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Abstract

The utility of human pluripotent stem cell–derived kidney organoids relies implicitly on the 

robustness and transferability of the protocol. Here we analyze the sources of transcriptional 
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variation in a specific kidney organoid protocol. Although individual organoids within a 

differentiation batch showed strong transcriptional correlation, we noted significant variation 

between experimental batches, particularly in genes associated with temporal maturation. Single-

cell profiling revealed shifts in nephron patterning and proportions of component cells. Distinct 

induced pluripotent stem cell clones showed congruent transcriptional programs, with 

interexperimental and interclonal variation also strongly associated with nephron patterning. 

Epithelial cells isolated from organoids aligned with total organoids at the same day of 

differentiation, again implicating relative maturation as a confounder. This understanding of 

experimental variation facilitated an optimized analysis of organoid-based disease modeling, 

thereby increasing the utility of kidney organoids for personalized medicine and functional 

genomics.

The ability to derive induced pluripotent stem cells (iPSCs) from the somatic cells of 

patients1, together with directed differentiation protocols, provides a capacity to model the 

cell types affected by disease. This has proved effective for the validation of disease genes in 

cardiomyocytes and neurons, as well as for analysis of their effects on cellular function2–6. 

Particularly for monogenic conditions, the utility of such approaches has substantially 

improved with the advent of CRISPR–Cas9-mediated gene editing, facilitating the creation 

of isogenic corrected lines for direct comparison with mutant lines7–9.

Recently, iPSC differentiation protocols have been developed in which multiple cell types 

arise and self-organize in a fashion similar to the developing tissue10,11. Protocols have been 

reported for the generation of optic cup, cerebral cortex, intestine, and stomach 

organoids12–18. Unlike methods that generate a relatively homogeneous cell type, the 

complexity of organoids increases the likelihood of substantial variation between individual 

experiments. Even comparisons of patient and isogenic controls are affected by variation 

between cell lines, as individual iPSC clones vary in rates of cell proliferation and response 

to ligands that may not be associated with an inherited genetic defect. Indeed, organoid 

protocols also tend to involve many weeks of differentiation during which overall variation 

can increase.

We recently developed a stepwise protocol for generating three-dimensional (3D) kidney 

organoids from human iPSCs19,20. The resulting organoids contain the key epithelial cell 

types of the forming filtration units, the nephrons, together with collecting ducts, 

endothelium, pericytes, and interstitial fibroblasts. With so many distinct cell types present, 

the potential variation in cell type proportions raises the challenge of reproducibility, which 

may compromise the capacity to identify novel disease-associated transcriptional changes.

In this study, we provide a comprehensive transcriptional and morphological evaluation of 

our kidney organoid protocol. Applying RNA sequencing (RNA-seq) to 57 whole organoids 

and 8,323 organoid-derived single cells, we examined variation between organoids within a 

single differentiation experiment, between different differentiation experiments (batches), 

between iPSC clones, and between epithelial compartments isolated from kidney organoids. 

Our data identify a set of highly variable genes that reflect differences in organoid 

maturation, nephron segmentation, and off-target populations, with no greater variation 
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between lines than between experimental batches. We demonstrate how knowledge of this 

gene set can be used to improve disease model analysis.

We show that even between healthy organoids, there is significant batch-to-batch variation 

driven by differences in the rates of organoid maturation. In disease-modeling studies, it is 

crucial to account for batch variation, which can confound differences between patient and 

control organoids and reduce the ability to identify mechanisms of disease. Careful 

experimental design, such as concurrent differentiations between lines, can mitigate the 

effects of batch-to-batch variation.

Results

Kidney organoid differentiation protocol.

The kidney organoid protocol employed in this study (Fig. 1a) was previously described in 

detail19,20. For this study, each differentiation experiment began with the thawing of one vial 

of single-cell-adapted human iPSCs plated onto Matrigel, representing day −1. At day 0, 

differentiation commenced in APEL media with a specific regimen of small-molecule and 

recombinant proteins (Methods). Between days 0 and 7, cells were cultured as a monolayer 

in a six-well culture plate. Primitive streak was induced via canonical Wnt signaling 

(CHIR99021) and intermediate mesoderm patterning with recombinant fibroblast growth 

factor 9. At day 7, all cells were enzymatically dissociated and counted before individual 

organoids of 5 × 105 cells were pelleted for subsequent culture on Transwell filters (10–30 

organoids per filter) (Fig. 1a). Organoids were grown in 3D culture from day 7 to day 25. All 

growth factors and inhibitors were removed on day 12. Data are referred to as originating 

from a vial, experiment (single differentiation), or batch. Organoids generated from different 

vials of the same iPSC line but simultaneously differentiated are referred to as distinct 

‘experiments’, and a differentiation commenced at a different time is referred to as a distinct 

‘batch’. For all transcriptional profiling, we collected either duplicates or triplicates sampled 

from days 0, 4, 7, 10, 18 and/or 25. At days 0 (when iPSCs were plated) and 4 (the end of 

CHIR99021 induction), replicates represent individual wells from the same starting vial. 

From day 7 onward, replicates are individual kidney organoids grown from the same starting 

vial.

Temporal characterization of organoid differentiation.

We previously performed RNA-seq of individual organoids at days 7, 10, 18, and 25 within a 

single differentiation experiment19. In this study, we extended this dataset by collecting 

triplicate RNA samples at days 0 and 4 using the same iPSC cell line (CRL1502-C32). 

Organoids collected at a single time point were highly reproducible within a given 

differentiation experiment (Spearman’s ρ > 0.986 between all samples at each time point; 

Fig. 1b,c), and pairwise differential expression comparisons indicated that the largest 

transcriptional changes were between days 0 and 4 and the smallest were between days 18 

and 25 (log fold change > 1, false discovery rate (FDR) < 0.05, Fig. 1d; Supplementary Fig. 

1a, Supplementary Table 1). The top 100 upregulated genes included significantly enriched 

gene ontology terms for somitogenesis and anterior/posterior pattern specification between 
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days 0 and 4, and nephron, urogenital system, and kidney development between days 10 and 

18 (Supplementary Fig. 1b–f and Supplementary Table 2).

Unsupervised fuzzy clustering identified 20 synexpression clusters, which displayed 

correlated nonlinear expression patterns across the time course (Supplementary Figs. 2 and 

3a). For each cluster, we extracted the core contributing genes (Supplementary Table 3), 

performed gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses 

(Supplementary Table 4), and identified key FANTOM5 transcription factors (see “URLs” 

section) within the core gene sets (Supplementary Table 5). PCR of selected core genes 

within seven of these clusters validated the expression patterns in independent 

differentiations (Supplementary Fig. 3b).

