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Predictive Coding as a Model of Response Properties in

Cortical Area V1
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A simple model is shown to account for a large range of V1 classical, and nonclassical, receptive field properties including orientation
tuning, spatial and temporal frequency tuning, cross-orientation suppression, surround suppression, and facilitation and inhibition by
flankers and textured surrounds. The model is an implementation of the predictive coding theory of cortical function and thus provides
a single computational explanation for a diverse range of neurophysiological findings. Furthermore, since predictive coding can be
related to the biased competition theory and is a specific example of more general theories of hierarchical perceptual inference, the
current results relate V1 response properties to a wider, more unified, framework for understanding cortical function.

Introduction

Predictive coding (PC) provides an elegant theory of how bot-
tom—up evidence is combined with top—down priors to compute
the most likely interpretation of sensory data. Specifically, PC
proposes that an internal representation of the world generates
predictions that are compared with stimulus-driven activity to
calculate the residual error between the prediction and the sen-
sory evidence. A number of previous proposals for how PC could
be implemented in cortical circuitry have all suggested that cor-
tical feedback connections carry predictions and that these act on
regions at preceding stages along an information processing
pathway to calculate the residual error, which is then propagated
via cortical feedforward connections (Mumford, 1992; Barlow,
1994; Rao and Ballard, 1999; Murray et al., 2004; Friston, 2005,
2009; Jehee et al., 2006; Kilner et al., 2007).

An alternative implementation of PC, the PC/BC model
(Spratling, 2008a,b), proposes that the calculation of the residual
error is performed by connections intrinsic to each cortical re-
gion, rather than via feedforward and feedback connection be-
tween cortical regions. When viewed in this way, PC can be
interpreted as a mechanism of competition between different
representations of the sensory world. PC/BC makes particular
predictions about the mechanism of competition operating
within each cortical area. Specifically, this interpretation of PC
requires that neurons that represent predictions (presumed to be
pyramidal cells) suppress the inputs to neighboring prediction
neurons within a cortical region. This is in contrast to most other
models of cortical inhibition, which presume that neurons sup-
press the outputs of other neurons. Furthermore, PC/BC requires
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that the strength with which a prediction neuron suppresses a
particular input should be proportional to the strength of the
afferent connection that that prediction neuron receives from
that input. This has the consequence that the strength of compe-
tition between two prediction neurons is proportional to the de-
gree of overlap between their receptive fields (RFs).

The effects of competitive interactions between cortical neu-
rons have been most extensively studied in primary visual cortex.
Hence, to determine whether the particular mechanism of com-
petition proposed by the PC/BC model is consistent with com-
petitive mechanisms known to operate in cortex, PC/BC was used
to simulate the competition between neurons in a population of
V1 simple cells. The model was presented with stimuli identical
with those used in physiological investigations of V1 response
properties. Crucially, the model remained fixed across all the
experiments. Hence the model was tested in a manner analogous
to V1 with only the parameters for the stimulus (contrast, grating
wavelength, presentation time, etc.) under the experimenter’s
control. The behavior of the model is in good agreement with a
wide range of classical and nonclassical RF properties of neurons
in cortical area V1. This suggests that the PC/BC version of pre-
dictive coding is consistent with the mechanism of competition
implemented in primary visual cortex and hence that many of the
varied response properties observed in V1 neurons may simply be
a by-product of the cortex performing predictive coding.

Materials and Methods

The PC/BC model. Spratling (2008a) introduced a nonlinear model of
predictive coding (nonlinear PC/BC), illustrated in Figure 1, which is
implemented using the following equations:

eSi = YSi—l %) (82 + (WS:‘)TYS[) (1)
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where superscripts of the form Si indicate processing stage i of a hierar-
chical neural network, e% is a (m by 1) vector of error-detecting neuron
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Figure 1. The PC/BC model: a reformulation of predictive coding (Rao and Ballard, 1999)
that can be interpreted as a form of biased competition model. The rectangles represent popu-
lations of neurons, with y labeling populations of prediction neurons and e labeling populations
of error-detecting neurons. The open arrows signify excitatory connections, the filled arrows
indicate inhibitory connections, the crossed connections signify a many-to-many connectivity
pattern between the neurons in two populations, the parallel connections indicate a one-to-
one mapping between the neurons in two populations, and the large shaded boxes with
rounded corners indicate different cortical areas or processing stages.

activations, y* is a (1 by 1) vector of prediction neuron activations, W'
is a (n by m) matrix of synaptic weight values normalized such that the
sum of each row is equal to s, W*' is a matrix representing the same
synaptic weight values as W but such that the rows are normalized to have
amaximum value of §, &, &,, and ¢ are parameters, and & and ® indicate
element-wise division and multiplication, respectively. These equations
are evaluated in the order 1, 2, 3, and the values of y*' given by Equation
3 are then substituted back into Equations 1 and 2 to recursively calculate
the changing neural activations at each time step.

A value of { equal to 1 has been used in previous work (Spratling,
2008a; De Meyer and Spratling, 2009; Spratling et al., 2009). Changing
the value of this particular parameter has no effect on the behavior of the
model, except to scale the activation values of the error-detecting neu-

1
rons by v In these experiments, a value of ¢ equal to 5000 was used to

produce error neuron activations of the same order of magnitude as the
prediction neuron activations (see supplemental material, available at
WWW.jneurosci.org).

Equation 1 describes the calculation of the neural activity for each
population of error-detecting neurons. These values are a function of the
activity of the prediction neurons in the preceding cortical area divisively
modulated by a weighted sum of the outputs of the prediction neurons in
the current area (Spratling et al.,, 2009). The activation of the error-
detecting neurons can be interpreted in two ways. First, e can be consid-
ered to represent the residual error between the input to the current
processing stage (y* ~ ') and the reconstruction of the input ((W*)"y*)
generated by the prediction neurons at the current processing stage. The
values of e indicate the degree of mismatch between the top—down re-
construction of the input and the actual input (assuming &, is sufficiently

1
small to be negligible). When a value within e is greater than —, it indi-

cates that a particular element of the input is underrepresented in the

1
reconstruction; a value of less than a indicates that a particular element

1
of the input is overrepresented in the reconstruction; and a value of —

indicates that the top—down reconstruction perfectly predicts the bot-
tom—up stimulation. A second interpretation is that e represents the
inhibited inputs to a population of competing prediction neurons. Each
prediction neuron modulates its own inputs, which helps stabilize the
response of the prediction neurons, since a strongly (or weakly) active
prediction neuron will suppress (magnify) its inputs and hence reduce
(enhance) its own response. Prediction neurons that share inputs (i.e.,
that have overlapping RFs) will also modulate each other’s inputs. This
generates a form of competition between the prediction neurons, such
that each neuron effectively tries to block other prediction neurons from
responding to the inputs that it represents.

