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In this paper, we examine decision making in a spiking neuronal network and show that longer time constants for the inhibitory neurons
can decrease the reaction times and produce theta rhythm. We analyze the mechanism and find that the spontaneous firing rate before the
decision cues are applied can drift, and thereby influence the speed of the reaction time when the decision cues are applied. The drift of the
firing rate in the population that will win the competition is larger if the time constant of the inhibitory interneurons is increased from 10
to 33 ms, and even larger if there are two populations of inhibitory neurons with time constants of 10 and 100 ms. Of considerable interest
is that the decision that will be made can be influenced by the noise-influenced drift of the spontaneous firing rate over many seconds
before the decision cues are applied. The theta rhythm associated with the longer time constant networks mirrors the greater integration
in the firing rate drift produced by the recurrent connections over long time periods in the networks with slow inhibition. The mechanism
for the effect of slow waves in the theta and delta range on decision times is suggested to be increased neuronal spiking produced by
depolarization of the membrane potential on the positive part of the slow waves when the neuron’s membrane potential is close to the

firing threshold.

Introduction

The functions of both low- and high-frequency oscillations in the
brain have been the subject of considerable investigation
(Buzsaki, 2006). Low-frequency theta oscillations (4—8 Hz) have
been observed to increase the phase-locked discharge of single
neurons in a visual memory task (Lee et al., 2005). In the hip-
pocampus, the phase of the theta rhythm influences the timing of
pyramidal neuron firing, long-term potentiation (theta peaks),
and depotentiation (theta troughs) (Holscher et al., 1997). In this
way, theta rhythm may influence synaptic plasticity and the
maintenance of memory. It is speculated that recent examples of
coupling between gamma amplitude and theta phase (theta-
nested gamma) (Canolty et al., 2006) might provide an effective
combination for neuronal populations to communicate and in-
tegrate information during visual processing and learning, and
might provide a process of temporal segmentation that can main-
tain multiple working memory items (Broadbent, 1975; Lisman
and Idiart, 1995; Cowan, 2001; Lee et al., 2005; Jensen, 2006;
Lisman and Buzsaki, 2008; Rolls and Deco, 2010), although the
same can be accomplished more simply with several local attrac-
tor networks (Rolls and Deco, 2010). Oscillatory synchronization
can also increase synaptic gain at postsynaptic target sites, thereby
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potentiating responses to learned stimuli (Fries et al., 2001; Fries,
2005).

There has been an interest in the relation between brain
rhythms (Lindsley, 1952) and reaction time for some time.
Lansing (1957) reported that simple reaction time to a flash of
light was shorter if the flash was delivered in the positive phase of
the occipital alpha waves, and suggested that excitability was
higher in this phase. Green and Arduini (1954) reported that
hippocampal theta usually occurs together with desynchronized
EEG in the neocortex, and hypothesized that the theta is related
to arousal. There is still debate as to what functional role is played
by the theta rhythm. Some human EEG recording studies have
reported that theta phase, rather than amplitude, is correlated
with cognitive processes, the so-called phase reset model (Rizzuto
et al., 2003; Buzsaki, 2006), whereas other studies on the frontal
and temporal lobes have placed more importance on the theta
amplitude (Canolty et al., 2006).

In this paper, we modify a widely used spiking neuronal at-
tractor network model by introducing a second population of
GABA neurons with a long time constant so that it produces
theta. We find that the reaction time is considerably reduced. The
reduction of the reaction time is associated with a drift upward of
one of the specific pools in the period just before and when the
decision cues are applied; this provides a mechanism for the faster
performance. The results apply equally to decision making and to
memory recall, in that memory recall can be understood as a
decision in an attractor network about the state it enters based on
the input cues (Rolls and Deco, 2010). The same underlying pro-
cesses and mechanisms apply to the perception of ambiguous
patterns (Blake and Logothetis, 2002; Maier et al., 2005), in which
the perceptual state can be thought of as a state influenced by the
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sensory inputs, but also by the stochastic
effect of the randomness in the neuronal
spiking times (Rolls and Deco, 2010).