Prior knowledge of transcriptional changes in the developing mouse19 indicates that 

nephrons form between days 10 and 18 of the organoid time course. We observed a large-

scale upregulation of genes suggestive of nephron development and vascular differentiation 

(2,292 upregulated genes, 1,185 downregulated genes, log fold change > 1, FDR < 0.05; 

Supplementary Table 1), supported by gene ontology analysis (Supplementary Fig. 1b–f). In 

addition, synexpression clusters 7, 10, and 12 captured genes that change within this time 

period (Supplementary Fig. 3a). At day 18, the most highly expressed genes included 

markers of podocytes, a key component of the forming glomerulus (NPHS1, NPHS2, 

PTPRO, MAFB, SYNPO, ITIH5, CLIC5, NPNT)21–23. Simultaneous with the upregulation 

of nephron markers between days 10 and 18 was the downregulation of the nephron 

progenitor markers LIN28A, MEOX1, CITED1, and EYA1. These genes are also known to 

mark the metanephric mesenchyme in humans24. On the basis of the presence of maturing 

nephrons, we chose day 18 for the subsequent analysis of reproducibility. The identification 

of these nephron- and maturity-related genes, particularly markers of podocyte 

differentiation, was key to our subsequent interpretation of batch variation.

Variation within and between differentiation experiments.

We previously identified at least nine distinct cell types in kidney organoids on the basis of 

immunofluorescence19. Given this cellular complexity, sources of transcriptional variation 

could include biological variation in component cell types or intrinsic cell line or clone 

heterogeneity, technical variation from vial or passage, batch variation in culture 

components, and variations in downstream processing procedures. Although the correlation 

between organoids within this initial differentiation experiment was very high (Spearman’s ρ 
= 0.986), we wanted to understand the level of transcriptional variability that could arise 

when differentiation experiments are repeated. Using the same iPSC cell line, we carried out 

another six organoid differentiation experiments and collected RNA from individual 

organoids at day 18 (Fig. 2a). Distinct differentiations were performed up to 12 months apart 

and hence across different reagent batches (culture media, recombinant growth factors). 

Organoids from experiments 3, 4, and 5 were initiated with distinct iPSC vials, but were 

differentiated and processed in parallel and classed as one batch. The remaining organoids 

from experiments 1, 2, 6, and 7 were differentiated at different times and considered to be 

distinct batches. In total, 18 organoids were profiled at day 18, and all samples were 

sequenced at the same facility using the same protocol (Methods).
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Day 18 organoids within the same batch clustered tightly on a multidimensional scaling 

(MDS) plot, in a region between days 10 and 25 of the time course (average Spearman’s ρ 
across all batches, 0.956) (Fig. 2b). The highest correlation was observed between organoids 

differentiated at the same time (Spearman ρ = 0.997, Fig. 2c; Supplementary Fig. 4). Day 18 

organoids in batch 3 were closer to day 10 organoids than to organoids from the remaining 

day 18 batches (Fig. 2b, Supplementary Fig. 4). For each gene, we fitted a random effects 

model to estimate the contribution of three variance components representing (1) batch-to-

batch variability, (2) vial-to-vial variability of organoids differentiated in parallel in batch 3, 

and (3) ‘residual’ organoid-to-organoid variability (Supplementary Table 6). Across all 

genes, the largest contribution to transcriptional variability was batch-to-batch variability; 

vial-to-vial variability was only a small contributor, and residual variance was minimal (Fig. 

2d).

We examined genes with the greatest total variability between batches to understand how 

transcriptional variability arose at day 18. Many of the highly variable genes were related to 

nephron maturation (for example, the podocyte markers NPHS2, PTPRO, and NPHS1) 

(Supplementary Fig. 5). Of the top 50 most variable genes between individual day 18 

organoids (Supplementary Fig. 6a), 7 and 16 genes showed synexpression patterns 

consistent with time-course clusters 10 and 12, respectively (Fig. 3a; Supplementary Fig. 

6b), suggesting that variability may result from differences in nephron maturity. Comparison 

of days 10 and 25 of the original time course identified differentially expressed genes 

associated with nephron formation. The 500 most variable genes at day 18 were strongly 

enriched among nephron-related genes, with approximately 80% of the variable genes 

significantly upregulated between days 10 and 25 (one-sided P = 0.0005, ROAST test25, Fig. 

3b).

To define a relative time scale of molecular differentiation, we constructed a multivariate 

linear regression for the day 7–25 time-series data using the ten genes with the greatest 

linear association across this time period (Supplementary Fig. 7). This framework enabled us 

to estimate the normalized ‘age’ of additional day 18 organoids relative to the time-series 

data (Fig. 3c). The results mirrored the trend in the MDS plots: batch 3 organoids had the 

youngest predicted ages (10.3–11 d), and organoids in batches 1, 2, 4, and 5 were closer in 

developmental age to day 18 (median predicted ages: batch 1, 17.1 d; batch 2, 17.9 d; batch 

4, 15.5 d; batch 5, 16.5 d). This approach could be used to normalize variation between 

kidney organoid batches for a given iPSC line and could potentially extend to other organoid 

models.

Coimmunofluorescence for collecting duct (GATA-binding factor 3 and cadherin-1), distal 

tubule (cadherin-1), proximal tubule (Lotus tetragonolobus lectin (LTL) and protein 

jagged-1), and podocyte (nephrin) markers confirmed that changes between days 10 and 25 

were related to nephron patterning (Supplementary Fig. 8a). This revealed evidence of a 

transition in nephron morphology from an initial renal vesicle to capillary loop stages across 

this time interval (Supplementary Fig. 8b,c). Quantitative PCR (qPCR) also confirmed the 

temporal pattern of core gene expression in clusters 10 and 12 (Supplementary Fig. 8d). 

Together, our analyses support a model in which transcriptional variation between organoids 
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reflects significant changes in nephron morphogenesis occurring between days 10 and 25 of 

organoid culture.

Single-cell profiling of component cell type variation.