Equation 2 describes the updating of the prediction neuron activa-
tions. The response of each prediction neuron is a function of its activa-
tion at the previous iteration and a weighted sum of afferent inputs from
the error-detecting neurons. Equation 3 describes the effects on the pre-
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Figure2. The model of V1implemented using PC/BC. The prediction neurons (labeled y) are
assumed to correspond to V1 simple cells and the response of one of these neurons is recorded.
The RFs of these prediction neurons are determined by the definition of the weight matrix W.
Prediction neurons compete to represent the input stimulus x via divisive feedback, which acts
on the error-detecting neurons (labeled e) and is carried by connections from the prediction
neurons to the error-detecting neurons, which have strength proportional to the corresponding
reciprocal weights from the error-detecting neurons to the prediction neurons.

diction neuron activations of top—down inputs from prediction neurons
at the next stage in the neural hierarchy. These top—down inputs are a
weighted sum of the activity of the prediction neurons at the subsequent
processing stage and have a purely modulatory effect on the current
processing stage. This feedback allows predictions generated by neurons
higher up a processing hierarchy (which have larger receptive fields) to
influence the strength of each prediction made at the current processing
stage. Equivalently, feedback can be interpreted as influencing the out-
come of the competition occurring between prediction neurons at the
current processing stage. Hence the PC/BC model can also be interpreted
as an implementation of the biased competition model of cortical func-
tion (Spratling, 2008a,b).

The V1 model. This article is concerned with modeling a single cortical
region, V1, in isolation. Hence only a single processing stage will be
modeled (Fig. 2). Furthermore, all top—down, modulatory, inputs to this
area are ignored (i.e., yvl+l = 0), and hence Equation 3 can also be
ignored. Since there is only one processing stage in the model, the super-
scripts will be dropped, and the input to V1 will be described by a vector,
x = yV'"!, of inputs coming from a model of the lateral geniculate
nucleus (LGN) (see below). The model can thus be simplified to the
following two equations:

e=xT (e, + Wly) (4)
y < (& +y) ®We. (5)

These equations describe the competition occurring within one process-
ing stage (cortical area) of the PC/BC model. This mechanism of compe-
tition is called divisive input modulation (DIM) and has been shown to
have excellent pattern recognition abilities on an artificial task (Spratling
et al., 2009).

Despite the simplicity of the model, simulating a large population of
neurons receiving input from a reasonably large image is computation-
ally demanding using the matrix multiplication method described by
Equations 4 and 5. Furthermore, individually specifying the synaptic
weight values for a large population of neurons can be inconvenient. For
an application, like a model of V1, in which neurons have RFs restricted
to a small fraction of the input image, and in which the same patterns of
weights are repeated at different spatial locations, it is possible to imple-
ment DIM in a more tractable manner using linear filtering and convo-
lution, as follows:

P

E=XJ (sz + O (o Yk)) (6)
k=1

Y, < (g, + Y) ® (w; x E), (7)

Where E, X, and Y, are two-dimensional arrays equal in size to the input
image that represent the error-detecting neuron responses, the input
stimulus, and the prediction neuron responses, respectively; w; is a two-
dimensional kernel representing the synaptic weights for a particular
class (k) of neuron; p is the total number of kernels; * represents cross-
correlation (which is equivalent to convolution without the kernel being
rotated 180°); and * represents convolution (which is equivalent to cross-
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Figure4. The PC/BCmodel of V1 implemented using convolution and with separate ON and
OFF channels. The input image / is preprocessed by convolution with a circular-symmetric on-
center/off-surround kernel (to generate the input to the ON channel of the V1 model) and a
circular-symmetric off-center/on-surround kernel (to generate the input to the OFF channel of
the V1 model). The prediction neurons (labeled Y), which represent V1 simple cells, generate
the responses that were recorded during the experiments. These responses were generated by
convolving the outputs of the (ON and OFF channels of the) error-detecting neurons (labeled E)
with (the ON and OFF channels of) a number of kernels representing V1 RFs. This convolution
process effectively reproduces the same RFs at every pixel location in the image. The responses
of the error-detecting neurons are influenced by divisive feedback from the prediction neurons,
which is also calculated by convolving the prediction neuron outputs with the weight kernels.

correlation with a kernel rotated by 180°). Note that Equation 7 repre-
sents a family of equations, one for each kernel.

The RF of a simple cell in primary visual cortex can be accurately
modeled by a two-dimensional Gabor function (Daugman, 1980, 1988;
Marcelja, 1980; Jones and Palmer, 1987; Lee, 1996). Hence the Gabor
function was used to define the weights of each kernel w;. A definition of
a Gabor function of the form proposed by Lee (1996) was used, which
includes a term to remove the DC response of the filter as follows:

— cos(¢) exp{—(%) H, (8)

where o = 4 (pixels) was a constant that defined the SD of the Gaussian
1
envelope (which determines the spatial extent of the RF), y = —=wasa

constant that defined the aspect ratio of the Gaussian envelope (which
determines the ellipticity of the RF), A = 6 (pixels) was a constant that
defined the wavelength of the sinusoid, ¢ was the phase of the sinusoid,
and x" = x cos(0) + y sin(6) and y' = —x sin(6) + y cos(6), where 6
defined the orientation of the RF. Note that the size of the RF of a model
neuron is measured in pixels. This value should have a direct linear

=IIIIII =B Il i

The synaptic weights used in the PC/BC model of V1. a, A family of 32 Gabor functions (8 orientation and 4 phases)
used to define the RFs of the neuronsin the model. b, The actual synaptic weights of the model neurons were created by separating
the positive and negative parts of the Gabor function into separate (non-negative) ON and OFF weights (shown for the bottom right
Gabor function only). Each Gabor kernelis 21 XX 21 pixels, and hence each prediction neuronin the model receives 21 X 21 X 2 =
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relationship with the size of the RF of a cortical
cell measured in degrees of visual angle. Differ-
ent neurophysiological experiments are per-
formed with cells that have different RF sizes.
To simulate these different experiments, it
would be possible to scale parameters o-and A
to fit the model to each specific cortical neuron.
Alternatively, it is possible to keep the model
fixed and change the size of the image. The
latter approach was taken in the simulations
reported in this article.

