as well as branches re-
mained unchanged (Fig. 9A,B,E,F). In the same cultures,
GADG65/67-expressing neurons were observed to have bigger
soma sizes in the presence of BDNF compared with control cul-
tures (data not shown).

Previous in vitro and in vivo results have indicated that
neurotrophin-dependent elongation of neuronal processes re-
quires an intact calcineurin/nuclear factor of activated T-cells
(NFAT) pathway (Graefet al., 2003). In rodents, both striatal and
hippocampal neurons express the BDNF receptor TrkB (Altar et
al., 1994), and to begin to test the differential response to BDNF
downstream of TrkB, we examined whether the growth effects
of BDNF observed with striatal neurons would involve a
calcineurin-dependent pathway. We found that the calcineurin
inhibitor CsA (1 uM) as well as FK506 (100 nMm) interfered with
the basal growth of the dendrites of striatal, but not of hippocam-
pal neurons, suggesting the presence of a calcineurin-sensitive
pathway regulating the growth of striatal neurons, even in the
absence of exogenous growth factor (Fig. 8C—F). The BDNF-
dependent growth of striatal neurons was completely suppressed
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by CsA or FK506 (Fig. 8C-E). No signifi- Striatal neurons
cant changes were observed in the growth
of processes of hippocampal neurons, ei-
ther with or without BDNF (Fig. 9C-F).
Both CsA and FK506 significantly blocked )
the nuclear transfer of NFATc4 observed e/
after BDNF addition to both neuronal

populations (Fig. 8G). 4 N

Control

Discussion

This study reveals that mice survive with
barely detectable BDNF levels in their
CNS and that, at 2 months, they are be-
haviorally impaired. The volume of their
striatum was markedly reduced, whereas
the hippocampus remains mostly un-
changed. In vitro experiments reveal dif-
ferences in the regulation of process
extension by BDNF between the corre-
sponding neuronal populations, in line
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BDNF measurements and
tau::cre-mediated bdnf excision
Our gene deletion strategy allows the
morphological impact of a global depriva-
tion of BDNF to be assessed after BDNF
expression has reached its peak in the
postnatal brain of wild-type animals
(Maisonpierre et al., 1990; Kolbeck et al.,
1999). As a recent report suggested a
change in the ratio of pro-BDNF versus
mature BDNF and also challenged the no-
tion that the levels of BDNF increase post-
natally (Yang et al., 2009), we examined
this question by immunoprecipitation
and Western blot analyses. We found that
the ratio of pro-BDNF to mature BDNF
remains approximately constant with a
large excess of mature BDNF at all ages
tested (Fig. 1A,B). At neutral pH, very
long incubation times, up to 48 h, were
necessary to quantitatively precipitate
both pro-BDNF and BDNF and to dis-
place them from binding proteins present
in brain extracts. Note that this long incu-
bation time does not cause cleavage of
pro-BDNF and that identical results are
obtained with BDNF or Myc antibodies when using animals car-
rying a tagged version of the gene (Matsumoto et al., 2008). The
shorter incubation times used by Yang et al. (2009) may explain
the discrepancies with our results. Similar difficulties were previ-
ously encountered with NGF measurements (Suda et al., 1978).
Previous work with mouse ES cells differentiated in neurons
as well as in vivo analyses of mice expressing GFP from the fau
locus indicates that it begins to be active as soon as neuronal
progenitors drop out of division (Tucker et al., 2001; Bibel et al.,
2004). Accordingly, bdnf most likely is not deleted in cycling
progenitors in the tau::cre line. This is unlike what has been
achieved using a GFAP promoter-driver, which results in a
smaller dentate gyrus because of decreased numbers of newborn
neurons (Li et al., 2008). Given the profound reduction of BDNF
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Effects of BDNF, cyclosporin A, and FK506 on the growth of striatal neurons and on NFATc4 nuclear translocation.
Neurons were transfected after 1d in vitro with a GFP reporter plasmid, BDNF (40 ng/ml) was added after 2 d, and the cultures were
examined after an additional 5 d. Cyclosporin A (1 um) or FK506 (100 nm) were added 1 h before BDNF. GFP-and GAD65/67-positive
neurons were analyzed by fluorescence microscopy (4, B). BDNF treatment caused a significant increase in soma area (t test, p <
0.001) (E) and in the number and length of dendriticintersections (ANOVA; p << 0.001 from 10t0 90 m; p << 0.01from 100to 110
m from the cell body), as well as in the total number of dendritic intersections (¢ test; p << 0.001) (F). Cyclosporin A blocked the
growth and arborization of untreated, as well as of BDNF-treated neurons ((—F). G, CsA and FK506 blocked the nuclear transfer of
NFATc4 (arrows) observed after BDNF addition to striatal neurons. Nuclear translocation was assessed by counting the number of
Hoechst- and NFATc4-positive nuclei. Data represent the mean = SEM determined from the analysis of n neurons per
condition. Statistical analysis were performed with Student’s t test and with ANOVA followed by Bonferroni’s post hoc test.
*p < 0.05; **p < 0.01; ***p < 0.001. Scale bars: 4, B, 100 wm; C, D, 20 pum.

