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Abstract

Aging is accompanied by significant defects in immunity and compromised responses to new, 

previously unencountered microbial pathogens. Most humans carry several persistent or latent 

viruses as they age, interacting with the host immune systems for years. In that context maybe the 

most studied persistent virus is Cytomegalovirus, infamous for its ability to recruit very large T 

cell responses which increase with age and to simultaneously evade elimination by the immune 

system. Here we will address how lifelong CMV infection and the immunological burden of its 

control might affect immune reactivity and health of the host over time.

Introduction

Cytomegaloviruses (CMV) are ubiquitous beta herpes viruses that has co-evolved with its 

mammalian hosts by acquiring the ability to evade immune clearance. Immune evasion has 

provided CMV with the ability to persist and remain latent for lifetime in different host 

tissues, and it is believed that the virus may devote up to 90% of its genome towards that 

goal. This persistent and latent phenotype is a consequence of unique mechanisms by which 

the virus and host immune system engage in a back-and-forth dance to restrain viral 

replication. This may occur at a potentially significant cost for the host as CMV positivity is 

known to manipulate a vast number of immunological parameters and accounts for >50% of 

immune system variability in human monozygotic twins [1]. Most humans get infected by 

age of 40 [2] meaning that most elderly people live with the virus for decades. This lifelong 

infection has been described as associated with accelerated immunosenescence, increased 

risk of cardiovascular disease in older adults and all-cause mortality [3]. However, there is 

also evidence that CMV infection can be beneficial to adult immunocompetent hosts. 

Murine Cytomegalovirus (MCMV) latently infected mice show increased resistance to 

bacterial infection [4] while human CMV (HCMV) seropositive young adults exhibit 

enhanced antibody responses to influenza vaccination [5]. Old MCMV infected mice have 

even exhibited broader TCR repertoire mobilization in response to a third-party infection, 

●- to whom correspondence should be addressed at P.O. Box 221245, 1501 N Campbell Ave., Tucson, AZ 85724, USA, or 
nikolich@email.arizona.edu. 

Conflict of interest
The authors declare they have no conflict of interest.

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been 
accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept 
up to date and so may therefore differ from this version.

This article is part of the Special Issue on Immunological Imprinting during Chronic Viral Infection.

HHS Public Access
Author manuscript
Med Microbiol Immunol. Author manuscript; available in PMC 2020 August 01.

Published in final edited form as:
Med Microbiol Immunol. 2019 August ; 208(3-4): 263–269. doi:10.1007/s00430-019-00605-w.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with potentially enhanced heterologous immunity [6]. Thus, CMV seropositivity might be 

beneficial to the host in adulthood, whereas its effects in aging might be difficult to ascribe 

as net-negative or net-positive. The focus of this review will be on the impact of CMV 

infection on lifelong immunity under healthy normal aging as well as the impact of CMV on 

the immune response to secondary infections. We will also discuss the impact of CMV upon 

T cell clonal diversity and repertoire.

1. CMV and T cell memory inflation

One of the most obvious consequences described during CMV infection has been termed 

memory inflation, the expansion of antigen specific memory T cells with time, which was 

first described by Reddehase and colleagues [7] and since expanded upon by others [8–12]. 

Total HCMV-specific T cell responses in seropositive humans can be enormous, comprising 

on average 10% of both the CD4 and CD8 memory compartments in blood, and reaching up 

to 50% in certain individuals [13, 14]. This increase in CMV specific memory T cells leads 

to an increase in overall number of circulating memory T cells with age, which does not 

occur during aging in the absence of CMV infection [15].

At the most basic level memory inflation in response to CMV infection occurs as follows; 

initial lytic systemic viremia occurs over a period of two to four days followed by a 

significant expansion of CMV specific T cells. Following initial rounds of replication, the 

viral load is systemically reduced and viral replication restrained by multiple lymphocyte 

subpopulations such as NK cell, CD8 and CD4 T cells [16] as CMV contracts to defined 

anatomical locations in mouse and man. Salivary gland and lungs were initially considered 

the main reservoirs of latency studies but mouse studies detected viral genomes in spleen, 

bone marrow, heart and kidney upon resolution of primary infection [17, 18]. Latency in 

multiple organs has also been confirmed in humans samples [19, 20].