A family of 32 Gabor functions (Fig. 3a) with
eight orientations (6 = 0-157.5° in steps of
22.5°) and four phases (¢ = 0, 90, 180, and
270°) were used to define the RFs of the neu-
rons in the model. The cross-correlation and
convolution performed in Equations 6 and 7
mean that neurons with these RFs are repro-
duced at every pixel location in the image, and
consequently, that the size of the population of
V1 cells simulated varies with image size. For an a X b pixel image, the
model simulates the response of 32ab prediction neurons (for the exper-
iments reported in Results, an image is typically 51 X 51 pixels, so
~80,000 prediction neurons were simulated).

The PC/BC model requires non-negative weights. Hence the weights
were separated into distinct ON and OFF channels, which represented
the positive and negative parts of the Gabor function using separate sets
of non-negative weights (Fig. 3b). These separate channels result in the
model illustrated in Figure 4 and described by the following equations:

P
E:&@Q%+Z%ﬁﬂ0 9)
k=1

Y, < (e, + Y) ® D(wy * ), (10)

where 0 € [ON,OFF]. The kernels wy  and wqgg , were normalized so
that sum of all the weights in both the ON and OFF channel was equal to
Y, and Woy . and Wops, were normalized so that the maximum value
across both the ON and OFF channel was equal to .

For each new input image, the prediction neuron responses (Y ) were
initialized to zero, and then the above equations were iterated to record
the response of Y for a number of iterations (¢). This recording time, ¢,
was the only parameter (apart from the input image) that was varied
during the experiments reported in Results. The response of the predic-
tion neurons on the first iteration is given by the following:

€
Yk_sl(zwak*xo). (11)
2\ o

The bracketed term on the right-hand side of Equation 11 represents the
output produced by a set of linear filters when applied to the image. This

T, . . & e
initial, linear, response is scaled by the ratio P To ensure that this initial
2

transient did not dominate the recorded responses, values of &, = 0.0001
and &, = 50 were used. Given the large value of ¢ used here, these values
are similar to those used previously to simulate the interactions between
attention and long-range lateral connections in V1 (De Meyer and
Spratling, 2009).

Results from neurophysiological studies are generally presented by
showing how the mean evoked firing rate of the recorded neuron changes
as a particular parameter of the input stimulus is varied. Results from the
model were generated in the same way by recording the activity of a single
prediction neuron, in response to each input image, for a number of
iterations (t) of the PC/BC algorithm. The average response was then
calculated by simply taking the mean activity of the recorded prediction
neuron over the titerations that the stimulus was presented. As for typical
physiological experiments, the stimulus parameters other than the one
being varied during the experiment were matched to the preferred pa-
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rameters of the neuron under test (e.g., the stimulus was centered over
the RF at the preferred orientation, spatial frequency, temporal fre-
quency, etc., of the recorded neuron). Furthermore, the range of gray-
scale values in the input image I were set equal to the fractional Michelson
contrast used for the presentation of stimuli in the corresponding phys-
iological experiment, if this value was reported.

The LGN model (image preprocessing). The input to the model of V1,
described above, was an input image (I) preprocessed by convolution
with a LoG (Laplacian-of-Gaussian) filter (/) with SD equal to 1. This is
virtually identical with the DoG (difference-of-Gaussians) filter that has
traditionally been used to model circular RFs in LGN. The output from
this filter was subject to a saturating nonlinearity, such that

X = tanh{27(I * ])}. (12)

The positive and rectified negative responses were separated into two
images X, and X simulating the outputs of cells in retina and LGN
with circular-symmetric on-center/off-surround and off-center/on-
surround RFs. This preprocessing is illustrated in Figure 4. Consistent
with neurophysiological data (Reid and Alonso, 1995), the ON-center
LGN neurons provided input to the ON subfield of the model V1 simple
cells, whereas the OFF-center LGN neurons provided input to the OFF
subfield of the model V1 neurons.

In most experiments, static stimuli were used. Hence I and the values
of X and X5y remained constant throughout each experiment. How-
ever, in some experiments, it was necessary to simulate moving stimuli.
To do this, the input image was changed, and new X and X values
were calculated, for each iteration of the PC/BC algorithm. The amount
the input image changed between consecutive iterations reflected the
speed of the temporally changing stimulus. For example, to simulate an
object moving at 10 pixels per iteration, the object would be displaced by
10 pixels in one image compared with the previous one. Since moving
stimuli in the experiments reported here were sinusoidal gratings, speed
was measured in cycles per iteration, where the number of cycles refers to
the phase shift between sinusoids in consecutive images.

Code. Software, written in MATLAB, which implements the PC/BC
model described above is available at http://www.corinet.org/mike/
code.html.

Results

The following sections present simulations of a number of exper-
iments performed to assess the response properties of cells in V1.
These experiments cover basic tuning preferences (orientation
tuning, size tuning, spatial frequency tuning, and temporal fre-
quency tuning), suppression attributable to additional stimuli
appearing within the classical receptive field (cross-orientation
suppression) and outside the classical receptive field (surround sup-
pression, and suppression attributable to textured surrounds), and
facilitation attributable to flankers.

Basic tuning properties

Simple cells in V1 are selective for a number of stimulus proper-
ties such as color, orientation, direction of motion, spatial fre-
quency, temporal frequency, eye of origin, binocular disparity,
and stimulus size and location. The model presented here is re-
stricted to grayscale pixel values coming from a single image and
has no mechanism for distinguishing direction of motion. How-
ever, it generates behavior that closely matches typical tuning
properties of V1 cells for those properties that it does model,
namely, orientation, spatial frequency, temporal frequency,
and size.

Orientation tuning was measured by presenting, at various
orientations, a sinusoidal grating centered over the RF of the
recorded neuron (Fig. 5a). Both the V1 neuron and the model
neuron showed selectivity for a particular stimulus orientation,
with the response falling quickly as the orientation of the stimulus
diverged from the preferred orientation. This selectivity was
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unaltered by stimulus contrast, with a stimulus far from the pre-
ferred orientation producing a weak response even when pre-
sented at high contrast. Orientation tuning in the model was
partially attributable to the alignment of the strongest afferent
weights along a specific orientation. However, tuning was sharp-
ened by the competition occurring between neurons in the
model. This can be seen by observing the orientation tuning pro-
duced when competition was removed from the model (Fig. 54,
inset). Without competition, the neuron had the same orienta-
tion preference but was much more broadly tuned producing a
strong response (>42% of the maximum) at all orientations,
even at 90° from the preferred orientation (data not shown).