RNA-seq analysis suggested that organoid maturation contributed strongly to transcriptional 

variation. This variation may arise from expression changes within constituent cell types or 

from differing ratios of component cell types, including both on-target (kidney) and off-

target (non-kidney) populations, in any given organoid. In addition, expression variation may 

result from differences in nephron segmentation between organoids, such that nephrons may 

be preferentially proximalized (more podocytes) or distalized (more tubular). To investigate 

this further, we isolated single cells from four CRL1502-C32-derived kidney organoids at 

day 25 (Methods). Three organoids from one differentiation were prepared and sequenced 

independently from the fourth organoid from a distinct differentiation.

After filtering for poor-quality cells and genes with low expression, clustering of all 

remaining 8,323 cells from these organoids26,27 generated 13 clusters that we labeled using 

gene ontology term analysis and comparison to mouse and human profiling data (Fig. 4a; 

Supplementary Figs. 9 and 10, Supplementary Table 7, Methods). Although cells from most 

clusters were present in all organoids, these differed in relative proportions, most notably 

between batches (Fig. 4b). Organoid 4 was underrepresented for stromal populations 

(clusters 0, 1, 2, 7); was overrepresented for clusters 3 and 6 (cell-cycle-related), 8 (neural), 

9 (nephron progenitor), and 10 (nephron); and contained no cluster 12 (immune) cells. The 

proportion of cells assigned to the podocyte cluster varied between all organoids, 

irrespective of batch. While this may reflect relative podocyte maturation, it may also reflect 

variation in the isolation of these tightly interdigitated cells. Differences in cell type 

proportion may also be a result of the dissociation methods used; however, it is notable that 

the three organoids from the same batch were most similar.

The majority of the most variable genes identified by bulk RNA-seq were restricted to the 

podocyte cluster, with only a few genes (MMP1, endothelium; DCN, stroma) selectively 

expressed in other cell types (Fig. 4c). The proportion of cells expressing highly variable 

cell-type-specific genes, such as NPHS2, PTPRO, and MMP1, also differed across the four 

organoids (Supplementary Fig. 11). A greater proportion of cells in organoids 1, 2, and 3 had 

high expression of NPHS2 and PTPRO in the podocyte cluster and MMP1 in the endothelial 

cluster, while fewer cells in organoid 4 expressed these genes at high levels (Supplementary 

Fig. 11). With regard to key kidney marker genes, organoid 4 had more cells expressing 

PAX2 (clusters 4 (podocyte), 9 (nephron progenitor), and 10 (nephron)) but much reduced 

MAFB expression in the podocyte cluster (Supplementary Figs. 10 and 11). Notably, 

organoid 4 did not show a relative depletion of cells in cluster 4 (podocytes), but the cells in 

this cluster still showed a distinct podocyte expression pattern. This may reflect variation in 

relative age, more distal nephron patterning, or a combination of both between batches. 

Importantly, single-cell analysis once again showed that organoids from the same batch were 

the most similar.
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Correlation between organoids from distinct iPSC clones.

All the data presented thus far were generated using iPSC clone CRL1502-C3228,29. To 

examine variation between iPSC lines, we generated kidney organoids from a healthy female 

human iPSC line (RG_0019.0149.C6). Hereinafter we refer to the lines as CRL and RG for 

simplicity. The resulting organoids displayed similar brightfield morphology 

(Supplementary Fig. 12). RNA-seq was performed on two day 18 organoids from each of 

three separate but simultaneous differentiation experiments (six organoids in total); triplicate 

day 0 and 7 cultures were profiled from each differentiation experiment. Organoids 

generated from the two lines were strikingly concordant, exhibiting greater correlation and 

clustering by differentiation duration and not cell line (Fig. 5a,b).

This second line was differentiated in a single batch, but it was possible to examine gene-

wise variation arising from distinct vials and residual (organoid-to-organoid plus unknown) 

variation at day 18. Organoids grown from the same vials of the RG cell line were highly 

correlated, as were those grown from different vials (Fig. 5c). Random effects analysis 

confirmed that vial contribution was small across all genes, with residual variation 

contributing only marginally higher transcriptional variability (Fig. 5d, Supplementary Table 

8). The most variable genes appeared to be driven by differences between vials 2 and 3 

(Supplementary Fig. 13) and were overrepresented for gene ontology terms involving the 

Golgi lumen, locomotory behavior, and epidermal cell differentiation, whereas variable 

genes with high residual contributions were overrepresented in signaling receptor activity 

(Supplementary Fig. 14, Supplementary Table 9).

The differences between day 18 organoids from the distinct iPSC lines were again associated 

with organoid maturation. Unsupervised clustering of all day 18 organoids using the top 100 

maturity-related genes (differentially expressed between days 10 and 18 in the original time 

course) indicated that RG day 18 organoids were older than CRL day 18 organoids from 

batch 3, but younger than those from the other batches (Fig. 5e). Genes differentially 

expressed between RG and CRL batch 3 day 18 organoids (generated with the same 

replication design) were highly enriched for maturity-related genes (Fig. 5f, ROAST P = 

0.0005).

Epithelial populations cluster with age-matched organoids.

Single-cell profiling demonstrated that transcriptional variation between individual 

experiments is largely driven by the diversity of cell types present. To simplify the pool of 

cells for analysis, we enriched for the epithelial cell adhesion molecule (EpCAM+) epithelial 

fraction of day 25 RG organoids and the LTL+ proximal tubular epithelium fraction from 

CRL organoids by using magnetic-activated cell sorting (MACS). This required organoids 

within a given differentiation to be pooled to yield enough RNA for sequencing. Hence, 

replicates represent sorted fractions from distinct batches. Despite this, the epithelium-

enriched profiles clustered alongside the global organoid profile from the same 

differentiation time point, illustrating the strong contribution of epithelial cell types to the 

global profile (Fig. 5g). Total organoid and epithelium-enriched samples also separated 

along the lower dimensions, as anticipated (Fig. 5g).
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Plotting the log-normalized expression of epithelial and stromal markers confirmed high 

expression of epithelium-enriched profiles (Supplementary Fig. 15a) and depleted 

expression of interstitial markers in both epithelium-enriched populations (Supplementary 

Fig. 15b). The LTL+ fraction showed distinctly higher expression of protein jagged-1, 

consistent with the selective enrichment of the proximal tubular epithelium (LTL+) versus all 

epithelium (EpCAM+). Although sorting for specific cell types will not overcome inherent 

differences in nephron maturation between batches, it reduces the complexity of the 

transcriptional profile and potentially improves the ability to detect cell-type-specific 

transcriptional changes. Such an approach is likely to assist in disease modeling.

Application to disease modeling.

