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Brief Communications

Reconstructing Three-Dimensional Hand Movements from
Noninvasive Electroencephalographic Signals
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'Fischell Department of Bioengineering, 2Department of Kinesiology, and *Graduate Program in Neuroscience and Cognitive Science, University of
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It is generally thought that the signal-to-noise ratio, the bandwidth, and the information content of neural data acquired via noninvasive scalp
electroencephalography (EEG) are insufficient to extract detailed information about natural, multijoint movements of the upper limb. Here, we
challenge this assumption by continuously decoding three-dimensional (3D) hand velocity from neural data acquired from the scalp with
55-channel EEG during a 3D center-out reaching task. To preserve ecological validity, five subjects self-initiated reaches and self-selected targets.
Eye movements were controlled so they would not confound the interpretation of the results. With only 34 sensors, the correlation between
measured and reconstructed velocity profiles compared reasonably well to that reported by studies that decoded hand kinematics from neural
activity acquired intracranially. We subsequently examined the individual contributions of EEG sensors to decoding to find substantial involve-
ment of scalp areas over the sensorimotor cortex contralateral to the reaching hand. Using standardized low-resolution brain electromagnetic
tomography (sSLORETA), we identified distributed current density sources related to hand velocity in the contralateral precentral gyrus, post-
central gyrus, and inferior parietal lobule. Furthermore, we discovered that movement variability negatively correlated with decoding accuracy, a
finding to consider during the development of brain- computer interface systems. Overall, the ability to continuously decode 3D hand velocity from
EEG during natural, center-out reaching holds promise for the furtherance of noninvasive neuromotor prostheses for movement-impaired

individuals.

Introduction

In the last decade, research into the neural coding of movement
has generated enthusiasm for its potential to restore function to
movement-impaired individuals. The field of brain—computer
interface (BCI) systems deals with interpreting the neural code
and generating commands to control an assistive device. To this
end, researchers have extracted hand trajectories or velocity
profiles from neuronal signals acquired with electrodes seated
directly into cortical tissue and, in some cases, used these kine-
matics to command a robotic arm in real time (Wessberg et al.,
2000; Serruya et al., 2002; Taylor et al., 2002; Hochberg et al.,
2006; Kim et al., 2006; Mulliken et al., 2008; Truccolo et al., 2008;
Velliste et al., 2008). Investigators have also extracted hand kine-
matics from intracranial local field potentials obtained through
less invasive electrocorticography (Schalk et al., 2007; Pistohl et
al., 2008; Sanchez et al., 2008).

In contrast to decoding studies that acquired intracranial neu-
ral activity, little work has been done to continuously decode
natural, multijoint hand kinematics from neural signals acquired
noninvasively. Only a few studies report continuous decoding of
two-dimensional (2D) hand and tool kinematics from magne-
toencephalography (MEG) (Georgopoulos et al., 2005, Jerbi et
al,, 2007, Bradberry et al., 2008, 2009a). Although MEG demon-
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strates a proof of concept, it is immobile and therefore unsuitable
for practical BCI systems. However, electroencephalography
(EEG) is suitable for practical BCI systems, but, with the excep-
tion of our preliminary study (Bradberry et al., 2009b), research-
ers have not demonstrated continuous decoding of hand
kinematics from EEG. Instead, most EEG studies have discretely
classified the direction/speed of 2D hand/wrist movements or
different motor imagery tasks on a single-trial basis (Mellinger et
al., 2007; Hammon et al., 2008; Waldert et al., 2008; Gu et al.,
2009), or they have demonstrated 2D continuous control of a
cursor through biofeedback training (Wolpaw and McFarland,
2004). The lack of attention to reconstructing kinematics of natural
hand movements from EEG could be because some researchers con-
sider training subjects to modulate EEG activity, independent of
reconstructing hand kinematics, to suffice for 2D control (Wolpaw
and McFarland, 2004). The lack of attention could also be due to
the assumption that EEG signals lack sufficient signal-to-noise
ratio, bandwidth, and information content to decode hand kine-
matics (Lebedev and Nicolelis, 2006).