Both V1 and the model show the same pattern of results when
tested with circular sinusoidal gratings of various diameters (Fig.
5b). At small stimulus diameters, the response increased with
increasing stimulus size. However, it reached a peak at a certain
diameter, defining the summation field (SF) (Angelucci et al.,
2002), after which the response became increasingly suppressed
before reaching a plateau at large stimulus diameters. In the
model, the initial increase in response with stimulus size is attrib-
utable to more of the RF of the recorded neuron being stimulated.
However, as the stimulus becomes larger, more neurons neigh-
boring the recorded neuron also become stimulated. These neu-
rons engage in a competition to represent the input, and this
ongoing competition reduces the recorded response. The plateau
is reached when all the neighboring neurons that have RFs that
overlap with the recorded neuron are stimulated by the input. For
both V1 and the model, response decreased as the inner diameter
of an annular grating increased (Fig. 5b). In both cases, response
converged to a minimum at a diameter slightly larger than the
diameter of the SF. In the model, this behavior is caused by the
partial activation of the RF of the recorded neuron at small diam-
eters, and a reduction in the area of the RF stimulated with in-
creasing diameter. In V1, the extent of the SF is known to change
with contrast (Fig. 5¢, top). The model shows a similar pattern of
response (Fig. 5¢, bottom), but the expansion of the SF in the
model is much smaller than in V1.

Spatial frequency tuning was measured by presenting opti-
mally oriented sinusoidal gratings with different wavelengths.
The model produced behavior in close agreement with the em-
pirical data (Fig. 5d), with a sharp peak in response to interme-
diate spatial frequencies. The weak response of the model neuron
at low spatial frequencies is attributable to weak input from the
LGN since center-surround cells produce little response to small
contrast gradients. The small response at high spatial frequencies
results from the stimulus only partially matching the RF of the
recorded neuron and hence only partially activating it. The high-
frequency stimulus also partially activates more neurons, and
hence there is increased competition further suppressing the re-
corded response. In both V1 and the model, spatial frequency
preference was unaffected by stimulus contrast (Fig. 5e).

Increasing the temporal frequency of a drifting grating re-
duced the response of a neuron both in V1 and in the model (Fig.
5f). In the model, this effect is attributable to a fast moving grat-
ing only matching the RF of the recorded neuron part of the time
and hence producing a weaker temporally averaged response. A
fast-moving grating also activates many other neurons (since the
stimulus matches the RFs of different neurons at different times),
and hence there is increased competition further suppressing the
response of the recorded neuron. In effect, the response to the
stimulus becomes distributed across many neurons and the sum
of the responses of all neurons in the model remains almost con-
stant with changing drift rate (Fig. 5f, inset).
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Figure 5.

Basic tuning properties. The top row shows neurophysiological data from representative single cells in V1, and the bottom row shows corresponding simulation results. a, Response as

afunction of grating orientation relative to the preferred orientation of the neuron. Neurophysiological data for a simple cell in cat V1 [adapted from Skottun etal. (1987), their Fig. 3a]. The thickness
of each line corresponds to the contrast of the stimulus used as follows: 5% (thin), 20% (medium), and 80% (thick). The inset to the simulation data shows the response of the model without
competition, created by recording the linear response generated at the first iteration of the algorithm (see Materials and Methods). b, Response as a function of the diameter of a circular grating
(filled circles) and as a function of the inner diameter of an annular grating (open circles). Neurophysiological data for a cell in primate V1 [adapted from Jones et al. (2001), their Fig. 1]. ¢, Response
asafunction of grating diameter with variable grating contrast. Shown are neurophysiological data fora cellin primate V1 [adapted from Cavanaugh et al. (2002a), their Fig. 8]. The thickness of each
line corresponds to the contrast of the stimulus used as follows: 6% (thinnest), 13, 25, 50, and 100% (thickest). d, Response as a function of grating spatial frequency. Shown are neurophysiological
data fora cellin primate V1 [adapted from Webb et al. (2005), their Fig. 2a]. e, Response as a function of grating spatial frequency with variable grating contrast. Shown are neurophysiological data
forasimple cellin cat V1 [adapted from Skottun et al. (1987), their Fig. 4a]. The thickness of each line corresponds to the contrast of the stimulus used as follows: 5% (thin), 20% (medium), and 80%
(thick). f, Response as a function of grating temporal frequency. Shown are neurophysiological data for a cell in cat V1 [adapted from Freeman et al. (2002), their Fig. 3c]. The inset to the simulation

data shows the response summed over all neurons within 11 pixels of the neuron recorded in the main figure.

Cross-orientation suppression

The previous section considered behavior when a single grating
was present in the RF of the recorded neuron. When a second
grating (the mask) is superimposed on the stimulus, this leads to
partial suppression of the response (Fig. 6a). For both V1 and the
model, suppression was weakest for mask orientations close to
the preferred orientation of the neuron, and strongest for masks
presented at orientations that did not evoke a response when such
a grating was presented in isolation. In the model, neurons rep-
resenting different orientations at the same spatial location have
overlapping RFs and hence compete to respond to stimuli ap-
pearing within this overlapping region. When the stimulus con-
sists of two gratings with significantly different orientations, the
two sets of neurons representing these orientations are both ac-
tive, but the ongoing competition to respond to the inputs they
share reduces the response of neurons in both sets. When the
stimulus consists of two gratings at similar orientations, compe-
tition is even stronger as the neurons representing similar orien-
tation at the same location have RFs that overlap more. However,
the effective contrast of the stimulus also increases, and hence the
recorded neuron receives a stronger afferent input, which in-
creases its response despite the competition.

Figure 6, b and ¢, show the effects of changing the contrasts of
two superimposed orthogonal gratings. In both V1 and the
model, increasing the contrast of the optimally orientated grating
increases the response, and the response rises more quickly for
lower mask contrasts. Equivalently, increasing the contrast of the
mask reduces the response. In the model, the former effect is

attributable to increasing the afferent input to the recorded neu-
ron as the contrast of the grating at the preferred orientation
increases. The latter effect is attributable to increased competi-
tion from other neurons that receive increased afferent input as
the contrast of the mask increases.

Changing the spatial frequency of an orthogonal mask also
affects the strength of the suppression generated (Fig. 6d). In the
model, neurons show spatial frequency tuning (Fig. 5d). Hence
neurons selective to the orientation of the mask were only stim-
ulated, and hence only generated suppression, when the spatial
frequency of the mask was close to the preferred spatial frequency
of those neurons.