Materials and Methods

Network architecture. For our experiments, we
used three variations on the basic architecture
proposed by Wang (2002) and extensively ex-
plored by Rolls and Deco (2010). The impor-
tant aspect of cortical architecture for effects of
the type we describe is recurrent collateral con-
nections, and these are found throughout the
neocortex (Miller et al., 2003; Wong and
Wang, 2006; Rolls, 2008). We have described
previously how different types of decision
making appear to be implemented in different
cortical areas by this type of architecture (Rolls
and Deco, 2010). In addition, we note that in
fact much of the work on decision making that
may be related to reaction times is performed
on a premotor cortical area, the ventral premo-
tor cortex, and many areas connected to this
(Romo et al., 2004; Deco et al., 2010). We fur-
ther note that a part of the ventral medial pre-
frontal cortex area 10 has now been implicated
in choice decision making between rewards
(Behrens et al., 2008; Grabenhorst et al., 2008;
Boorman et al., 2009).

The three versions differed only in the prop-
erties of the inhibitory neurons. The task of the
attractor network is to reach either attractor
state A, representing decision A, or attractor
state B, representing decision B. The evidence
for decision A is applied to the neurons of at-
tractor A, and the evidence for decision B is
applied to the neurons of attractor B. A typical
task is the comparison of two different stimuli,
e.g., vibrotactile stimulation frequency (Deco
and Rolls, 2006).

The network is composed of 1000 neurons,
800 of which are excitatory and 200 inhibitory
(Fig. 1, top). The current and membrane po-
tential of each neuron are calculated using the
leaky integrate and fire model described below.
Two pools of 80 neurons each, taken from the
800 excitatory neurons, are taken to be the spe-
cialized A and B pools, which receive addi-
tional inputs as described above; the remaining
640 excitatory neurons form the nonspecific
pool.

Neuron model. The model chosen to repre-
sent a single neuron is the leaky integrate and
fire model, defined by the equation

dv(t)
Cm 7 gm(V(t) - V[) syn(t)

(1)

where V(t) is the membrane potential of the
neuron, C,, is the membrane capacitance, I,
is the synaptic input received by the neuron,
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Figure 1.  Top, Diagram of the two-pool network model used for the simulations. All connections from the excitatory
neurons (the A, B, and nonspecific pools on the right) are AMPA- and NMDA-mediated. The fast and slow models have only
one inhibitory pool, in which all the neurons have the same 7,;,. The connections from inhibitory neurons shown on the
left are GABA-mediated. The letters or numbers next to the arrows specify the synaptic weights. Middle, left, Firing rates for
all the pools for sample trials of the original model. Thick gray line, specific pool A; thick black line, specific pool B; thin gray
line, nonspecific pool; dotted black line, inhibitory fast pool; dotted gray line, inhibitory slow pool. Input cues are switched
on at t = 4 s (arrows). The vertical dashed line marks the moment where the decision was taken, as measured by the
criterion described in the text. Bottom, left, Rastergrams for the same two trials, showing the spiking activity for 10
randomly chosen neurons from each population. Middle and bottom, right, Same as with middle and bottom, left, but with
the two-pool model.

neurons. Excitatory neurons generate fast AMPA-mediated currents and

and g, is the leak current conductance. When no input is present, the  slower NMDA-mediated currents, whereas inhibitory neurons generate

membrane potential drifts to the rest value V| (

—70 mV); if the mem-  GABA-mediated currents. The total synaptic input to a single neuron is

brane potential reaches a threshold V;, (—50 mV), the neuron is said to  the sum of these currents.

have spiked and the potential is reset to a reset value V,, (—55 mV). The
potential is then clamped to the reset value for a brief refractory period .