levels in the cbdnf ko animals, our results confirm that postmitotic
neurons are the major source of BDNF expression in the brain.
A number of other mouse conditional bdnf mutants have been
previously generated using Cre expression driven by promoter con-
structs in transgenes or by Cre insertion in specific loci (Rios et al.,
2001; Gorski et al., 2003; Baquet et al., 2004; He et al., 2004; Chan et
al., 2006, 2008; Monteggia et al., 2007; Unger et al., 2007). In most
cases, a deliberately restricted pattern of Cre driver expression was
part of the objective of the experiment, whereas in others the BDNF
reductions were not documented at the protein level. The results of
our immunoassays indicate a dramatic reduction in all CNS areas,
including the spinal cord, although very small, but detectable quan-
tities could still be detected in the cerebral cortex of chdnf ko animals,
possibly produced by cells others than neurons including endothe-
lial cells (Kermani et al., 2005). Given the near complete overlap of
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Effect of BDNF and of cyclosporin A on the growth of hippocampal neurons. Neurons were transfected after 1d with a GFP reporter vector, BDNF (40 ng/ml) was added after 2 d, and the

cultures were examined after an additional 5 d. Cyclosporin A was added 1 h before BDNF. GFP-positive, GAD65/67-negative neurons were analyzed by fluorescence microscopy (A, B). Quantitative
analysis failed to reveal any significant differences on the morphology of neurons with BDNF and/or cyclosporin A compared with untreated cultures (C~F). Data represent the mean = SEM
determined from the analysis of 10 neurons per condition. Statistical analysis were performed with Student’s  test and with ANOVA followed by Bonferroni's post hoc test. Scale bar, 60 wm.

Cre expression with MAP2 labeling (inferred from the GFP staining
data) (see Results), it is unlikely that significant numbers of neurons
would still express BDNF in our cbdnf ko line.

BDNF deprivation and striatal versus hippocampal neurons
The number of striatal neurons remained unchanged in cbdnf ko
animals, as was the number of retinal ganglion cells as inferred
from axonal numbers. Although this latter result is in line with a
conclusion reached with bdnf '~ mutants (Cellerino et al.,
1997), we did not observe any significant decrease in the myeli-
nation of optic nerve axons, unlike previously reported (Cel-
lerino et al., 1997). We explain this discrepancy as secondary to
reduced postnatal growth and poor health of bdnf '~ analyzed
shortly before their death (Cellerino et al., 1997), such as an ab-
normal development of electrical properties of retinal ganglion
cells. The lack of widespread neuronal death should not be taken
to imply that BDNF is not necessary for the survival of small
neuronal populations in discrete brain nuclei such as subdivi-
sions of the substantia nigra (Baquet et al., 2005) or noradrener-
gic neurons in a pontine nucleus (Guo et al., 2005).
Measurements of major CNS areas of cbdnf ko animals failed
to reveal volume changes in the olfactory bulb, the dentate gyrus
(data not shown), and the hippocampus CA1-CA3. A small re-
duction was observed in the cerebral cortex (data not shown),