Stimuli presented at high temporal frequencies also generate
weak responses in the model and in V1 (Fig. 5f). It might there-
fore be expected that a mask presented at a high temporal fre-
quency would be ineffective (Carandini et al., 2002). However,
this is not the case (Fig. 6¢). Even when the temporal frequency of
the mask grating was high, the response to the plaid stimulus was
much weaker than the response to the optimal grating, and hence
there was strong cross-orientation suppression. This occurred
even at temporal frequencies in which the mask, presented alone,
produced very little response in a neuron tuned to the orientation
of the mask (Fig. 5f). However, the total activity across all neu-
rons remains approximately constant with temporal frequency
(Fig. 5f, inset); hence the total inhibition received also remains
approximately constant. The current model thus suggests that it
is only the distribution of the source of suppression, rather than
its total strength, that changes with temporal frequency and this
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argues against suggestions that cortex is not a source of the suppres-
sion generated by high temporal frequency stimuli (Carandini et al.,
2002; Li et al., 2006; Priebe and Ferster, 2006).

The experiments described above consider the effects of a
non-optimally oriented grating on the response to a grating at the
preferred orientation of the recorded neuron. Figure 7 shows the
effects of a mask on the response to a grating at a range of orien-
tations, not just the preferred orientation. For both V1 and the

model, the response to the plaid is approximately the average of
the responses generated by each grating when presented in isola-
tion. In the model, this effect is attributable to the competition
that occurs between neurons tuned to different orientations at
the same spatial location. These neurons are both activated by the
plaid stimulus but they compete to respond to that part of the
input that they both represent. This competition reduces the re-
sponse of both neurons compared with their responses when only
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a function of grating orientation for two gratings presented in isolation (dashed lines) and for
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measured using intrinsic signal optical imaging in tree shrew V1 [adapted from MacEvoy et al.
(2009), their Fig. 3], and the bottom row shows responses from a single neuron in the model.
The angle between the two gratings was 90°. One grating was presented at a lower contrast
than the other: for the left column, the contrasts were 0.5 and 0.25, and for the right column, the
contrasts were 0.5 and 0.125.

a single grating is presented. When the contrasts of the two grat-
ings are unequal, the response to the plaid is biased toward that
generated when the higher contrast grating is presented in isola-
tion (Fig. 8). In the model, this effect is attributable to the neu-
rons representing the higher contrast grating receiving the
stronger input and being able to more effectively compete to
represent the stimulus.

Surround suppression

Another form of suppression that has been widely studied in V1 is
that attributable to one grating surrounding (rather than being
superimposed on) another. The effects of such surrounds can be
either suppressive or facilitatory. Jones et al. (2002) observed five
distinct patterns of behavior (Fig. 9). “Orientation contrast sup-
pression” and “non-orientation-specific suppression” occurred
most frequently when the center-surround border was within the
RF of the recorded neuron. “Mixed general suppression” oc-
curred most frequently when the border diameter matched, or
was smaller than, the diameter of the RF. “Orientation alignment
suppression” was most common when the border diameter
matched, or was larger than, the diameter of the RF. Finally,
“orientation contrast facilitation” occurred most frequently
when the center-surround border was outside the RF. In these
experiments, the RF was measured by taking the maximum value
found using a variety of techniques, including the measurement
of the SF. At the contrast used for the simulations (50%), the
model neuron had a SF diameter of ~12 pixels (Fig. 5¢). The
diameter of the border between the center and surround used to
simulate each of these classes of behavior (Fig. 9) thus correlates
well with the diameters at which the different behaviors were
most frequently observed in the neurophysiological data. Note,
however, that in the model the facilitation attributable to a non-
iso-oriented surround at the largest diameter is much weaker
than that recorded for the V1 cell.

The pattern of results generated by the model can be explained
as follows. The values of the dashed lines at 0° orientation corre-
spond to the different points along the size tuning curve (Fig. 5b).
Hence, moving from Figure 9a—e, there is a rise and fall in the size
of the peak as the diameter of the grating increases. In each case,
as the orientation of the grating deviates from the preferred ori-
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entation of the recorded neuron, so the response falls. When the
surround is iso-oriented, the stimulus is effectively a single large
grating at the preferred orientation of the neuron. Hence the
values of the solid lines at 0° orientation correspond to the pla-
teau of the size tuning curve (Fig. 5b), and the response is approx-
imately constant with changing diameter. When the surround is
not iso-oriented, the response increases as the diameter of the
center increases (Fig. 9, from a to e). This is attributable to the
afferent excitation received by the recorded neuron increasing as
the center diameter increases.

Reducing the contrast of the center stimulus, in relation to the
contrast of the surround stimulus, can affect the orientation se-
lectivity of surround suppression. Specifically, Levitt and Lund
(1997) found that for 21% of cells surround suppression oc-
curred over a wider range of surround orientations when using a
low-contrast center, even though the same cell was subject to
surround suppression only with a near iso-oriented surround
when the center was presented at high contrast (Fig. 104, top).
The same behavior is observed in the model (Fig. 10a, bottom).
This is attributable to the low-contrast center stimulus when pre-
sented in isolation, at the preferred orientation, still producing a
strong response from the recorded neuron (Fig. 5a). However, in
the presence of a high-contrast surround at any orientation, the
neurons representing this high-contrast surround receive a
stronger input and are more effective at competing to represent
the stimulus and so are more effective at suppressing the response
of the recorded neuron. As for 75% of the recorded cells (Levitt
and Lund, 1997), the orientation of the surround that generated
the greatest suppression in the model was the same for high- and
low-contrast centers.

For both V1 and the model, the strength of response increases
with the contrast of the center in the presence of an iso-oriented
surround (Fig. 10b). This is unsurprising since the strength of the
afferent stimulation received by the recorded neuron increases
with contrast. As the contrast of the surround increases, so does
the suppression (Fig. 10b). In the model, this is attributable to
increased competition from neurons representing the surround
partially suppressing the response of the recorded neuron. For
both V1 and the model, at all center contrasts an orthogonal
surround produces weaker suppression than that produced by an
iso-oriented surround (Fig. 10c¢). In the model, this behavior is
attributable to the recorded neuron having an RF that overlaps
less with neurons representing the orthogonal surround com-
pared with neurons representing the iso-oriented surround.
Hence the recorded neuron is suppressed less in the former con-
dition than the latter. For both V1 and the model, suppression
increases with surround contrast and suppression attributable to
an orthogonal surround is weaker than suppression attributable
to an iso-oriented surround (Fig. 10d). As in the preceding ex-
periment, this is attributable to the recorded neuron having an
RF that overlaps less with neurons representing the orthogonal
surround compared with neurons representing the iso-oriented
surround. In either condition, increasing the contrast of the sur-
round increases the afferent input to neurons representing the
surround and hence increases the strength of suppression.