Isyn = IGABA + IAMPA + INMDA + IAMPA,cxt (2)

When a neuron spikes, it applies excitatory (driving toward 0 mV) or  where I,\;py ey is the current due to external inputs to the network, again
inhibitory (driving toward —70 mV) synaptic inputs to all the other =~ AMPA-mediated, described in more detail below.
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Table 1. Parameters used for the simulations

All neurons Excitatory neurons Network parameters
V=—70mv (n=05nF L =22

Vi = —50mV g =2505 w_ = 0.8444

V., =—55mV Tapnec = 20805 w, = 1.015
Ve=0mV Gampa = 0.104nS Wnedium = 1
Vy=—=70mV Gumpn = 0.327nS Neye = 800

Tt =2ms Joasn = 1.2871nS Two-pool model only
Tawpa = 2MS Inhibitory neurons TeapAslow — 100MS

ThmDArise — 2 MS (,=0.2nF §=1025
TNMDA,decay =100 ms g =20 nS f: 0.3077
Toapn = 10 ms apaex = 162105 slow model only
a=05ms"" Gawpn = 0.0810S Teapa = 32.5ms
B=62-10"7°V"" Gawoa = 0.258 05 f=103077
y=357 Jena = 100205

The GABA- and AMPA-mediated currents follow first-order kinetics,
described by

Livea(t) = ganea(VI(1) — VE)E Wi SJAMPA (®) (3)
N1
Toasa(t) = goana(V(D) — VI)E Wi SiGABA (®) (4)
i=1
deAMPA MPA
— 4
Tl ES(t £) (5)
dSiGABA GABA
Tii——s Ea(t — ) (6)

where g\ vipa and g apa are the synaptic conductances, s is the fraction of
open channels, V; and Vj; are the reversal potentials for GABA and AMPA
currents, w; s the synaptic weights, NI and Ny, are the numbers of inhib-
itory and exc1tat0ry neurons, and t is the time when the j-th neuron
emits its k-th spike. The values of these parameters are reported in Table
1 and were taken from Deco and Rolls (2006), in which they were calcu-
lated with a mean field analysis to obtain a network with stable decision
states.

Equations for the NMDA currents are slightly different to account for
the voltage-dependent magnesium block and the non-negligible rise
time.

V(1) -
Tivoa(t) = gampa
e BV N
1+ > wy SMPA (7)
=1
AsNMDA(p) SNMDA
j _ j _ _ NMDA
dt Tawpasie o1 = 57) ®
dx(t) x;(1)
= - + 2,80t — 1 9
dt TNMDA rise E k) ( )

where a, 3, and y are numerical parameters with values reported in Table
1. Every neuron receives inputs in the form of excitatory AMPA current
spikes, following a Poisson distribution, from N, independent external
synaptic connections. In the absence of any input, the frequency is 3 Hz
for every synapse for all the neurons in the network. An input to the
network is simulated by increasing the frequency of the input to the
specific pool neurons A and B. The equations that describe the external
current input, for each neuron, are as follows:

Next

= Qe V() — Vi) D, sMPAe(g) (10)

IAMPA,ext(t)
j=1
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AMPA ext MPA, ext
ds; s

= + > 8t — 1)) (11)

TAMPA k

where N, is the number (800) of external synaptic connections onto
each neuron.

In this model, every neuron is connected to every other neuron. The
weights of the synaptic connections are assumed to be generated by a
Hebbian learning process. There is a strong connection between neurons
of the same specialized pool (w, ), a weak connection between neurons of
different subsets or between specialized and nonspecialized neurons
(w_), a dedicated weight mediates the interaction from the inhibitory
neurons to the excitatory neurons (w;), and a medium weight (W, cqium)
covers all the other cases.

Different versions of the network. In the original model, all the inhibi-
tory neurons shared the same parameters. To generate theta band activ-
ity, however, we needed to have two different populations of inhibitory
neurons (White et al., 2000; Kendrick et al., 2009).

We created, therefore, a modified version of the network, in which a
fraction S of the inhibitory neurons have a GABA spike decay time con-
stant of Tgapa gow = 100 ms. To keep constant the amount of inhibition
in the network, we scaled the GABA conductances for all neurons by a
compensating factor f, because fast and slow inhibitory neurons should
have the same amplitude of conductance change (White et al., 2000). We
kept constant the average amount of inhibition in the network by choos-
ing fso that the average time-integrated change of conductivity caused by
a GABA spike remained constant, i.e.,

SNy w; J8GABA TABASIow

+ (1- S) N ijgGABA Teasa.  (12)

N Wj &GaBa TGABA =

Solving for f, this leads to

TGABA

STcaBAslow T a

- S)TGABA (13)

which can be read as f being the ratio between the original 75,54 value
and the new average time constant of the inhibitory neurons.