The cellular reservoirs of latency following initial phase of viremia have been demonstrated 

within multiple cell lineages but are believed to involve few cells of any type. These cells 

include CD34+ hematopoietic cell precursors [21–23], the CD14+ monocyte population 

[24], vascular endothelial cells, epithelial cells [25] and liver sinusoidal endothelial cells 

[26] (reviewed in detail in [27]).

After initial infection with MCMV and subsequent contraction of canonical effector T cells, 

memory inflation continues and is as follows; CD8 T cells possessing a central memory 

phenotype (CD44hi, CD62Lhi) traffic through the vasculature in search of cognate antigen. 

Upon recognition of antigen cells trafficking through the vasculature enter what are 

presumed to be infected tissues and are maintained with expression of CD69, to antagonize 

S1P1 receptor, and tissue specific markers such as CD103e [28]. Locations where this tissue 

residency of CMV specific T cells occurs has been described in the spleen and lungs of 

humans [29, 30], as well as the salivary gland [31–33], lungs [7, 19], liver [34], and most 

recently in our hands the adipose tissue (Contreras et al. 2019, submitted) of mice.

CMV infection in mouse and man elicits a broad array of T cell responses, both 

phenotypically and in antigen specificity. During acute infection in the C57BL/6 mouse 
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model it was very clearly shown that 18 epitopes elicited a response for greater than 50% of 

CD8 T cell splenocytes [35]. The diversity seen in this response is somewhat maintained in 

the inflationary phase of T cell responses with splenocytes responding against 5 of 19 

peptide pools [12]. Canonical, or non-inflationary, CD8 T cells responding to CMV peptides 

possess a central memory phenotype, being CD62L+CD44+CD127+CD28+ [7], as briefly 

described above. By contrast, the non-canonical, inflationary, CD8 T cells possess an 

effector memory phenotype being CD62−CD44+KLRG1+CD28− as reviewed in [36]. 

These phenotypes speak to the nature of these cells and their anatomical location, loss of 

CD62L expression confers the ability of T cells to enter peripheral tissues and leave 

lymphoid organs. In human infection phenotypic differences are also seen in CMV specific 

T cells, especially in that of aged adults. Similar markers are seen on inflationary cells in 

humans as are in mice, being CD28−CCR7−IL7R−. However, human inflationary T cells 

can re-express CD45RA [37] which is not expressed in mice. HCMV specific CD8 T cells in 

humans recognize a variety of epitopes and display effector responses to the products of 11 

HCMV open reading frames (ORFs) irrespective of the age of the donor [38].

2. CMV and cellular senescence in T lymphocytes

It has been proposed that CMV infection leads to replicative senescence and/or exhaustion 

of responding T cells. However, unlike in the case of chronic persistent infections, where the 

virus is continuously present at hundreds of thousands or more of copies/ml (e.g. in the case 

of HIV, SIV or HCV), CMV does not present the immunocompetent immune system with an 

onslaught of constant antigenic stimulation. Therefore, there has been no evidence that 

exhaustion occurs in CMV-specific cells, as measured by the presence of exhaustion markers 

such as PD-1, PD-1L, LAG, TIM or 2B4. This has been found in murine [39], non-human 

primate [40] and human models alike [41].

Evidence is ambiguous on the topic whether CMV is a major driver of replicative 

senescence in T cells. This virus clearly drives a large subset of virus-specific cells into 

advanced effector/effector memory (Te/em) differentiation. Many of these cells are of Temra 

type (T effector memory cells reexpressing CD45RA). A cardinal characteristic of all these 

subsets is that they are poorly proliferative and are highly cytotoxic, with secretion of large 

amounts of cytokines. Yet, it is difficult to argue that such cells are senescent, because the 

above is precisely what these cell types are supposed to do – eliminate microbial pathogens 

via cytotoxicity and cytokine secretion without much proliferation. As discussed before [42], 

these cells are perfectly equipped to control the virus in the situation where no further 

expansion of T cells is needed or desired (i.e. when memory inflation has already expanded 

a large number of virus-specific T cells). In the absence of specific and conclusive 

demonstration that such cells are somehow harmful to the host in the course of aging, the 

deleterious role of CMV in promoting their accumulation will remain speculative.