The suppressive influence of an iso-oriented surround can be
reduced by superimposing on the surround a second grating with
an orthogonal orientation (Fig. 10e). For both V1 and the model,
the degree of suppression varies with the contrast of the orthog-
onal surround grating. Suppression is strongest (weakest) when
the contrast of the orthogonal surround is lower (higher) than the
contrast of the iso-oriented surround. In the model, this effect is
attributable to the neurons responding to the iso-oriented sur-
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Surround suppression with variable surround orientation. The top row shows neurophysiological data from representative single cells in primate V/1 [adapted from Jones et al. (2002),

their Fig. 1], and the bottom row shows corresponding simulation results. a— e, Each column shows a different pattern of behavior identified by Jones et al. (2002) as follows: orientation contrast
suppression (a), non-orientation-specific suppression (b), mixed general suppression (c), orientation alignment suppression (d), and orientation contrast facilitation (e). In each case, response is
plotted as a function of grating orientation relative to the preferred orientation of the neuron for a central grating presented in isolation (dashed lines) and as a function of the orientation of a
surrounding annulus in the presence of an optimally oriented central grating (solid lines). Note that for the neurophysiological data in a, but not the other plots, only the response at 0° is shown for
the condition in which the centeris presented in isolation (circular marker). The results for the model were generated using a center diameter of the following: 7 pixels (a), 11 pixels (b), 13 pixels (c),
17 pixels (d), and 19 pixels (e). The inner diameter of the surrounding annulus was equal to the center diameter in each case.

round (which most strongly suppress the response of the re-
corded neuron) being themselves suppressed by the responses of
neurons to the orthogonal surround at high contrast (there is
cross-orientation suppression between the neurons responding
to the surround).

The strength of surround suppression is also influenced by the
phase of an iso-oriented surround grating (Fig. 10f). For both V1
and the model, the suppression is weakest when the surround is
out of phase with the center stimulus and strongest when the
surround and center gratings are in phase. In the model, there is
strong competition between neurons with collinear RFs at over-
lapping locations. When the surround is at the same phase as the
center, neurons with RFs collinear with the recorded neuron are
activated and suppress its response. In contrast, when the sur-
round is out of phase with the center, neurons with RFs collinear
to the recorded neuron are not activated by the surround stimu-
lus; they thus do not inhibit the recorded neuron, which gener-
ates a stronger response.

Flankers and textured surrounds

The interaction between center and surround has also been ex-
plored using isolated bars rather than gratings (Fig. 11a,b). A pair
of collinear flankers, or a single collinear flanker, increases the
response to a bar presented at the center of the RF, even though
these flanking stimuli produce little response when presented
alone. Furthermore, the enhancement attributable to a collinear
flanker can be blocked by a perpendicular bar separating the
central bar from the flanker. In contrast to collinear flankers,
parallel flankers suppress the response to the central bar. The
model produces behavior that is mostly consistent with the phys-
iological data (Fig. 11f). The results of the model can be explained
as follows. The collinear flankers partially activate the RF of the

recorded neuron, and hence its response is enhanced because of
increased afferent input. Hence the model suggests that some
nonclassical RF effects may result from the inadvertent stimula-
tion of the classical RF. The collinear flankers when presented in
isolation are much better represented by other neurons, and
hence the response of the recorded neuron is suppressed. When a
collinear flanker is presented together with an orthogonal
flanker, the recorded neuron receives greater afferent input, but
there is also stronger competition to represent that input (from
neurons selective for the orthogonal bar) so this configuration
has little overall effect on the response. Finally, the parallel flankers
activate neighboring neurons, which compete with the recorded
neuron, suppressing its response. In the neurophysiological data,
the effects were highly dependent on the positioning of the con-
textual stimuli relative to the central stimulus (Kapadia et al.,
1995, 2000). The model shows a similar dependence (data not
shown): the facilitation generated by a collinear flanker is re-
duced and is eventually abolished as (1) the spacing between the
flanker and the central stimulus increases, (2) the flanker is tilted
relative to the central stimulus, and (3) the flanker is laterally
offset from the central stimulus.

Rather than using single bars, experiments have also been
performed using surrounding textures created from many
equally spaced bars (Knierim and van Essen, 1992; Nothdurft et
al., 1999; Hegdé and Felleman, 2003). Nothdurft et al. (1999)
observed two different patterns of behavior: for “orientation con-
trast” cells, the response to a central, optimally oriented, bar was
suppressed by an iso-oriented surrounding texture, but not an
orthogonal surround (Fig. 11¢); for “uniform” cells, the response
to the central bar was suppressed by textures at either orientation,
but most strongly by an orthogonal surround (Fig. 11d). The
model can produce results consistent with both these behaviors
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corresponding simulation results. a, Response plotted as a function of grating orientation relative to the preferred orientation of the neuron for a central grating presented in isolation (dashed line),
as a function of the orientation of a surrounding annulus in the presence of an optimally oriented central grating (solid line), and as a function of surround orientation for a center contrast much
smaller than the surround contrast (dash-dot line). The horizontal lines show the response to the low-contrast center stimulus presented alone at the preferred orientation. Shown are neurophys-
iological data fora cell in primate V/1 [adapted from Levitt and Lund (1997), their Fig. 1d]. b, Response as a function of the contrast of the central grating in the presence of an iso-oriented surround.
Shown are neurophysiological data for a cell in primate V1 [adapted from Cavanaugh et al. (2002a), their Fig. 56]. The thickness of each line corresponds to the contrast of the grating in the annular
surround: 0% (thinnest), 3, 6, 12, 25, and 50% (thickest). ¢, Response as a function of the contrast of the central grating with no surround (filled circles), an iso-oriented surround (open circles), and
an orthogonal surround (squares); in the latter two cases, the surround contrast was fixed at 50%. Shown are neurophysiological data for a simple cellin primate V1 [adapted from Cavanaugh et al.
(2002b), their Fig. 5a]. d, Response as a function of the contrast of the surround grating with an iso-oriented surround (circles), and an orthogonal surround (squares); in both cases, the center
contrast was fixed at 40%. Shown are neurophysiological data for a cell in primate V1 [adapted from Webb et al. (2005), their Fig. 6]. e, Response as a function of the contrast of an orthogonal
surround grating superimposed on an iso-oriented surround grating in the presence of an optimally oriented center. Shown are neurophysiological data for a cell in cat V1 [adapted from Walker et
al. (2002), their Fig. 2b]. The contrast of the center and the iso-oriented surround were fixed at 30%. The horizontal lines indicate the response to the central grating in isolation. f, Response as a
function of the phase of the grating in the surround. Shown are neurophysiological data for a cellin primate V1 [adapted from Xu etal. (2005), their Fig. 2a]. The horizontal lines indicate the response

to the central grating in isolation.