To check whether any difference in the network performance is due to
having two different inhibitory neuronal populations, or is due to a
different average 7,5, value in the network, we also compared the re-
sults with ones taken from a third version of the network, with the same
fvalue and a new value for 7,55 = STeapasiow T (1 = S)Tapa> €qual to
the average value in the two inhibitory pool model.

Simulations and frequency analysis. The model equations were
evolved with an Euler algorithm with a step size of 0.05 ms, using
MATLAB scripts and C language .mex files. The usual protocol for a
trial was to run the simulation for 4 s with no inputs to the specific
pool, then add the input and run it for 4 further seconds. Each neuron
received a 3 Hz excitatory spike Poisson distribution on each of its 800
external synaptic connections for the whole duration of the simula-
tion. The addition of the input was simulated by bringing the Poisson
rate to 3.04 Hz for all 800 external synapses of the neurons in both
specialized (decision making) pools. This increase is enough to allow
the network to go into a decision state, in which one of the pools has
a firing rate ~40 Hz and the other is almost silent. During a simula-
tion run, the average membrane potential across every neuron in a
pool, and the firing times for every neuron in each pool, were re-
corded. The average firing rates of neurons were then calculated using
100 ms bins. We defined the decision time on each trial as the time
from the moment the decision-related inputs were applied until the
winning pool reached a firing rate halfway between its spontaneous
rate and the final firing rate when in the decision state (averaged over
thelast 2's). The winning decision pool was chosen as the one that had
the higher firing frequency in the last second of the simulation. The
parameters used for the model (Deco and Rolls, 2006) (chosen with a
mean-field analysis) are such that, in the period before the decision
cues are applied, the noise can occasionally trigger a transition to one
of the high-firing rate attractors; any such trials were excluded from
the analyses.
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Frequency analysis and filtering of the average membrane potentials
were performed with a continuous wavelet transform, using a Morlet
wavelet in a range of frequencies between 1.5 and 100 Hz, with software
in the MATLAB wavelet toolbox.

Results

All the experiments we report in this paper were conducted as
comparisons between the original version of the network, where
all the inhibitory neurons have 75,5, = 10 ms, which we refer to
as the fast or original model; a network where a fraction S = 0.25
of the inhibitory neurons have 75,5, = 100 ms and the rest have
Toapa = 10 ms, referred to as the two-pool network; and a net-
work where all the neurons have 75,5, = 32.5 ms, which is the
average GABA relaxation time for the two-pool network, referred
to as the slow network.

The performance of the network is illustrated in Figure 1,
middle and bottom. The average firing rates of the neurons in
each pool and rastergrams of 10 randomly selected neurons on
the same trial are shown for a typical trial in the original model
(Fig. 1, middle left) and for the two-pool model (Fig. 1, bottom
right).

Reaction times

Reaction times were measured for a batch of 1000 trials for each
network. We note that the decision cues were of equal strength,
that is, AI = 0 (which signifies that there is no difference in the
decision cues applied to each of the two decision-related popula-
tions of neurons A and B). During these trials, the inputs were
turned on at a random instant between 2 and 4 s to avoid any
systematic contribution by possible low-frequency oscillations to
the reaction times. Our data showed no correlation, however,
between the input injection time and the reaction times of the
network.

Binning the reaction times for each model in 100 ms bins
yields the distributions plotted in Figure 2, top. As can be seen
in the figure, the distribution of reaction times is skewed to-
ward longer reaction times for all three models. The average
reaction times were 0.96 s for the fast model, 0.86 s for the slow
model, and 0.71 s for the two-pool model, with statistically
different values according to the Wilcoxon rank sum test ( p <
0.001, n = 1000 for each pair of distributions of reaction
times). The median reaction times for the three models are, in
the same order, 0.91, 0.82, and 0.65 s. The average reaction
time for the fast model is consistent with those reported by
Deco and Rolls (2006). Thus, making the inhibition longer can
decrease the reaction times of this model of decision making,
even when the parameters of the inhibition are selected to
provide the same integrated opening of the GABA-activated
ion channels, and the mean firing rate when in the attractor
was similar between the three models.