Our modeling of the sources of variability suggests that transcriptional profiling of 

organoids to identify disease-related changes will be challenging. We applied our approach 

to compare a patient iPSC line and a genetically repaired isogenic control line generated 

using CRISPR–Cas9-mediated gene editing. The line was derived from a person with 

juvenile nephronophthisis in association with retinitis pigmentosa and skeletal anomalies 

(Mainzer–Saldino syndrome30) resulting from distinct point mutations in both copies of 

IFT140, a component of the retrograde transport machinery of primary cilia. EpCAM-

enriched epithelial fractions were isolated from pooled organoids at day 25, with triplicates 

from both patient and gene-corrected lines generated from distinct differentiation 

experiments. Combining these with the time-series data revealed evidence of differences in 

maturation, with patient samples closer to day 18 organoids and control samples closer to 

day 25 organoids (Fig. 6a).

An initial analysis found 1,244 downregulated and 1,097 upregulated genes between patient 

and gene-corrected samples (FDR < 0.05). Of the 1,000 genes previously identified as most 

variable from our healthy organoids at day 18, 570 were among the differentially expressed 

genes in the disease study, 44% (249/570) and 29% (167/570) of which were downregulated 

at an FDR < 5% and < 1%, respectively. Indeed, the set of 570 highly variable genes were 

significantly enriched among the downregulated genes (Fig. 6b, ROAST P = 0.0085). We 

found that removing the highly variable genes reduced the number of significant gene 

ontology terms from 1,677 to 1,099 (Fig. 6c). We identified significant gene ontology terms 

for (1) the 167 highly variable downregulated (FDR < 1%) genes (Fig. 6d), (2) all of the 

patient downregulated genes, including these variable genes (Fig. 6e), and (3) the patient 

downregulated genes after removal of the highly variable genes (Fig. 6f). The removal of the 

highly variable genes from the patient differentially expressed gene list reduced the 

prominence of gene ontology terms associated with transporters and extracellular matrix and 

increased the association of the disease state with gene ontology terms such as ‘apical part of 

the cell’ and plasma membrane region (Fig. 6f). Such gene ontology terms are more 

biologically relevant to the ciliopathic disease present in this patient. We conclude that 

removing highly variable genes removed noise in the data, thus highlighting more 

biologically relevant pathways.
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Discussion

The prospect of using organoids to model development or disease relies on the accuracy of 

the model and its reproducibility within and between lines. Kidney organoids represent 

arguably the most complex human organoid generated to date. With this increased cellular 

complexity comes greater variation in the relative proportions of cell types between 

experiments. Our transcriptional analysis showed a remarkable degree of congruence 

between the profiles of organoids generated across considerable technical and biological 

variation. Both whole-organoid and single-cell approaches indicated that batch-to-batch 

variation was the greatest driver of overall variability, with primary contributions from 

nephron maturation and nephron patterning, together with shifts in the relative abundance of 

on-target and off-target cell types.

While the robustness of the kidney organoid protocol suggests that disease modeling is 

feasible, our analysis of variability also highlights challenges in comparing patient and 

control cell lines. To assist with normalization, we provide a list of genes that are most 

variable between batches at a single time point, as well as a set of ten genes to generate an 

estimate of relative kidney organoid maturity. Although it is possible to exclude the most 

variable genes from any transcriptional comparison, this may also remove information of 

relevance to the phenotype of a particular line. In addition, as a post-hoc analysis, the ability 

to estimate differentiation stage does not ensure that lines will all reach the same level of 

maturity in a given differentiation. While this does not provide a solution if disease lines 

repeatedly show differences in relative maturation state from controls, we have successfully 

identified disease-related transcriptional changes between a patient and gene-corrected 

isogenic control line by removing the 570 most variable genes identified in this study30.

Another approach to reducing technical variation is to select for specific cell types within the 

organoid. Even though the epithelial cells sorted from organoid cultures were enriched for 

epithelial and depleted for stromal marker expression, they still aligned most closely with 

their source organoid tissues matched for differentiation stage. Therefore, the analysis of 

selected cellular components is likely to improve comparative organoid phenotyping.

Our study demonstrates that directed differentiation of human iPSCs to kidney organoids is 

robust, reproducible, and transferable between stem cell lines. As the greatest source of 

variation is differences in technical parameters, rather than the cell line, cellular 

compartment, or individual organoid, perhaps the most important implication of this work is 

that researchers must carry out any comparisons between patient and control lines 

concurrently while controlling as many technical variables as possible.

URLs.

FANTOM5 transcription factors, http://fantom.gsc.riken.jp/5/sstar/

Browse_Transcription_Factors_hg19; TopGene Suite, https://toppgene.cchmc.org; Oshlack 

github repository, https://github.com/Oshlack/OrganoidVarAnalysis.
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Methods

Ethical approval and consent to participate.

All research complied with the relevant ethical regulations and Australian legislation 

pertaining to stem cell research. Ethical approval for the derivation of the human iPSC line 

RG_0019.0149.C6 was approved as a subproposal of HREC_14_QRBW_34 by the Human 

Research Ethics Committee (HREC) of the Royal Womens and Childrens Hospital. iPSC 

reprogramming and gene correction of patient skin fibroblasts was conducted with approval 

from the HRECs of the Lady Cilento Children’s Hospital (no. HREC/15/QRCH/126), the 

University of Queensland (Medical Research and Ethics Committee approval no. 

2014000453), and the Royal Brisbane and Women’s Hospital (HREC/14/QRBW/34), 

including research governance approval at all sites. Written informed consent was obtained 

from all participants or legal guardians as appropriate.

Human iPSC derivation and directed differentiation to kidney organoids.

Human iPSCs were generated using Sendai reprogramming as previously described. 

CRL1502-C32 is a female human iPSC cell line derived from ATCC CRL-1502 fetal 

fibroblasts28. RG_0019.0149.C6 is a female human iPSC cell line derived from fresh skin 

fibroblasts collected from an adult. The protocol for directed differentiation to kidney 

organoid has been described previously19,20,30.

Single-cell sample preparation and sequencing.

The four kidney organoids were harvested into ice-cold PBS. Three organoids (batch 1) were 

digested over 15 min at 37 °C in trypsin-EDTA (Thermo Fisher Scientific); the fourth 

organoid (batch 2) was digested over 15 min on ice in Liberase (Sigma-Aldrich); both 

batches were stored on ice in APEL media (Stem Cell Technologies). Organoids from batch 

1 were run in parallel on a chromium 10x Single Cell Chip (10x Genomics); batch 2 was run 

at a later date. Libraries were prepared using Chromium Single Cell Library Kit V2 (10x 

Genomics) and sequenced on an Illumina HiSeq using 100 base pair (bp) paired-end reads in 

two runs (batches 1 and 2) at the Australian Genome Research Facility.