by using different spacings between the bars in the stimuli (Fig.
11g,h). The spacings used in the model are consistent with the
range of spacings used in the neurophysiological experiments.
Nothdurft et al. (1999) report that changing texture spacing af-
fects the strength of suppression but do not report a correlation
between texture spacing and the orientation contrast and uni-
form patterns of suppression. The behavior of the model can be
explained by the overlap of the surrounding texture with the RF
of the recorded neuron. The initial, linear, response of the model
to the texture with smaller spacing (Fig. 11g, inset) shows that
the iso-oriented texture provides slightly less afferent input to the
recorded neuron than the orthogonal texture, whereas for the
texture with larger spacing the initial, linear, response (Fig. 115,
inset) shows that the iso-oriented texture provides more afferent
input than the orthogonal texture. In the full model, there is
strong competition to represent the contextual stimuli, which
results in a weaker response from the recorded neuron. However,
the average response still reflects the relative magnitudes of the
initial, linear, responses to each texture configuration. When the
surrounding texture is presented alone, the recorded neuron is a
poor representation of the input, so it quickly loses the competi-
tion and produces a very weak response.

Differences between the center and surround along other fea-
ture dimensions, such as contrast polarity, have also been found
to diminish the suppression caused by a textured surround (Fig.

11e). Consistent with the empirical data, the model shows (Fig.
114) that center-surround differences in both dimensions (orien-
tation and contrast polarity) do not generate a greater reduction
in suppression than that generated by a single dimension. In the
model, changing the contrast polarity of the surround only has
the effect of changing the identity of those neurons that are most
strongly activated by that surround. The two sets of neurons
activated by the surround at each contrast polarity both have RFs
that overlap with the RF of the recorded neuron to a similar
degree, and hence both conditions generate a similar degree of
suppression in the recorded neuron.

Discussion

Previous work (Rao and Ballard, 1999) has shown that PC is
capable of modeling end-stopping behavior (similar to the result
shown in Fig. 5b) and texture “pop out” (similar to the result
shown in Fig. 11g). However, this previous work did not explore
whether PC could account for other V1 response properties, per-
haps because that work assumed that predictions arise from feed-
back from extrastriate areas and hence are only likely to be
involved in nonclassical RF properties. The interpretation of PC
described in this article assumes that predictions arise within V1
and that PC can be viewed as a form of competition. This inter-
pretation suggests that PC should also account for classical, as



3540 - J. Neurosci., March 3, 2010 - 30(9):3531-3543

Response
N [
o o

-
o

o

x

o

o
b

Response

o = N W b~ O

Figure11.

Spratling e Predictive Coding Model of V1

Normalized Response

Response

g h

The effect of flankers and textured surrounds on neural response. a, Response to one set of flanker configurations of a single cell in primate V1 [adapted from Kapadia et al. (2000), their

Fig. 7al. b, Response to a second set of flanker configurations of a different cell in primate V1 [adapted from Kapadia et al. (1995), their Fig. 11a]. ¢, Average response of 28 cells in primate V1 that
were classified as orientation contrast cells [adapted from Nothdurft et al. (1999), their Fig. 4a]. d, Average response of 14 cells in primate V1 that were classified as uniform cells [adapted from
Nothdurft etal. (1999), their Fig. 4b]. e, Average response of 124 cells in primate V1 to textured surrounds with varying contrast [adapted from van der Smagt et al. (2005), their Fig. 4a]. f, Response
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well as nonclassical, RF properties, as has
been demonstrated here.

The specific predictive coding model
implemented in this article (PC/BC) em-
ploys a divisive mechanism to calculate
the residual error between the predictions
and the sensory input. This mechanism
can be interpreted as a form of divisive
normalization like that proposed by the
normalization model (Albrecht and Geisler,
1991; Heeger, 1991, 1992; Carandini and
Heeger, 1994; Wainwright et al., 2001).
However, unlike the normalization model,
in PC/BC the normalization pool for each
neuron is restricted to the population of
neurons that have overlapping RFs, and
the normalization is applied to the inputs
to the population of competing neurons
rather than the outputs. The normaliza-
tion model is capable of simulating a sub-
set of the results presented here (Heeger,
1994; Heeger et al.,, 1996; Schwartz and
Simoncelli, 2001) and has also been re-
cently extended (Reynolds and Heeger,
2009) to model a subset of the atten-
tional data that can be simulated by
PC/BC (Spratling, 2008a). However,
since the weights used to pool the re-
sponses, and so calculate the strength of
normalization, are not specified by the
normalization model, it has many more
free parameters than PC/BC. As with the

normalization model (Schwartz and Simoncelli, 2001; Wain-
wright et al., 2001), PC/BC reduces redundancy between neu-

ral representations (Fig. 12).
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Figure 12.  Conditional probability histograms of responses to a natural image. In each histogram, a column indicates the

probability that neuron 2 generates an output of the given magnitude given that neuron 1 has generated an output of the
magnitude shown on the abscissa. A dark pixel indicates a high conditional probability. Each column in each histogram has been
independently rescaled to fill the full range of intensity values. The top row shows histograms for the initial linear response of the
model (without competition). The bottom row shows histograms for the model including inhibition. Histograms in the left-hand
column are for two neurons tuned to the same orientation but 2 pixels apart, so that RFs are parallel. Histograms in the
middle column are for two neurons tuned to the same orientation but 6 pixels apart, so that RFs are parallel. Histograms in
the right-hand column are for two neurons tuned to orthogonal directions at the same location. It can be seen that, without
competition, the responses are correlated such that the higher the response at the first neuron, the higher the response is
likely to be from the second neuron. Itis also the case that all neurons tend to generate strong responses. After competition
has occurred, the responses are much more sparse (fewer neurons generate strong responses), and the dependency
between different neurons is substantially reduced, and for neurons at the same location (bottom-right histogram) the
correlation is eliminated. Theimage used to generate these histograms wasimage number 23 from the stillimage database
used in the study by van Hateren and van der Schaaf (1998).

