Skip to main content
. 2019 Jan 24;2(1):3. doi: 10.5334/joc.52

Table 3.

Best models, posterior probabilities for the best models and inclusion probabilities for each predictor.

Dependent variable Predictor Best model Pr(β ≠ 0|Y) Posterior model probability of best model

AS7 Gain Intercept 1.000 0.276
Age 1.000
Sex 1.000
IQ 1.000
TMT-B1 0.176
WCST2 0.146
Stroop 0.284
LFL3 0.155
CFL4 0.146
SWM5 0.145
RVIP6 0.154

AS Spatial Error Intercept 1.000 0.284
Age 1.000
Sex 1.000
IQ 1.000
TMT-B 0.164
WCST 0.151
Stroop 0.264
LFL 0.144
CFL 0.144
SWM 0.144
RVIP 0.185

AS Latency Intercept 1.000 0.188
Age 1.000
Sex 1.000
IQ 1.000
TMT-B 0.725
WCST 0.265
Stroop 0.211
LFL 0.278
CFL 0.155
SWM 0.253
RVIP 0.157

AS Error Rate Intercept 1.000 0.249
Age 1.000
Sex 1.000
IQ 1.000
TMT-B 0.160
WCST 0.351
Stroop 0.219
LFL 0.156
CFL 0.168
SWM 0.205
RVIP 0.934

Notes: Bayesian Model Averaging was used to determine inclusion probabilities for the predictors. Thus, regression coefficient estimates are not included. For inference on effect sizes, the estimates for the stepwise regression are reported in the text. 1Trail Making Task Version B, 2Wisconsin Card Sorting Task, 3Letter Fluency Task, 4Category Fluency Task, 5Spatial Working Memory Task, 6Rapid Visual Information Task, 7Antisaccade.