Brightfield imaging and immunofluorescence imaging of cultures.

Brightfield images were taken using the Nikon TS-1000 inverted microscope. For the kidney 

organoid, antibody staining was performed as described previously20. The following 

antibodies and dilutions were used: mouse anti-E-cadherin (1:300; BD Biosciences); goat 

anti-GATA-3 (1:300; R&D Systems); sheep anti-nephrin (1:300; R&D Systems); 

biotinylated LTL (1:300; Vector Laboratories); and rabbit anti-Jagged1 (1:300; Abcam). 

Confocal imaging was performed using a ZEISS LSM780 scanning confocal microscope, 

with a ZEISS Plan-Apochromat 25×/0.8-NA (numerical aperture) multi-immersion 

objective. Confocal stacks were taken at 1.5-μm Z spacing and exported to the Imaris 

software (Bitplane) for 3D reconstruction and surface rendering. All other image processing 

was performed in Fiji31. All immunofluorescence analyses were successfully repeated more 

than three times; representative images are shown.
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QPCR of organoids.

Total RNA was extracted from cells with the Purelink RNA Mini Kit (Thermo Fisher 

Scientific), and complementary DNA was synthesized from 100 ng of total RNA using 

GoScript reverse transcriptase (Promega). Quantitative reverse transcription PCR (qRT–

PCR) analyses were performed with the GoTaq qPCR Master Mix (Promega) by a PRISM 

7500 96 real-time PCR System (Applied Biosystems). All absolute data were first 

normalized to glyceraldehyde 3-phosphate dehydrogenase and then normalized to control 

samples (2−ΔΔCt method). The sequences of primers used for qRT–PCR are as listed in 

Supplementary Table 10.

Isolation of EpCAM-enriched cellular fractions.

Kidney organoids were transferred to a drop of trypsin-EDTA, minced with a surgical blade, 

transferred to a 15-ml tube with 3 ml of trypsin-EDTA, and incubated at 37 °C for 10 min 

while the disintegrating organoid pieces were gently pipetted every 3 min. Next, 8 ml of 

DMEM + 10% fetal bovine serum was added and cells were pelleted by centrifugation (250g 
for 5 min). Then, the pellet was resuspended in 2 ml of epithelial cell culture medium (Renal 

Epithelial cell growth medium; Banksia Scientific). The remaining cell clumps were 

removed with a 40-µm cell strainer (BD Biosciences), and cells were counted. Cells (107) 

were repelleted by centrifugation (250g for 5 min), resuspended in 200 µl of MACS buffer 

(46.7 ml PBS+; 3.3 ml of 7.5% BSA; 200 µl 0.5 M EDTA), mixed with 20 µl of CD326 

microbeads (Miltenyi Biotec), and refrigerated to 4 °C. After 30 min, 5 ml of MACS buffer 

was added and cells were pelleted by centrifugation, resuspended in 500 µl MACS buffer, 

and applied to a prerinsed MS column in the MACS separator. After three washings with 

MACS buffer, cells were collected with 1 ml of MACS buffer after the column was removed 

from the MACS separator. This routinely yielded approximately 3 × 105 EpCAM+ cells per 

organoid and live cell rates > 75%. The isolation of epithelial cellular fractions from patient 

organoids has been described previously30.

Isolation of LTL-enriched cellular fractions.

Pooled iPSC-derived kidney organoids were dissociated by incubation with TrypLE Select 

Enzyme (Thermo Fisher Scientific) for 12 min at 37 °C, with gentle pipetting every 2 min to 

aid dissociation. The cell solution was passed through a series of cell strainers with 

sequentially smaller mesh sizes, ranging from 100 to 40 µM (Corning) with extensive 

washing using sterile chilled MACS buffer (Dulbecco’s PBS, 2 nM EDTA, 0.5% BSA) to 

yield a single-cell suspension. Cells were counted, centrifuged at 300g for 5 min, and 

resuspended in 100 µl of MACS buffer with 1 µl of biotin-conjugated LTL primary antibody 

(Vector Laboratories); they were incubated on ice for 30 min. Cells were rinsed with MACS 

buffer and centrifuged twice before being resuspended in 300 µl of MACS buffer plus 100 µl 

of streptavidin microbeads (Miltenyi Biotec) for 30 min on ice. Cells were rinsed with 

MACS buffer and centrifuged before being resuspended in 500 µl of MACS buffer and 

passed through a MACS MS column according to the manufacturer’s protocol (Miltenyi 

Biotec). The LTL+ fraction was eluted from the column; the sorted cell population was 

counted and stored at −80 °C until RNA extraction was performed.

Phipson et al. Page 11

Nat Methods. Author manuscript; available in PMC 2019 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bulk RNA sequencing, data acquisition, alignment, and quality control.

The RNA from the kidney organoid differentiations was extracted using the RNeasy Micro 

Kit (QIAGEN), and the sequencing libraries were prepared using the standard Illumina 

protocols. For the epithelial fractions, these were obtained from pooled organoids from the 

same differentiation. Most of the samples were sequenced at the Institute for Molecular 

Bioscience in Brisbane, Australia. The LTL-enriched and patient samples were sequenced at 

the Translational Genomics Unit, Murdoch Children’s Research Institute, Melbourne, 

Australia. The STAR aligner (version 2.4.0h1)32 was used to map the 75-bp single-end reads 

to the human reference genome (hg19) in the two-pass mapping mode. Uniquely mapped 

reads were summarized across genes with featureCounts (version 1.4.6)33 using GENCODE 

release 19 comprehensive annotation. Subsequent analyses of the count data were performed 

in the R statistical programming language with the Bioconductor34 packages edgeR35, 

limma36, RUVSeq37, and Mfuzz38, the annotation package org. Hs.eg.db, and the R package 

lme439. The Nature Research Reporting Summary has further details on the software used in 

the study. Highly expressed genes were defined as having at least one count per million 

(CPM) in at least two or three samples and were retained for statistical analysis. The 

threshold for selecting highly expressed genes was determined by the minimum group 

sample size in the dataset being analyzed. In addition, genes encoding ribosomal protein, 

mitochondrial genes, pseudogenes, and genes without annotation (Entrez Gene 

identification) were removed before trimmed mean of M-values normalization40 and 

statistical analysis. For all datasets, MDS plots were used to visualize the greatest sources of 

variation as part of quality control. The MDS plots were based on the top 500 most variable 

genes, specifying pairwise distance metrics in the limma package.