There are many other models that can simulate individual
results presented here (Douglas and Martin, 1991; Ben-Yishai et
al., 1995; Somers et al., 1995; Carandini and Ringach, 1997;
Troyer et al., 1998; Adorjan et al., 1999; Dragoi and Sur, 2000;
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Stetter et al., 2000) (for review, see Ferster and Miller, 2000; Seriés
etal., 2003), and many of these models employ mechanisms sim-
ilar to those used by PC/BC. However, the PC/BC model differs
from these previous models in providing a computational expla-
nation for the behavior of V1 neurons as well as providing a
unified account of a number of processes that are currently con-
sidered, and modeled, in isolation. The model also makes testable
predictions that are described in the supplemental material
(available at www.jneurosci.org).

Consistent with previous models and neurophysiological re-
sults (Pei et al., 1994; Sompolinsky and Shapley, 1997; Xing et al.,
2005), orientation tuning in the PC/BC model results from
broadly tuned afferent excitation being sharpened by intracorti-
cal competition. This is also consistent with evidence that block-
ing inhibitory effects across a local population of cortical cells
greatly reduces orientation selectivity (Sillito, 1975; Tsumoto et
al., 1979; Sato et al., 1996). In the model, blockade of inhibition
from neurons with a specific orientation preference should cause
neighboring prediction neurons to show increased response to
that orientation, rather than simply causing a general disinhibi-
tion to all orientations. Such effects have been recorded in V1
(Crooketal., 1998), and analogous data have been obtained from
cortical area TE (Wang et al., 2000). The current model is also
consistent with neurophysiological evidence that the strength of
lateral inhibition peaks for stimuli presented at the preferred ori-
entation of the recorded cortical cell (Ferster, 1986; Douglas et al.,
1991; Sato et al., 1996; Sompolinsky and Shapley, 1997). In the
model, the strength of inhibition between any two prediction
neurons is proportional to the degree of overlap between the RFs.
Those neurons with orthogonal orientation preferences at a spe-
cific location overlap less than neurons with similar orientation
preferences and consequently produce less inhibition.

In the PC/BC model, inhibition from neurons tuned to near
orthogonal orientations is still significant and gives rise to cross-
orientation suppression. Evidence that suppression occurs for
masks with a high temporal frequency has cast doubt on the idea
that intracortical inhibition is responsible for cross-orientation
suppression (Carandini et al., 2002). This is because the very
weak responses evoked by high-frequency stimuli seem insuffi-
cient to produce strong suppression. However, the current model
does show strong suppression for masks presented at high tem-
poral frequencies. This is attributable to the many neurons
weakly activated by the high-frequency mask generating similar
suppression as the few neurons strongly activated by the mask
when it is presented at a low temporal frequency. In V1, strong
cross-orientation suppression requires that both the optimally
oriented grating and the mask grating be presented to the same
eye even for binocular cells (DeAngelis et al., 1992; Walker et al.,
1998). Such behavior is consistent with neurons competing to
receive inputs, rather than to produce outputs, as is proposed by
the PC/BC model.

Influences from neurons responding to stimuli placed outside
the RF of the recorded neuron enable PC/BC to simulate nonclas-
sical RF effects, such as surround suppression, and contextual
modulation by flankers and textures. Rather than explaining
these behaviors in terms of cortical feedback, which is not sup-
ported by the biological evidence (Hupé et al., 2001), the PC/BC
model explains these behaviors in terms of competition to repre-
sent inputs that are common to the RFs of the recorded neuron
and those neurons representing the contextual stimulation.

The extent of the long-range horizontal projections from a V1
cell are commensurate with the size of the SF of that cell measured
with a low-contrast grating (Angelucci et al., 2002; Angelucci and
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Bullier, 2003), which is in turn two to four times larger than the
SF measured at high contrast (Sceniak et al., 1999; Angelucci et
al., 2002). For the model implemented for this article, the region
of the image from which a prediction neuron receives connec-
tions with nonzero synaptic weights has a diameter of 21 pixels,
which is approximately double the high-contrast SF diameter
(Fig. 5b). Thus, the model is compatible with the idea that the
long- and short-range lateral connections in V1 are responsible
for performing the type of competition proposed by the PC/BC
model.

The current model does not incorporate mechanisms to sim-
ulate many properties of V1 such as selectivity for color, direction
of motion, and disparity. However, the model should be easy to
extend by simply including prediction neurons with RFs selective
for these additional stimulus properties. The model is also defi-
cient in certain specific aspects of its behavior [e.g., it fails to show
adaptation to a stationary input, it fails to produce sufficiently
strong orientation contrast facilitation (Fig. 9¢), and it does not
show sufficient expansion of the SF at low contrast (Fig. 5¢)].
These deficiencies may be more challenging to overcome and are
likely to require modification to the mathematics of the model.
Another limitation of the current implementation is that it mod-
els V1 asa completely homogeneous sheet of processing units. No
account is taken of variations between individual neurons in their
RF properties (such as RF size, exact orientation preference, etc.).
Furthermore, no account has been taken of changes in V1 RF
properties across cortical layers, between locations in the cortical
map, with eccentricity from fovea, species, or age. Including such
factors in the model might enable it to account for a greater range
of empirical data. Despite this, the model produces a remarkably
good fit to a wide range of data (taken from different species,
cortical layers, etc.), suggesting that PC is a ubiquitous property
of V1. Another omission from the current implementation is
feedback connection from extrastriate cortical areas. The model
has operated without receiving any top—down or contextual pre-
dictions from other parts of the cortex. The influence of such
connections is defined by Equation 3 and hence could easily be
simulated. The inclusion of predictive inputs from other parts of
the cortex may enable to model to simulate nonclassical RF ef-
fects that occur for contextual inputs placed sufficiently far from
the RF of the recorded neuron that they cannot be explained
using the mechanisms implemented in the current model.

In conclusion, this article has shown that the mechanism of
competition proposed by the predictive coding model can ac-
count for a very wide range of V1 response properties. This sug-
gests that many of the diverse behaviors observed in V1 may
simply be explained as a consequence of V1 performing predic-
tive coding: minimizing the error between the observed sensory
input and the expectations stored in the synaptic weights of V1
cells.
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