To examine our hypothesis that kinematics of natural hand
movements are decodable from EEG signals and, hence, may
serve as new signals for controlling neuromotor prostheses, we
aimed to continuously extract hand velocity from signals col-
lected during a three-dimensional (3D) center-out reaching task.
To assure a realistic task, subjects were not cued: they chose which
target to acquire and when to initiate movement. Since EEG coupled
with our decoding method facilitated the investigation of sensor
contributions to decoding with high temporal resolution, we exam-
ined the location of salient sensors across time lags. Using standard-
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ized low-resolution brain electromagnetic tomography (sSLORETA)
(Pascual-Marqui, 2002), we further estimated the sources most
involved in encoding hand velocity. Moreover, we investigated the
relationship between decoding accuracy and movement
variability.

Materials and Methods

See supplemental Materials and Methods for more details, available at
www.jneurosci.org as supplemental material.

Experimental procedure. Five healthy, right-handed subjects sat up-
right in a chair and executed self-initiated, center-out reaches to self-
selected push-button targets near eye level (Fig. 1). We instructed
subjects to attempt to make uniformly distributed random selections of
the eight targets without counting. Subjects were instructed to fixate an
LED on the center target throughout data collection and to only blink
when their hand was resting at the center target. To ensure the minimi-
zation of eye movements, a researcher monitored the subjects’ eyes dur-
ing data collection, and the correlation between electroocular activity
and hand kinematics was analyzed off-line (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material). For each sub-
ject, the experiment concluded after each target was acquired at least 10
times.

Data collection. A 64-sensor Electro-Cap was placed on the heads of
subjects according to the extended International 1020 system with ear-
linked reference and used to collect 58 channels of EEG activity. Contin-
uous EEG signals were sampled at 1000 Hz, bandpass filtered from 0.5 to
100 Hz, and notch filtered at 60 Hz. Horizontal and vertical electroocular
activity was measured with bipolar sensor montages. Hand position was
sampled at 100 Hz using a motion-sensing system that tracked an infra-
red LED secured to the fingertip.

Signal preprocessing. The EEG data were decimated from 1 kHz to
100 Hz by applying a low-pass, antialiasing filter with a cutoff fre-
quency of 40 Hz and then downsampling by a factor of 10. A zero-
phase, fourth-order, low-pass Butterworth filter with a cutoff
frequency of 1 Hz was then applied to the kinematic and EEG data.
Next, the temporal difference of the EEG data was computed. To
examine relative sensor contributions in the scalp map analysis de-
scribed in a section below, data from each EEG sensor were standard-
ized according to Equation 1, as follows:

YT o)

Experimental setup and finger paths. The reaching apparatus is shown in the middle along with the Cartesian
coordinate system we used. The distance from the center position to each of the targets was ~22 cm. Mean finger paths
for center-to-target (black) and target-to-center (gray) movements exhibited movement variability among subjects.
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Subject 4 for all n from 1 to N, where S, [t] and v,,[t] are,
respectively, the standardized and differenced
voltage at sensor n at time t, u,, and o,, are,
respectively, the mean and SD of v,, and N is
the number of sensors.

Decoding method. To continuously decode
hand velocity from the EEG signals, the follow-

ing linear decoding model was used:
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where x[t] — x[t — 1], y[t] — y[t — 1], and z[#]
— z[t — 1] are, respectively, the horizontal,
vertical, and depth velocities of the hand at time
sample t, N is the number of EEG sensors, L
(=10) is the number of time lags, S,, [t — k] is the
standardized difference in voltage measured at EEG sensor 7 at time lag k,
and the a and b variables are weights obtained through multiple linear re-
gression. The three most frontal sensors were excluded from the analysis to
further mitigate the influence of any eye movements on reconstruction,
resulting in an N of 55 sensors.

For each subject, the collected continuous data contained ~80 trials.
All continuous data were used in an 8 X 8-fold cross-validation proce-
dure to assess the decoding accuracy. The cross-validation procedure was
considered complete when all of the eight combinations of training and
testing data were exhausted, and the mean Pearson correlation coeffi-
cient (r) between measured and reconstructed kinematics was computed
across folds. Before computing r, the kinematic signals were smoothed
with a zero-phase, fourth-order, low-pass Butterworth filter with a cutoff
frequency of 1 Hz.

Sensor sensitivity curves. Curves depicting the relationship between de-
coding accuracy and the number of sensors used in the decoding method
were plotted for the x, y, and z dimensions of hand velocity. First, for each
subject, each of the 55 sensors was assigned a rank according to the following:

R, = mko bflkx + bftky + bfzkz’ (5)

for all n from 1 to N, where R, is the rank of sensor 7, and the b variables
are the best regression weights. This ranking procedure is similar to the
one described by Sanchez et al. (2004). Next, the decoding method with
cross-validation as described above and ranking method were iteratively
executed using backward elimination with a decrement step of three. The
mean and SEM of r values computed across subjects were plotted against
the number of sensors.