3. Impact of aging upon CMV spread, number of latently infected cells, 

reactivation frequency and virological vs immunological reactivation

Despite the clarity of the inflationary phenotype in circulation and non-lymphoid tissues we 

still lack a clear understanding of the impact that CMV has on aging immunity, 
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susceptibility to third party infections and the impact on T cell repertoire diversity. To 

discuss these issues, we will first address this regarding CMV tissue spread, latent cells 

infected, triggers of reactivation and the mechanism driving viral activity.

First, it is quite clear that primary CMV infection progresses in a typical lytic replication 

cycle manner, resulting in host-wide viremia. However, after control by the immune system, 

there are very few cells that maintain productive viral genomes [22]. During latent infection, 

viral genomes were detected in very small percentage (0.004 to 0.01%) of mononuclear cells 

from granulocyte colony-stimulating factor-mobilized peripheral blood or bone marrow 

from seropositive donors, at a copy number of 2 to 13 genomes per infected cell [43]. These 

estimates are very informative, but it is still unclear how the latent viral reservoir differs 

between individuals or even within different tissues and cell types and how this might be 

affected by occasional reactivation events. It is also not clear whether and to what extent 

reactivation events may be localized vs. systemic.

Despite the presumably small number of latently infected cells, massive clinical CMV 

reactivation can occur in immune compromised humans undergoing transplantation [44] or 

chemotherapy [45]. Massive reactivation in immunocompromised individuals suggests that 

the immune system is constantly engaged in keeping CMV infection in check. But is there 

evidence that minor stressors cause CMV microreactivation in immunocompetent 

individuals? During latent infection, CMV infected cells can express viral immediate-early 

(IE) genes without producing viral progeny [46, 47]. This is a source of constant antigenic 

stimulation thought to drive memory inflation [48]. In the event of microreactivation a small 

number of infected cells would initiate viral gene transcription at a specific tissue location. 

This would lead to antigen presentation on MHC molecules on the host-cell surface and in 

turn activation of CMV specific T cells. Historically, phenotypic and functional profiles of 

antigen specific CD8 T cells have been used as a proxy for viral activity [49–51], as they 

have been more sensitive and more easy to detect than any measurement of viral activity.

Effector cytokines produced by activated CMV specific T cells could than have significant 

local effects without necessarily being increased in the serum [52].

But what kind of stressors could drive such reactivations? In immunocompromised HIV-

infected humans massive CMV reactivation can cause viremic disease [53]. But there is also 

evidence that third party infections in immunocompetent host might trigger local CMV 

reactivation [54]. Reactivation of latent CMV can be induced by pathogen associated 

molecular patterns such as lipopolysaccharide (LPS) [55] or by inflammatory cytokines such 

as TNF-α [56] [57]. Conversely local CMV reactivation might have subtle direct effects on 

innate immune cells responding to secondary infection and our unpublished results show an 

increase in expression of several inflammatory cytokines in secondary lymphoid tissues of 

MCMV latently infected mice responding to bacterial infection. In that sense, the prevailing 

rodent model to study lifelong CMV infection- specific pathogen free (SPF) mouse, may not 

be adequate to mimic real life CMV infection.

A groundbreaking study by researchers from University of Minnesota [58] examined 

immune homeostasis and reactivity in wild-caught mice, mice from pet stores and inbred, 
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laboratory SPF mice and compared it to neonatal and adult humans. SPF mice lacked 

effector memory cells and resembled neonatal humans while pet shop and wild mice more 

faithfully approximated human distribution of T cell subsets (with low levels of naïve and 

high levels of effector and tissue-resident memory cells). Even more importantly, the authors 

showed that these traits could be transferred to SPF mice by co-housing them with pet shop 

mice. We have applied this model to latent MCMV infection, and our preliminary data 

shows evidence of viral MCMV reactivation in blood and saliva of C57BL/6 mice exposed 

to dirty microbiome (Coplen et al. in preparation). Thus, the choice of the SPF mouse as a 

model to study latent CMV infection needs to be revisited. In addition to being almost 

entirely free of other infections laboratory mouse models also suffer from a lack of natural 

stressors, physical and psychosocial [59] that could potentially reactivate the virus.