Influence of the proportion of slow neurons in the two-pool
model on the decision times

We showed in Figure 2, top, that the two-pool model has faster
reaction times than the other two models. We investigated the
relationship between the proportion of slow neurons in the
model and reaction times by varying the fraction S of slow neu-
rons in the two-pool model. For each ratio we ran 500 trials, with
randomized decision input injection times as described above.
The results shown in Figure 2, bottom, indicate a clear decrease in
the reaction time as the proportion of slow neurons increases.
Thus, having a small proportion (<25%) of the inhibitory neu-
rons with a long time constant can decrease the reaction times.
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Figure 2.  Top, Distribution of the reaction times for the three different models. The distri-
bution was measured using 1000 trials, and the distribution is shown with 100 ms bins. Circles,
two-pool model; triangles, fast model; squares, slow model. Bottom, Two-pool model average
reaction time asa function of the fraction of slow versus fast neuronsin the inhibitory pool. Open
circles mark the cases where the spontaneous state is unstable, i.e., the values for which >50%
of the trials showed a transition to the decision state before the decision cues are applied. The
pointfor afraction = 0 corresponds to the fast or original model. The point forafraction = 0.25
corresponds to the two-pool model.

(When the proportion of slow neurons is increased >25%, there
is no further decrease in the average reaction time, and the spon-
taneous state becomes less stable. The spontaneous state was rel-
atively stable when S was <<25%, in that the network entered an
attractor state in the absence of decision input cues in 2-5% of
trials; and when S = 0.3 we had to reject 75% of the trials. For S =
0.35, the proportion of rejected trials with unstable spontaneous
activity was >90% of the total).

Average firing rates
The average firing rate for the winning and the losing selective
pools as a function of time is plotted in Figure 3. After the deci-
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Figure 3.  Average firing rates for the winning and losing pools over 500 trials for the three

models for A/ = 0. The decision cues were started at 4 s. (Firing rates averaged over 500 trials,
winning and losing).

sion cues are applied, there is little difference in the firing rates in
the three models. However, before the decision cues are ap-
plied, there is an interesting slow increase of firing rate evident
for the pool that will win when all the trials are averaged from
t = 1suntil t = 4 s, when the decision cues are applied. That is,
the average firing rate for several seconds before the decision
cues are applied is on average a predictor of which selective
pool will win the competition. Further, the two-pool model
shows in this period before the decision cues are applied a
higher firing rate, on average, for the pool that will win than
the slow model, and this in turn has higher firing rates at the
end of the spontaneous period when the decision cues are
applied than the fast model (Fig. 3).

Thus, the decision is anticipated or influenced by the slow
change in the average firing rate for several seconds before the
decision cues are applied, and the magnitude of this precue
drift is greater for the models with faster reaction times. When
the decision cues are applied, the pool that is already showing
an upward drift (on average) will be likely to win the compe-
tition, and will have less far to go when the decision cues are
applied and the strong nonlinear dynamics caused by the pos-
itive recurrent collateral feedback fully engages. In short, if the
firing rate is already (on average across trials) a little up before
the cues are applied, the transition to the winning attractor
will be easier, and this will produce, on average, shorter reac-
tion times.

This hypothesis was tested as follows. An unequal bias was
applied to the two selective pools, and we reasoned that by chance
on some trials the pool biased to win will have spontaneous ac-
tivity that will facilitate the decision, but on other trials drift in the
wrong direction will facilitate winning by the incorrect attractor,
especially in the two-pool model. Five hundred such simulations
were performed using a mean firing rate onto each synapse of
3.05 Hz to pool A, and 3.03 Hz to pool B (which corresponds to
AI = 16 Hz per neuron given that there are 800 synapses for
external inputs on each neuron). The prediction was verified,
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with 21% margin of error for the two-pool model, 17% for the
slow model, and 12% for the fast model. Thus, the increased drift
in the two-pool models can contribute to more errors when the
drift is against the cues biasing the decision, in line with the
hypotheses described in this paper.