Statistical analysis.

Differential expression analysis of time-series data.—The time-series RNA-seq 

data consisted of three replicates at each of six time points: days 0, 4, 7, 10, 18, and 25. The 

samples for days 7, 10, 18, and 25 were obtained and sequenced together, with additional 

data for the earlier time points (days 0 and 4) generated at a later date. To account for 

possible batch effects, we carried out differential expression analysis using RUVSeq in 

conjunction with edgeR. RUVSeq was performed using empirical control genes, identified 

as the 5,000 genes that varied the least across the time-course data, based on an F-statistic. 

Genes that were differentially expressed at consecutive time points were identified as those 

that had an adjusted FDR < 5%. Genes significantly differentially expressed with an 

absolute log fold change of at least 1 and an FDR < 5% were identified by a TREAT 

analysis41 with robust variance estimation42. Gene ontology testing was done with the goana 

function in the limma package, adjusting for gene length bias43, and with the web-based 

ToppGene suite (see “URLs”)44.

Fuzzy clustering.—Genes that displayed similar patterns of expression across the time-

course data were clustered by fuzzy c-means clustering. Clustering was limited to genes that 

showed evidence of differential expression across the time course based on an F-statistic, 

and with an absolute log fold change of at least 1 between at least one comparison. For this 

analysis, each time point was compared to the remaining time points. This identified 7,682 

genes to use as input for the Mfuzz algorithm. The counts were transformed to log(CPM), 
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adding a small offset of 0.25 proportional to the library sizes. Each of the three replicates 

were averaged per time point, and the data were standardized so that each gene had a mean 

of 0 and s.d. of 1 to ensure that genes with similar changes in expression were close in 

Euclidean space. The soft clustering approach assigned each gene gradual degrees of 

membership, ranging from 0 to 1, to each of the 20 clusters. We identified a core set of genes 

for each cluster by specifying a cutoff on the membership score of 0.5, with the number of 

core genes per cluster ranging from 70 to 299. Gene ontology and KEGG pathway analysis 

on the core genes was done with the goana and kegga functions in the limma package, 

adjusting for gene length bias43; the analysis was further explored with the ToppGene suite.

Random effects modeling.—To study the different variance components in comparisons 

across experiments and batches, we fitted a multilevel random effects model to the day 18 

organoid data for each cell line separately, using the lmer function in the lme4 package. The 

data were transformed to log(CPM), with a small prior count of 0.5 added before model 

fitting; variance components for batch, vial, and residual were extracted for the CRL1502-

C32 organoids, and vial and residual components were extracted for the RG_0019.0149.C6 

organoids. Genes were ranked according to total variation, which we obtained by summing 

the variance components. For each gene, we obtained the greatest contributor to the 

variability by calculating the proportions of each variance component to the total variation.

Comparing highly variable genes to the time-series data.

To formally test whether the highly variable genes arise because of the varying maturity of 

the organoids, we tested for differential expression between day 25 (n = 3) and day 10 (n = 

3) organoids to identify a set of maturity-related genes. We used RUVSeq in conjunction 

with edgeR to identify differentially expressed genes between days 25 and 10, and tested 

whether the highly variable genes were changing as a set between these two time points by 

using the ROAST gene set test25 in the limma package.

Comparison of CRL1502-C32 and RG_0019.0149.C6 day 18 organoids.

To obtain a set of genes that were differentially expressed between these two cell lines, we 

compared the RG_0019.0149.C6 day 18 organoids (n = 6) with the CRL1502-C32 organoids 

(n = 6) from batch 3. A list of differentially expressed genes was obtained using voom45 and 

TREAT with a log fold change > 1 and an FDR < 5%. The upregulated and downregulated 

genes were tested as distinct gene sets for enrichment with ROAST in differentially 

expressed genes between day 18 (n = 3) and day 10 (n = 3) CRL1502-C32 organoids from 

the original time-series data (independent biological replicates from batch 2).

Single-cell data analysis.

Cell Ranger (version 1.3.1; 10x Genomics) was used to process and aggregate raw data into 

gene-level counts for each cell in each organoid. CellrangerRkit version 1.1.0 was used to 

read the data into the R programming language. Quality control was performed separately 

on batch 1 and batch 2 organoids. Poor-quality cells were defined as those that had more 

than 95% zeros across the cells, and were discarded. Additional quality control was 

performed; we checked the proportions of reads assigned to ribosomal and mitochondrial 

genes, as well as cell diversity. Genes with low expression were defined as genes that had 
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zeros in more than (total number of cells − 20) cells, which allowed for a minimum cluster 

size of 20 cells. In addition, mitochondrial and ribosomal genes, as well as genes without 

gene annotation, were filtered out. After quality control, there were 6,942 cells with 

expression measurements for 15,245 genes for batch 1 organoids, and 1,419 cells and 13,710 

genes for the fourth batch 2 organoid. To identify clusters in the data, we used the alignment 

method in the Seurat package (version 2.0.0)27. The two batches were merged using 

canonical correlation analysis based on 2,662 highly variable genes and 20 canonical 

correlation vectors. Thirteen clusters were identified using the 20 canonical correlation 

vectors with the resolution parameter set to 0.8. Marker genes for the 13 clusters were 

defined using the ROCtest in the Seurat package, which allowed for cell types to be assigned 

to each cluster. In addition, differential expression analysis between each cluster versus the 

remaining clusters was performed in the edgeR package; genes that had a log fold change > 

1 and an FDR < 5% were identified using TREAT. The upregulated genes from this analysis 

further assisted with assignment of cell types to the clusters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank A. Christ and G. Baillie at the Institute for Molecular Bioscience, The University of Queensland, for 
sequencing services. We acknowledge A. Mallett and S. Alexander for assistance in ethics applications and patient 
recruitment. We thank D. Vukcevic and G.K. Smyth for valuable discussion regarding random effects modeling, 
and J. Maksimovic for initial analysis and mapping of the patient RNA-seq data. This study was funded by the 
National Institute of Diabetes and Digestive and Kidney Diseases (grant no. DK107344) and National Health and 
Medical Research Council of Australia (NHMRC) (grant nos. GNT1041277, GNT1100970, GNT1098654). The 
Murdoch Children’s Research Institute is supported by the Victorian Government’s Operational Infrastructure 
Support Program. M.H.L. is an NHMRC Senior Principal Research Fellow. A.O. is an NHMRC Career 
Development Fellow (grant no. GNT1126157). T.A.F. is an NHMRC Postgraduate Scholarship (grant no. 
GNT1114409) and Royal Australian College of Physicians Jacquot Award Recipient (grant no. APP1114409).