Most studies so far, in both humans and rodents failed to account for variance in viral 

activity and spread in different individual hosts exposed to different environments [60], an 

important conceptual point needed to better understand the effect of lifelong CMV infection 

on immune aging.

4. Impact of CMV on T cell repertoire diversity

We and others have demonstrated an absolute loss of naïve T cells with age in multiple 

species [15, 61–63], Maintenance of diverse naïve T cell populations depends on 

homeostatic signals delivered to T cells in secondary lymphoid tissue and possible 

mechanisms leading to age related loss of naïve T cells with age have been discussed 

elsewhere [64]. Our research has shown that lifelong CMV infection doesn’t further 

accelerate naïve T cell loss [65], but there are other ways through which CMV could affect T 

cell repertoire. T cell receptor repertoire diversity of memory T cell pool is estimated to be 

about 100 fold lower compared to naïve T cell pool [66, 67].

HCMV specific CD8 T cell clones can be greatly expanded in peripheral blood of CMV 

positive humans with up to 4% of total T cells specific for individual HCMV peptides [68, 

69]. Thus an increase in absolute number of oligoclonal CMV specific memory T cells seen 

in lifelong CMV infection might have a constraining effect on overall T cell repertoire 

diversity [70], High-throughput Illumina sequencing of unfractionated T cells showed a 

roughly linear decrease in TCR diversity with age [71] but since this analysis was performed 

on total T cells from peripheral blood it may simply reflect a decrease in ratio of circulating 

naïve to memory T cells. Thus, studies using single cell sorted naïve and memory T cells 

would be more informative. However, such studies are constrained by the large number of 

TCR sequences (estimates form sampling human PBMCs and mouse splenocytes range from 

106 to 108 unique TCRβ sequences [72]. Historically, analysis of TCR repertoire has thus 

been dominated by studies looking at elicited antigen-specific T cell response to vaccination 

or infection. In addition, high-throughput naïve T cell repertoire studies performed to date 

have only assessed TCRβ chain sequences, as paired TCRαβ analysis of individual cells 

would further increase complexity. Assessment of naïve T cell repertoire diversity in CMV-

seronegative humans over 65 years old compared to those under 35 revealed a relatively 

modest two to fivefold decrease in diversity.
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Repertoire richness contraction with age was even less pronounced for memory CD4 and 

CD8 T cells [67], CDR3 sequencing of naïve CD4+ and CD8+ T cells from secondary 

lymphoid tissues obtained from individual organ donors aged 2 months to 73 years also 

showed a very modest decrease in variability [73]. The Qi et al study was performed on 

CMV-negative subjects, whereas Thome et al. did not stratify human subjects into CMV 

seropositive and negative. Therefore, the effect of CMV infection on whole T cell repertoire 

is still not adequately studied.

By using MHCI tetramer technology to identify pathogen-specific populations in 

combination with single cell sorting, the TCR repertoire analysis can be simplified to 

interrogate the TCRβ sequences of individual T cells recruited into an ongoing immune 

response to a pathogen. Such studies, in aged mice, showed that there is a marked narrowing 

of the elicited CD8 effector TCRβ repertoire diversity following primary infection with 

influenza [74, 75] and Herpes Simplex Virus 1 [76]. Narrowing of the elicited effector 

TCRαβ repertoire could partially be explained by age-related decrease in number of naïve T 

cells but defects in antigen presentation function by dendritic cells and cytokine production 

might also contribute to reduced effector T cell expansion or early contraction. Although 

informative, studies of the elicited T cell repertoire in aged laboratory mice have not been 

concerned with potential impact persistent viruses like CMV might have on the repertoire of 

Ag specific response to third party infections. To assess the impact of lifelong CMV 

infection upon diversity of T cell responses against other infections, we infected young adult 

male C57BL/6 mice at 3 months with MCMV aged them to 21 months and infected them 

with Listeria monocytogenes (Lm) engineered to express chicken ovalbumin (Lm-OVA), We 

then analyzed the T cell receptor (TCR) repertoire of single cell sorted SIINFEKL tetramer 

positive cells [6]. In adult mice, no single clones dominated the whole repertoire, so that ~12 

different clones were mobilized to make up 80% of the repertoire and these clones were 

shared at a rate of 30-40% between individual mice of the same group. Consistent with our 

previous results [76], old mice exhibited strong narrowing and homogenization of the 

elicited repertoire such that 3 highly dominant clones made up 80% of the repertoire. 