Average membrane potential

The findings described indicate that the activity in the period
before the decision cues are applied is different for the three
models, and is related to the shorter reaction times with AI = 0.
We investigated this further by analyzing the average membrane
potential, V,, of all neurons in the pool in the 4 s precue period for
each pool. Figure 4 shows the three distributions for the selective
pools that won the competition after the decision cues were ap-
plied, although we found very similar distributions for the other
pools. As can be seen from Figure 4, the three models have very
similar mean and peak V, values, but the two-pool model has a
distribution skewed toward increased depolarization. Two-
sample Kolmogorov—Smirnov tests confirmed that all three dis-
tributions are different from each other ( p < 0.001). The skewed
distribution toward greater depolarization of the two-pool model
before the decision cues are applied is consistent with more ac-
tivity in this model before the decision cues are applied, contrib-
uting to some faster reaction times.

Frequency spectra for the average membrane potential and
theta-filtered membrane potential

To provide further evidence of the underlying mechanisms for
the faster reaction times of the two-pool model, we investi-
gated the frequency spectra of the average membrane potential
of the three models. Inter alia, this is expected to give insight into
the level and frequency distribution of the noise in the different
models, and shows whether some of the models may have theta
period activity. Continuous wavelet transform (CWT) of the lo-
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cal field potential was used to analyze the role of activity in dif-
ferent bands, sampling 80 points in the frequency space ranging
from 1.5 to 100 Hz. Figure 5, top, shows the power spectra for the
three different models. The spectra were obtained by averaging
the square value of the CWT coefficients for the whole of the
spontaneous period from a single trial, normalizing this (by set-
ting the area under the curve to 1) to obtain a distribution of the
power at different frequencies, and then averaging these power
spectra across 10 trials for each model.

Figure 5, top, shows the power spectra for the average mem-
brane potential in the spontaneous period of the selective pool
that eventually wins the competition for the three models (the
spectra from the other pools were qualitatively similar). Figure 5,
top, shows that in the theta frequency range, 4—8 Hz, the power is
greatest for the two-pool model, followed by the slow and then
the fast model; that is, the same order as the reaction times. We
note that these effects extended to even lower frequencies, as low
as 2 Hz, which is within the delta band [which extends from 1.5—4
Hz (Buzsaki, 2006)], so that the results described in this paper
apply to a range of low frequencies that includes theta and delta.
It could be that the theta somehow causes faster reaction times.
Or it could be that the altered, slower inhibition in the slow and
fast models has the effect of emphasizing low-frequency power,
but that the mechanism for the faster reaction times is in fact the
greater precue firing rate found on winning trials, greater for the
models in the same order as shown in Figure 3. We return to this
point in the Discussion, below.

To further investigate the role of theta band activity in the
decision processes, we filtered the V, values for single trials using
a rectangular filter set to 1 in the range 4—8 Hz, and to 0 previ-
ously. This was implemented using a continuous wavelet trans-
form with 40 samples in the 4—8 Hz range. Figure 6 shows that,
for the two-pool model, such filtered V, records for three indi-
vidual trials (upper) and the average of 200 trials (lower). The
results indicate that there was no phase reset phenomenon pro-
duced by the decision cues; that is, the signals did not develop, for
example, peaks at the same time after the decision cues were
applied.

In additional investigations, no significant correlation was
found between the phase of theta oscillation at the moment of cue
injection and the reaction time for a particular trial. As effects of
the phase of slow waves at which stimuli are delivered may influ-
ence reaction times (Callaway and Yeager, 1960; Dustman and
Beck, 1965) and whether a visual stimulus close to threshold is
detected (Busch et al., 2009) in some empirical studies, future
investigations with the present approach might consider whether
such effects can be found in the model if the degree of slow-wave
modulation is larger.

We also investigated whether there was a difference in the
average membrane potential V, between the different models.
There was a small effect for V, to be more depolarized in all
pools in the two-pool model than in the slow or original (fast)
model in the spontaneous, pre-decision cue period, but this
was revealed clearly when V/_ filtered as above in the range 4—8
Hz was measured, which is what is shown in Figure 5, bottom.
In the spontaneous period, the filtered V, indicated greater
depolarization. After the decision cues were applied there were
no differences in the filtered V, for the three models or in the
firing rates.