References

1. Takahashi K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined 
factors. Cell 131, 861–872 (2007). [PubMed: 18035408] 

2. Bellin M et al. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in 
long-QT syndrome. EMBO J 32, 3161–3175 (2013). [PubMed: 24213244] 

3. Kim C et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. 
Nature 494, 105–110 (2013). [PubMed: 23354045] 

4. Phelan DG et al. ALPK3-deficient cardiomyocytes generated from patient-derived induced 
pluripotent stem cells and mutant human embryonic stem cells display abnormal calcium handling 
and establish that ALPK3 deficiency underlies familial cardiomyopathy. Eur. Heart J 37, 2586–2590 
(2016). [PubMed: 27106955] 

5. Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A & Vaccarino FM Human induced 
pluripotent stem cells for modelling neurodevelopmental disorders. Nat. Rev. Neurol 13, 265–278 
(2017). [PubMed: 28418023] 

6. Aksoy I et al. Personalized genome sequencing coupled with iPSC technology identifies GTDC1 as 
a gene involved in neurodevelopmental disorders. Hum. Mol. Genet 26, 367–382 (2017). [PubMed: 
28365779] 

7. Jang Y-Y & Ye Z Gene correction in patient-specific iPSCs for therapy development and disease 
modeling. Hum. Genet 135, 1041–1058 (2016). [PubMed: 27256364] 

Phipson et al. Page 14

Nat Methods. Author manuscript; available in PMC 2019 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Paquet D et al. Efficient introduction of specific homozygous and heterozygous mutations using 
CRISPR/Cas9. Nature 533, 125–129 (2016). [PubMed: 27120160] 

9. Howden SE, Thomson JA & Little MH Simultaneous reprogramming and gene editing of human 
fibroblasts. Nat. Protoc 13, 875–898 (2018). [PubMed: 29622803] 

10. Ader M & Tanaka EM Modeling human development in 3D culture. Curr. Opin. Cell Biol 31, 23–
28 (2014). [PubMed: 25033469] 

11. Huch M & Koo B-K Modeling mouse and human development using organoid cultures. 
Development 142, 3113–3125 (2015). [PubMed: 26395140] 

12. Suga H et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 
480, 57–62 (2011). [PubMed: 22080957] 

13. Eiraku M et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 
51–56 (2011). [PubMed: 21475194] 

14. Spence JR et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in 
vitro. Nature 470, 105–109 (2011). [PubMed: 21151107] 

15. Nakano T et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. 
Cell Stem Cell 10, 771–785 (2012). [PubMed: 22704518] 

16. Lancaster MA et al. Cerebral organoids model human brain development and microcephaly. Nature 
501, 373–379 (2013). [PubMed: 23995685] 

17. Kadoshima T et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific 
progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–
20289 (2013). [PubMed: 24277810] 

18. McCracken KW et al. Modelling human development and disease in pluripotent stem-cell-derived 
gastric organoids. Nature 516, 400–404 (2014). [PubMed: 25363776] 

19. Takasato M et al. Kidney organoids from human iPS cells contain multiple lineages and model 
human nephrogenesis. Nature 526, 564–568 (2015). [PubMed: 26444236] 

20. Takasato M, Er PX, Chiu HS & Little MH Generation of kidney organoids from human pluripotent 
stem cells. Nat. Protoc 11, 1681–1692 (2016). [PubMed: 27560173] 

21. Pavenstädt H, Kriz W & Kretzler M Cell biology of the glomerular podocyte. Physiol. Rev 83, 
253–307 (2003). [PubMed: 12506131] 

22. Brunskill EW, Georgas K, Rumballe B, Little MH & Potter SS Defining the molecular character of 
the developing and adult kidney podocyte. PLoS One 6, e24640 (2011). [PubMed: 21931791] 

23. Park J et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of 
kidney disease. Science 360, 758–763 (2018). [PubMed: 29622724] 

24. Lindström NO et al. Conserved and divergent features of mesenchymal progenitor cell types within 
the cortical nephrogenic niche of the human and mouse kidney. J. Am. Soc. Nephrol 29, 806–824 
(2018). [PubMed: 29449449] 

25. Wu D et al. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 
26, 2176–2182 (2010). [PubMed: 20610611] 

26. Satija R, Farrell JA, Gennert D, Schier AF & Regev A Spatial reconstruction of single-cell gene 
expression data. Nat. Biotechnol 33, 495–502 (2015). [PubMed: 25867923] 

27. Butler A, Hoffman P, Smibert P, Papalexi E & Satija R Integrating single-cell transcriptomic data 
across different conditions, technologies, and species. Nat. Biotechnol 36, 411–420 (2018). 
[PubMed: 29608179] 

28. Briggs JA et al. Integration-free induced pluripotent stem cells model genetic and neural 
developmental features of Down syndrome etiology. Stem Cells 31, 467–478 (2013). [PubMed: 
23225669] 

29. Yu J et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 
324, 797–801 (2009). [PubMed: 19325077] 

30. Forbes TA et al. Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic 
renal phenotype and reveal underlying pathogenetic mechanisms. Am. J. Hum. Genet 102, 816–
831 (2018). [PubMed: 29706353] 

31. Schindelin J et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 
676–682 (2012). [PubMed: 22743772] 

Phipson et al. Page 15

Nat Methods. Author manuscript; available in PMC 2019 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Dobin A et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 
[PubMed: 23104886] 

33. Liao Y, Smyth GK & Shi W featureCounts: an efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). [PubMed: 24227677] 

34. Huber W et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 
12, 115–121 (2015). [PubMed: 25633503] 

35. Robinson MD, McCarthy DJ & Smyth GK edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). [PubMed: 
19910308] 

36. Ritchie ME et al. limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res 43, e47 (2015). [PubMed: 25605792] 

37. Risso D, Ngai J, Speed TP & Dudoit S Normalization of RNA-seq data using factor analysis of 
control genes or samples. Nat. Biotechnol 32, 896–902 (2014). [PubMed: 25150836] 

38. Futschik ME & Carlisle B Noise-robust soft clustering of gene expression time-course data. J. 
Bioinform. Comput. Biol 3, 965–988 (2005). [PubMed: 16078370] 

39. Bates D, Mächler M, Bolker B & Walker S Fitting linear mixed-effects models using lme4. J. Stat. 
Softw 67, 1–48 (2015).