with the striatum being most affected. Random single-cell dye
filling in the latter revealed a highly significant reduction of the
total length and volume of dendrites (Fig. 6), indicating that the
majority of these neurons—>90% being GABAergic medium
spiny neurons—need BDNF for their postnatal dendritic growth.
BDNEF is most likely delivered by cortical afferents to these neu-
rons as indicated by surgical and pharmacological experiments
(Altar et al., 1997). The BDNF mRNA levels in the striatum are
~2% of those in the cerebral cortex (Hofer et al., 1990), whereas
the protein levels only differ by ~50% (Kolbeck et al., 1999;
Baquet et al., 2004). Both this interpretation and the results re-
ported here are fully consistent with a previous study by Baquet et
al. (2004) using a emx::creline to delete bdnfin the cortex, but not
in other brain regions. These findings are also in line with reports
indicating that the development of GABAergic neurons is regu-
lated by excitatory input thought to release BDNF in an activity-
dependent manner (Kohara et al., 2007; Turrigiano, 2007; Hong
etal.,, 2008). Baquet et al. (2004) also noted that, in their emx::cre
line, the size of the hippocampus did not significantly differ from
control animals after selective bdnf excision, but cautioned the
interpretation by a possible anterograde transport of BDNF from
other brain areas. Our results now indicate that the morpholog-
ical development of CA1 neurons does not depend on BDNF,
except for small changes in dendritic branches in restricted seg-
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ments and signs of a modest delay in spine maturation. In line
with our findings, we note that the virtually complete elimination
of all forms of TrkB in the hippocampus (with a human GFAP
promoter driving Cre expression) does markedly affect the
growth of postmitotic hippocampal neurons (Luikart et al.,
2005). Although changes in spine density, but not in the number
of dendritic branches and length, were reported, these may be
accounted for by the deletion of TrkB in progenitor cells, now well
appreciated to be sensitive to BDNF/TrkB signaling (Bergami et al.,
2008; Li et al., 2008).

As decreased duration of long-term potentiation in CAl is a
typical sign of diminished functional plasticity in mice lacking
one or both bdnfalleles (Korte et al., 1995; Patterson et al., 1996),
we stimulated with high-frequency bursts Schaffer collateral in
slices of cbdnf ko mice and found long-term potentiation to be
markedly reduced compared with wild-type slices, to a level in-
distinguishable from that observed in parallel experiments with
slices from bdnf ™ ’~ animals (data not shown).

Although the clasping phenotype displayed by all mutant an-
imals by 2 months is not surprising in view of the changes ob-
served in the striatum, the reasons for the marked decreased light/
dark exploratory behavior are unclear. BDNF has long been
known to regulate the development or function of neuronal pop-
ulation critically involved in behavior such as dopamine- or
serotonin-secreting neurons (Hyman et al., 1991; Mamounas et
al., 2000). As a result, no simple explanation can be proposed for
the abnormal exploratory phenotype of our mutant animals (for
discussion, see Krishnan et al., 2007).

Mechanisms of growth regulation by BDNF

Our in vitro findings with striatal and hippocampal neurons in
response to BDNF (Figs. 8, 9) are consistent with our in vivo
observations and suggest cell-intrinsic differences in BDNF re-
sponsiveness and a calcineurin-sensitive pathway in striatal, but
not in hippocampal neurons. A previous study already indicated
a much larger growth response to BDNF of hippocampal
GABAergic, compared with pyramidal neurons (Vicario-Abejon
et al., 1998), and together these results suggest that TrkB activa-
tion by BDNF in GABAergic neurons involves the activation of
NFAT and its transfer to the nucleus. Curiously, this transfer is
also seen in hippocampal neurons in response to BDNF, but it
does not result in readily measurable growth effects, nor does the
strong decrease in NFAT nuclear localization after exposure to
cyclosporin A or FK506 affect the growth of processes. These
results point to a fundamental difference in the regulation of
process elongation in these two neuronal populations.

In conclusion, our results indicate that, unlike NGF in the
PNS, BDNF is not a major survival factor for most CNS neurons
in young adult mice and that its near elimination throughout the
CNS primarily affects the postnatal growth of the striatum.
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