Scalp maps of sensor contributions. To graphically assess the relative
contributions of scalp regions to the reconstruction of hand velocity,
the across-subject mean of the magnitude of the best b vectors (from
Eqs. 2—4) was projected onto a time series (—100—0 ms in increments
of 10 ms) of scalp maps. These spatial renderings of sensor contribu-
tions were produced by the topoplot function of EEGLAB [Delorme
and Makeig, 2004 (http://sccn.ucsd.edu/eeglab/)]. To examine which
time lags were the most important for decoding, for each scalp map,
the percentage of reconstruction contribution was defined as follows:
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for all i from 0 to L, where %T; is the percentage of reconstruction
contribution for a scalp map at time lag i.

Source estimation with SLORETA. To better estimate the sources of
hand-velocity encoding, we used SLORETA [Pascual-Marqui, 2002
(http://www.uzh.ch/keyinst/loreta.htm)]. Preprocessed EEG signals
from all 55 channels for each subject were fed to sSLORETA to estimate
current sources. These EEG signals had been preprocessed in the same
manner as that for decoding. First, r values were computed between the
squared time series of each of the 55 sensors with the 6239 time series
from the sSLORETA solution and then averaged across subjects. Second,
the maximum r value was assigned to each voxel after being multiplied by
the regression weight b (from Egs. 2—4) of its associated sensor. The
regression weights had been pulled from the regression solution at time
lag —60 ms, which had the highest percentage of reconstruction contri-
bution. Third, for visualization purposes, the highest 5% of the voxels (r
values weighted by b) were set to the value 1, and the rest of the r values
were set to zero. Finally, these binary-thresholded r values were plotted
onto axial slices of the brain from the Colin27 volume (Holmes et al.,
1998). All reported coordinates of regions of interest are in MNI (Mon-
treal Neurological Institute) space.

Movement variability. For each subject, three measures of movement
variability were computed: the coefficient of variation (CV) for move-
ment time (MT), the CV for movement length (ML), and the kurtosis of
movement. MT and ML were computed on a trial basis with a trial
defined as the release of a push button to the press of a push button
(center-to-target or target-to-center). The mean and SD of the measures
were then computed, and the SD was divided by the mean to produce the
CV. Kurtosis was defined as follows:

4
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where k is the kurtosis, E() is the expected value operator, / is the hand
velocity, and w,, and o, are, respectively, the mean and SD of the hand
velocity. Single trials of velocity profiles for x, y, and z dimensions were
resampled to normalize for length and then concatenated before com-
puting kurtosis. The relationship between movement variability and de-
coding accuracy was examined by computing the r value between the
quantities. The sample sizes were small (n = 5) for decoding accuracy
and each measure of movement variability, so 10,000 r values were boot-
strapped for each comparison, and the median and confidence intervals
of the resultant non-Gaussian distributions were calculated using the
bias-corrected and accelerated percentile method (Efron and Tibshirani,
1998).

Results

Our EEG decoding method reconstructed 3D hand-velocity pro-
files reasonably well. We quantified the decoding accuracy by
computing the mean of Pearson’s r between measured and recon-
structed hand velocity across cross-validation folds. For y and z
velocities, the decoding accuracy peaked at 0.38 and 0.32, respec-
tively, with only 34 sensors (Fig. 2A, B). For x velocity with 34
sensors, the decoding accuracy of 0.19 remained relatively unaf-
fected by the number of sensors. Thus, we used 34 sensors for
subsequent analyses. In addition to quantitatively analyzing de-
coding accuracy, visually comparing reconstructed and mea-
sured velocity profiles confirmed their similarities (Fig. 2C).
Scalp maps depicted the contributions of the 34 sensors as a
network of frontal, central, and parietal regions (Fig. 3A). Within
this network, sensor CP3 made the greatest contribution. Inter-
estingly, CP3 lies roughly above the primary sensorimotor cortex
that is contralateral to the reaching hand. Concerning time lags,
EEG data from 60 ms in the past supplied the most information
with 16.0% of the total contribution. At 60 ms, we localized the
EEG sources to confirm that the primary sensorimotor cortex
(precentral gyrus and postcentral gyrus) was indeed a major con-
tributor along with the inferior parietal lobule (IPL) (Fig. 3B).
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Figure2. EEG decoding accuracy of hand velocity. 4, The mean (black) == SEM (gray) of the

rvalues across subjects (n = 5) versus the number of sensors exhibited a peak at 34 sensors.
B, With 34 sensors, we computed the mean = SEM of the r values across cross-validation folds
(n = 8) for each subject for x (black), y (gray), and z (white) velocities. C, Reconstructed (black)
and measured (gray) velocity profiles demonstrated similarities. Exemplar velocity profiles from
the subjects with the best (subject 1, top row) and worst (subject 5, bottom row) decoding
accuracies are shown.