Discussion
The reaction time distributions in Figure 2, top, show that the
model with a small fraction of slower inhibitory neurons, and
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Power distribution in winning pools, average of 4 seconds and 10 trials
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Figure5.  Top, Powerspectraas calculated from the continuous wavelet transform of the average mem-
brane potential over the 1.5-100 Hz range. Inset, Detail of the spectra for the 4—8 Hz region. Individual
spectrawere taken by squaring and normalizing the CWT coefficients for each time point, then averaging the
result over the whole 4 s of simulation. Data shown in the plot are the average of 10 such spectra for each
model. Dotted line, fast model; thin line, slow mode; thick line, two-pool model. Middle and bottom, Mean
valuesand SDs of the theta-filtered average membrane potentials V,, before (middle) and after (bottom) the
cue injection for all pools and for the three models. The values reported are the average across 200 trials for
each model. Cirdles, fast model; squares, slow model; diamonds, two-pool model.
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Figure 6.  Three different trials, randomly chosen, of theta-filtered average membrane po-
tentials V, obtained using the slow model (top three lines), and the average of the theta-filtered
V, over 200 trials (bottom, thick line) for the same model, for 2 s of simulation before and after
the input injection. No phase-reset phenomenon is discernible.

GABA conductances modified accordingly, has shorter reaction
times than the original model with fast (10 ms) synaptic conduc-
tances shown in Deco and Rolls (2006). Comparison with the
slow model decision time distribution shows that an important
factor is the presence of two inhibitory neuron populations. The
slow model has the same time-integrated change of GABA con-
ductance as the two-pool model and the same average T;apa
value, but its reaction times are considerably longer than the
two-pool model. The impact of the slow neurons is shown clearly
in Figure 2, bottom: decision time decreases linearly with the
proportion of slow neurons until the spontaneous state becomes
unstable. The critical proportion of slow neurons is between 25
and 30% of the total.

We suggest that the mechanism for the faster reaction times of
the models with slow or two-pool inhibition is that, in the prede-
cision period of spontaneous firing, there is a tendency for the
firing rate of one of the pools to drift upward. This drift is greater
for the models in the order of two-pools > slow pool > fast pool
(Fig. 3), so that when the decision cues are applied, the pool that
is already showing an upward drift (on average) will be more
likely to win the competition, and will have less far to go when the
decision cues are applied and the strong nonlinear dynamics
caused by the positive recurrent collateral feedback fully engages.
If the firing rate is already (on average across trials) a little up
before the cues are applied, this will produce (on average) shorter
reaction times.

We tested this hypothesis by applying an unequal bias to the
two selective pools, using AI = 16, and there were more error
trials for the two-pool then for the slow than for the fast models.
The implication is that the prestimulus drift in the spontaneous
activity is important, and that this is facilitated with slow inhibi-
tion and even more by two-pool inhibition.
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Figure 7.  The membrane potential of a single integrate-and-fire neuron of the type speci-

fied in Equation 1 in response to currents applied as I, at slow (5 Hz) and at fast (50 Hz)
frequencies and with identical amplitudes. The frequency was changed at time = 500 ms, and
its time course is shown by the sinusoidal waveform (black line). The membrane time constant
g, was 20 ms. The membrane potential shows a larger modulation with the low than with the
high-frequency input. This effect is produced by the filtering effect produced by the membrane
time constant, which acts as a low-pass filter, with smaller effects therefore produced by the
higher frequency of 50 Hz. Depending on the average membrane potential produced by other
inputs to the neuron, the larger modulation of the membrane potential produced by low fre-
quencies may produce more action potentials with the low than with the high frequencies, as
illustrated. In the case illustrated, the main input to the neuron was the sinusoidal input, and I/,
was —70mV.

We suggest that the drift is caused by activity in the recurrent
collateral connections, which allow a form of integration of
changes produced by the Poisson noise introduced into the net-
work by the spike-firing times of each neuron. This integration is
enhanced in the slow and two-pool models. We suggest that a
possible mechanism for the less effective inhibition in the two-
pool and slow models that leads to increased drift of the firing of
the neurons in the model is that the longer the decay time for the
inhibition, the greater the chance that it will be lost due to the
refractory period of the excitatory neurons, as the excitatory neu-
rons that have just fired will be insensitive to any inhibition in
their refractory period.