40. Robinson MD & Oshlack A A scaling normalization method for differential expression analysis of 
RNA-seq data. Genome Biol 11, R25 (2010). [PubMed: 20196867] 

41. McCarthy DJ & Smyth GK Testing significance relative to a fold-change threshold is a TREAT. 
Bioinformatics 25, 765–771 (2009). [PubMed: 19176553] 

42. Phipson B, Lee S, Majewski IJ, Alexander WS & Smyth GK Robust hyperparameter estimation 
protects against hypervariable genes and improves power to detect differential expression. Ann. 
Appl. Stat 10, 946–963 (2016). [PubMed: 28367255] 

43. Young MD, Wakefield MJ, Smyth GK & Oshlack A Gene ontology analysis for RNA-seq: 
accounting for selection bias. Genome Biol 11, R14 (2010). [PubMed: 20132535] 

44. Chen J, Bardes EE, Aronow BJ & Jegga AG ToppGene Suite for gene list enrichment analysis and 
candidate gene prioritization. Nucleic Acids Res 37, W305–W311 (2009). [PubMed: 19465376] 

45. Law CW, Chen Y, Shi W & Smyth GK voom: precision weights unlock linear model analysis tools 
for RNA-seq read counts. Genome Biol 15, R29 (2014). [PubMed: 24485249] 

Phipson et al. Page 16

Nat Methods. Author manuscript; available in PMC 2019 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Temporal characterization of human kidney organoid differentiation.
a, Overview of differentiation protocol, noting the collection time points. On days 0 and 4, 

individual wells were collected from a six-well plate; from day 7 onward, independent 

replicates refer to individual organoids. (CHIR99021 is an aminopyrimidine derivative that 

is an extremely potent inhibitor of glycogen synthase kinase-3 alpha.) FGF9, fibroblast 

growth factor 9. b, MDS plot of all samples demonstrates a clear developmental trajectory. c, 

Pairwise Spearman’s ρ correlation coefficients between the samples collected across the 

time course (n = 15,685 genes). d, Number of significant differentially expressed genes 

upregulated and downregulated between consecutive time points. Significant genes were 

identified on the basis of TREAT statistics with absolute log fold change > 1 and FDR < 5% 

(two-sided).
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Fig. 2. Sources of transcriptional variation within and between experiments.
a, Diagram of organoids profiled at day 18, showing the relationship between experiment 

(single differentiation from a unique vial), batch (multiple experiments separated in time), 

and organoid. Samples refer to individual organoids within an experiment. b, MDS plot of 

day 18 organoid and time series samples indicating batch and day. c, Log-normalized 

expression for pairs of representative samples showing correlation between organoids 

(Spearman’s ρ, n = 15,685 genes). d, Contribution to each source of variation (vial, batch, 

and residual) across all 15,685 genes (center line, median; hinges, first and third quartiles; 

whiskers, most extreme values within 1.5× the interquartile range of the box).
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Fig. 3. Prediction of relative organoid maturation between batches.
a, Log2-normalized expression across time points for the most variable genes identified at 

day 18. Note that the original time series is part of batch 2. b, ROAST analysis of the 500 

most variable genes at day 18 shows strong enrichment between days 10 and 25 and 

suggests an association between nephron maturation and transcriptional variability (one-

sided P = 0.0005). c, Prediction of organoid age based on ten genes marking the progression 

of differentiation.
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Fig. 4. Single-cell profiling reveals heterogeneity in component cell types among four day 25 
organoids.
a, Graph-based clustering identifies 13 clusters, including anticipated and off-target cell 

types. The t-distributed stochastic neighbor embedding (tSNE) plot consists of 8,361 cells 

from n = 4 biologically independent organoids. b, Proportions of cells per cell type in each 

organoid. Inset bar graph, total number of cells contributed from each organoid. c, Average 

log-normalized expression for top variable genes for each organoid in each cluster. Most of 

the variable genes are expressed in cluster 4, the podocytes.
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Fig. 5. Transcriptional variation between iPSC lines, and temporal concordance between total 
organoid and enriched nephron epithelium.
a, MDS plot of organoids generated from two cell lines. b, Spearman’s correlations between 

all organoids. c, Log-normalized expression for pairs of RG_0019.0149. C6 organoids. 

Spearman’s ρ was used to calculate correlation coefficients across 15,685 genes. d, 

Contribution of two variance components in a random effects model estimated for each gene 

(n = 14,870 genes). Center line, median; hinges, first and third quartiles; whiskers, most 

extreme values within 1.5× the interquartile range of the box. e, Hierarchical clustering of all 

day 18 organoids based on the top 100 differentially expressed genes between day 18 and 

day 10 in the original time course data. The color scale represents the expression values as 

log(CPM). f, Barcode plot showing enrichment of genes differentially expressed between 

CRL1502-C32 day 18 batch 3 organoids (n = 6) and RG_0019.0149.C6 day 18 organoids (n 
= 6) when compared to day 18 (n = 3) versus day 10 (n = 3) CRL1502-C32 organoids. g, 

MDS plots of day 25 enriched nephron epithelium samples from the two cell lines, labeled 
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CRL1502-C32-LTL and RG_0019.0149.C6-EpCAM, compared to all other total organoid 

samples.
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Fig. 6. Transcriptional analysis of a disease model improves with accounting for highly variable 
genes.
a, MDS plot showing patient samples, control samples, and time series data. IFT140, 

intraflagellar transport protein 140 homolog. b, The previously identified 570 highly 

variable genes were significantly enriched in the genes downregulated between patient and 

control samples (ROAST one-sided P = 0.0085). Moderated t-tests were used to test for 

differential expression between patient and control samples (two-sided). FDR < 1% and 

absolute log fold change > 0.7 were used to identify significant differentially expressed 

genes. c, Overlap of significant gene ontology categories for the three different gene 

ontology analyses. d, Gene ontology categories enriched for significant, highly variable 

genes. e, Gene ontology categories enriched for significantly downregulated genes, 

including highly variable genes. f, Gene ontology categories enriched for significantly 

downregulated genes, excluding highly variable genes. For all gene ontology analyses, a 

modified hypergeometric test was used to determine statistical significance, considering 

gene length bias. P values are one-sided.
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