Additionally, we compared the relationship between decoding
accuracy, shown in Figure 2B, and movement variability. To
quantify movement variability, we computed the CV for MT and
ML (Fig. 4A) and the kurtosis of the velocity profiles (Fig. 4B).
The high kurtosis values indicated outlier-prone, super-Gaussian
distributions (kurtosis, >0). We found that movement variabil-
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Figure3. Scalpand current sources that encoded hand velocity. A, Mean (n = 5) scalp maps of the best 34 sensors revealed a network of frontal, central, and parietal involvement along with a

large individual contribution from sensor CP3. Light and dark colors represent high and low contributors, respectively. Each scalp map with its percentage contribution is displayed above its
associated 10 ms time lag, revealing the 16.0% maximal contribution of EEG data at 60 ms in the past. B, We overlaid localized sources (yellow) from 60 ms in the past onto MRI structural images
to reveal the involvement of the precentral gyrus (x = —30,y = —30,z = 52), postcentral gyrus (x = —35,y = —30,z=47),and IPL (x = —35,y = —36,z = 42).

ity negatively correlated with decoding accuracy (Fig. 4C). Figure
1 aids in visually depicting this relationship by showing that sub-
ject 1, with the best decoding accuracy, performed straighter
reaches.

Discussion

In the last decade, researchers have pushed the boundaries of
noninvasive neural decoding in the interest of developing BCI
systems for the movement impaired. To further stretch the limits,
we continuously reconstructed 3D hand velocity of natural, mul-
tijoint, center-out movements from only 34 channels of EEG
data. A sensorimotor network composed of frontal, central, and
parietal scalp regions encoded for hand velocity, with the stron-
gest contributions coming from cortical regions of the precentral
gyrus, postcentral gyrus, and IPL at 60 ms in the past. Further-
more, the intersubject variability in movement may explain the
intersubject variability in decoding accuracy due to their negative
correlation.

The sensor sensitivity curves for y and z velocities peak at
~0.35 for 34 sensors before they begin decreasing. A common
occurrence in machine learning is that, as the number of input
features increases, prediction increases up to a point, then pre-
diction may decrease due to overfitting the model to the training
data, which is likely the case here (Alpaydin, 2004). The curve for
x velocity remains nearly flat ~0.20 after an initial rapid increase
(Fig. 2A). We made the common assumption that the brain em-
ploys a hand-centered Cartesian coordinate system. However,
the possibility exists that the brain could represent a different
coordinate system (e.g., joint space or multiple interacting frames
of reference) or desired muscular activity (Gourtzelidis et al.,
2001; Wu and Hatsopoulos, 2006, 2007). The dimensions of an
alternate representation could correlate better with y and z veloc-
ities than x velocity, potentially explaining the uniqueness of the
sensitivity curve for x velocity. Nonetheless, in future studies
when subjects are asked to use motor imagery to control a cursor
or virtual arm in 3D via our decoder, we expect their neural
activity to adapt to overcome an initial imperfect choice of rep-
resentation framework, as Ganguly and Carmena (2009) ob-
served in an invasive BCI experiment.

To our knowledge, apart from our preliminary study (Bradberry
etal., 2009b), studies on continuously decoding hand kinematics
from EEG do not exist. Therefore, we cannot directly compare
our results to the literature. However, two studies report oft-line,
continuous reconstruction of 3D hand kinematics from intracra-
nial neuronal activity (Wessberg et al., 2000; Kim et al., 2006),

and several studies report off-line, continuous reconstruction of
2D hand and tool kinematics from MEG (Georgopoulos et al.,
2005, Jerbi etal., 2007, Bradberry et al., 2008, 2009a). Of the MEG
investigations, Bradberry et al. (2008, 2009a) exclusively employs
a center-out movement paradigm, the de facto standard for com-
parison among decoding studies with BCI implications. These
other studies report slightly higher r values (supplemental Table
1, available at www.jneurosci.org as supplemental material), but
uniquely our study involves more ambitious experimental set-
tings, such as more reaching targets, greater extent of multijoint
movements, self-initiated movements, and self-selected targets.