Surprisingly, old mice with lifelong MCMV infection exhibited very diverse TCR 

repertoires with 21 clonotypes making up 80% of the total repertoire.

This is the first evidence that MCMV infection results in broader T cell recognition of a 

secondary infection in aged mice, raising the possibility that beneficial effects of CMV seen 

in vaccinated adult humans [5] may even extend to aging under certain circumstances.

5. Is CMV affecting T cell immune responses in “trans”, by crowding the 

new immune responses?

Given the expansion of CMV specific cytotoxic T cells in circulation it was hypothesized 

that this population of cells could interfere with control of secondary infections in an aged 

immune system [77, 78], Since latent CMV infection recruits very large CD8 T cell 

responses over time (up to 50% of all CD8 TM cells), it is possible that this commitment of 

the immune system resources to control reactivation of latent CMV infection might 

negatively affect immune responses to other infections. We and others have shown that Ag-
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specific T cell responses to viral [79, 80] and bacterial [62] challenge were decreased in the 

secondary lymphoid organs of MCMV-infected old mice and this decrease inversely 

correlated to number of CD8 TEM in the blood. However, while Ag specific responses were 

somewhat reduced in lifelong MCMV infection, this did not translate into increased 

mortality in response to infectious challenge [62, 79, 81]. Recently we investigated whether 

reduced T cell immunity in CMV+ old mice may have been caused directly by inhibition of 

new immune responses by CMV-specific TEM cells (Jergovic et al. 2019, submitted). To test 

this, we have investigated presence of TEM CMV-specific CD8 T cells in lymph nodes of 

lifelong-CMV-infected mice and found that these cells do not accumulate at the sites of 

initiation of new primary immune responses in a significant manner (Jergovic. et al, 2019, 

submitted). This was similar to the results that human CMV-specific T cells do not 

accumulate in human tonsils [82] or peripheral lymph nodes (M. R. Betts, personal 

communication). Moreover, we have sorted TEM CD8 T from lifelong latently infected mice, 

transferred them into adult MCVM-negative mice and challenged them with another virus 

(West Nile Virus) or bacteria (Listeria monocytogenes). However, adoptive transfer of TEM 

cells from MCMV positive mice had no effect on the response to secondary infection in 

recipient mice implying that the inverse correlation between the number of TEM cells in the 

blood and magnitude of naïve response to superinfection may not be causal. We therefore 

conclude that MCMV-specific TEM cells are unlikely to directly interfere with an immune 

response against superinfection in the secondary lymphoid tissues. This does not come as a 

surprise as our results, as well as other studies, show that MCMV-specific cells are enriched 

in blood and bone marrow but do not accumulate in the secondary lymphoid organs of 

latently infected mice [83] or humans [19, 84].

Conclusion

Overall, while CMV has a massive impact on the T cell compartment and the immune 

system regardless of age, the initial hypotheses reviewed in [42, 77] that CMV may drive 

immune senescence, loss of TCR diversity and, directly, or indirectly, reduced 

responsiveness to third-party antigens/infections have either not been substantiated in 

critical, incisive studies, or have been rendered less likely by the available evidence. By 

contrast, data has been emerging on positive impact of CMV upon heterologous immune 

responsiveness, including that in aging. Therefore, while CMV remains perhaps the 

strongest modulator of the T cell compartment known, its association with immune aging is 

more nuanced and more difficult to describe in simple terms, and will have to await the next 

round of studies precisely correlating, and, hopefully, mechanistically linking, CMV viral 

activity/reactivation with immune activation, inflammation and aging of the entire organism 

(including specific organ systems, chiefly cardiovascular).
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