We further note that if a network changes from asynchro-
nous (desynchronized) to oscillatory activity, the net amount
of inhibition will become smaller due to more beinglost by the
refractory period effect. In more detail, the inhibition will be
greatest just after the inhibitory neurons fire, as the ion chan-
nels they open in the excitatory neurons are maximally open;
and, if the excitatory neurons are firing at this part of the
oscillatory cycle, a large amount of inhibition will be lost as
they will relatively frequently be in a refractory state. Thus,
oscillations could produce a net increase in the excitatory ac-
tivity in a network.

Consistent with this slower or enhanced processing of slow
changes in the slow and two-pool models, there was more power
in the low-frequency (4—8 Hz) bands (low theta range) in the
precue period of the models (two-pool > slow > fast models)
(Fig. 5, top). The theta may reflect these dynamics altered toward
slow state changes (increased power at low frequencies), but does
not, per se and independently of the altered firing rate in the
precue period, appear to contribute to the faster reaction times,
for there was no evidence of any relation of theta phase to the
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reaction time, or for phase reset of the theta at the time the deci-
sion cues were applied (Fig. 6).

Frequency analysis shows that having two populations of in-
hibitory neurons with different time constants enhances theta
activity in the model, as has been observed experimentally (Tort
et al,, 2007, 2008, 2009; Kendrick et al., 2009). Averaging the
theta-filtered traces across trials shows that the decision making
process does not entail phase reset; the oscillations of the single
trials are ~1 order of magnitude wider than the ones in the aver-
aged trials, whereas, if phase resetting was the case, we would
expect at some point oscillations that survive the averaging
process.

In this paper, we show that slow inhibition, or a mixture of
slow and fast inhibition, can speed reaction times in a decision-
making network. We suggest that slow drift in the firing rates
before the decision cues are applied contributes to this effect,
especially with the two-pool and slow models. We suggest part of
the mechanism of the increased drift of the spontaneous firing
rates before the decision cues are applied is related to a decrease in
the overall inhibition being produced. Part of the mechanism for
this may be that more of the neurons are in their refractory period
when the inhibition is being received in the slow models, as the
inhibition is being applied over a longer period in the slow and
two-pool models. We tested this by decreasing the refractory pe-
riod in the model to zero and found that the faster reaction times
of the slow and two-pool models remained. We therefore suggest
that the mechanism is as described next. In Figure 7, we plotted
the membrane potential of a single integrate-and-fire neuron of
the type specified in Equation 1 in response to currents applied as
I, at slow (5 Hz) and at fast (50 Hz) frequencies and with iden-
tical amplitudes. The membrane time constant C,,,/g,,, was 20 ms.
Figure 7 shows that the membrane potential shows a larger mod-
ulation with the low- than with the high-frequency input. This
effect is produced by the filtering effect produced by the mem-
brane time constant, which acts as a low-pass filter, with smaller
effects produced by the higher frequency of 50 Hz. Depending on
the operating or average membrane potential, the larger modu-
lation may produce more action potentials with the low than with
the high frequencies, as illustrated in Figure 7. A further analysis
of these dynamics is provided by Kang et al. (2010). Therefore,
our hypothesis about the effects described in this paper is that an
increase in slow excursions of the membrane potential produced
by altering the nature of the inhibition in the network (having
slow or two inhibitory populations of inhibitory neurons) can
result in more action potentials being produced. This increase in
the firing rate can then increase the reaction times of the network,
which is sensitive to the excitability of the neurons in the network.
The excitability is an important factor in the reaction times, as
shown by previous research in which the excitability can be al-
tered by, for example, changes in w,, as shown in Figure 1
(Brunel and Wang, 2001; Wang, 2002; Deco and Rolls, 2006;
Rolls and Deco, 2010). Thus, our account of the findings de-
scribed in this paper, that reaction times can be affected by low-
frequency modulations (or oscillations) in neural activity, is that
these modulations can be translated into effects on firing rates,
which in turn influence the dynamics and reaction times of the
networks.
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