Strengthening the validity of our decoding results, scalp maps
and estimated current sources indicate involvement of the con-
tralateral primary sensorimotor region and the IPL. Other studies
confirm that the primary sensorimotor cortex encodes hand ki-
nematics at a microscale (Georgopoulos et al., 1986; Moran and
Schwartz, 1999; Wessberg et al., 2000; Serruya et al., 2002;
Schwartz et al., 2004; Kim et al., 2006), mesoscale (Schalk et al.,
2007; Pistohl et al., 2008; Sanchez et al., 2008), and macroscale
(Kelso et al., 1998; Jerbi et al., 2007). Several MEG studies report
that the IPL also encodes hand kinematics (Jerbi et al., 2007;
Bradberry et al., 2009a). Regardless of scale, decoding methods
like the one we report here rely on a subsecond history of neural
data to reconstruct hand kinematics (Serruya et al., 2002, Sanchez
et al., 2008; Bradberry et al., 2009a). Our choice of a 100 ms lag
aligns with this convention as well as the rationale that these lags
consist of planning activity of the brain associated with the cur-
rent kinematic sample of the hand. Furthermore, across lags the
sensor contributions initially increase, peak at 60 ms, and then
decrease, possibly revealing a temporal tuning curve for our task.
Since only low-frequency components of the EEG signals seem to
carry information about hand velocity, slow cortical potentials
emerge as the best candidates for a neurophysiological interpre-
tation of these findings (Birbaumer et al., 1990).

An important topic in BCI research involves how decoding
methods may adapt or facilitate user adaptation to novel environ-
ments or cognitive states. To evaluate adaptation, the user of a
BCI system must receive feedback (e.g., visual or kinesthetic) of
imagined movements while manipulating a brain-controlled de-
vice in real time. In the future, it will be essential to provide
subjects with real-time feedback to investigate their ability to
adapt their EEG activity to a fixed decoder (i.e., test the ability of
our decoder to generalize). To improve performance, it is ex-
pected that subjects will “modify” regression weights by modu-
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Figure4. Relationship between movement variability and decoding accuracy. A, The CVs for
MT (black) and ML (white) ranged across subjects. B, The kurtosis of the velocity profiles also
varied across subjects. €, All movement variability measures demonstrated high negative cor-
relations with the decoding accuracy shown in Figure 2 B. Rectangles demarcate the confidence
intervals for the bootstrapped r values, with each rectangle possessing a horizontal line at the
median. The confidence intervals are 70, 90, and 70%, respectively, for MT, ML, and kurtosis.

lating their EEG activity. Decoder generalization has recently
been demonstrated and analyzed in monkeys by Ganguly and
Carmena (2009). Regarding humans, researchers have not thor-
oughly analyzed generalization; regardless, comparably impres-
sive 2D control has been demonstrated by sensorimotor rhythms
derived from EEG (Wolpaw and McFarland, 2004) and single
neurons (Hochberg et al., 2006). Given this evidence, we expect
our decoding method for EEG to permit 3D brain control by
humans in real time.

Regarding the negative correlation between movement vari-
ability and decoding accuracy, we offer two potential explana-
tions. For the more technical explanation, increased movement
variability could degrade decoding accuracy due to less similar
pairs of EEG—kinematic exemplars. Conversely, less movement
variability results in more similar exemplars for training. A more

Bradberry et al. e Reconstructing 3D Hand Movements from EEG

neural related explanation is that subjects differ in their ability to
perform the task without practice; hence, the strengths of a priori
neural representations of the required movements differ. These
differing strengths could directly relate to the accuracy with
which the representations can be extracted. Indeed, a previous
study confirms that motor learning produces more accurate pre-
dictions of movement direction from an ensemble of neuronal
activity in primary motor cortex (Cohen and Nicolelis, 2004).
This finding is important to consider as real-time BCI systems
based on our decoder are investigated in the future.

In conclusion, despite the common assumption that EEG sig-
nals do not possess decodable information about detailed, com-
plex hand movements, we demonstrate otherwise. The locations
of the most important sensors to decoding are interpretable in
light of previous studies and corroborate our claims. In the near
future, the question should be addressed of how well subjects can
adapt to our decoder of 3D kinematics when feedback of the
decoder output is provided.
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