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Abstract

The importance of pre-existing versus acquired drug resistance in cancer patients treated with 

small molecule tyrosine kinase inhibitors (TKI) remains controversial. The goal of this study is to 

provide a general estimate of the size and dynamics of a pre-existing, drug-resistant tumor cell 

population versus a slow-growing persister population that is the precursor of acquired TKI 

resistance. We describe a general model of resistance development, including persister evolution 

and pre-existing resistance, solely based on the macroscopic trajectory of tumor burden during 

treatment. We applied the model to 20 tumor volume trajectories of EGFR-mutant lung cancer 

patients treated with the TKI erlotinib. Under the assumption of only pre-existing resistant cells or 

only persister evolution, it is not possible to explain the observed tumor trajectories with realistic 

parameter values. Assuming only persister evolution would require very high mutation induction 

rates, while only pre-existing resistance would lead to very large pre-existing populations of 

resistant cells at the initiation of treatment. However, combining pre-existing resistance with 

persister populations can explain the observed tumor volume trajectories, and yields an estimated 

pre-existing resistant fraction varying from 10−4 to 10−1 at the time of treatment initiation for this 

study cohort. Our results also demonstrate that the growth rate of the resistant population is highly 

correlated to the time to tumor progression. These estimates of the size of the resistant and 
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persistent tumor cell population during TKI treatment can inform combination treatment strategies 

such as multi-agent schedules or a combination of targeted agents and radiotherapy.

Introduction

The emergence of resistance to targeted agents such as small molecule tyrosine kinase 

inhibitors (TKI) is one of the key challenges in the effort to control cancer. A significant 

research effort focuses on the mechanisms of resistance (1-4), in order to determine the 

pathways by which resistance arises and identify strategies to prevent its emergence. An 

important question of clinical relevance in this context is the temporal evolution of drug 

resistance. Resistance may arise either from pre-existing sub-clones or de novo during 

therapy (5-9). This distinction is important for the administration of targeted agents in 

clinical practice and the combination of targeted agents with other treatment modalities, 

such as surgery, radiotherapy or thermal ablation in non-metastatic disease.

From a statistical perspective the probability of pre-existing resistance in a macroscopic 

tumor is high, due to the large number of cell divisions necessary to reach a tumor of 

detectable size (10-12). This holds when phenomena such as stochastic drift and variations 

in fitness conferred with mutations are taken into account (13,14). Pre-existing resistance 

has been well studied in non-small cell lung cancer (NSCLC) patients treated with TKI 

targeting the epidermal growth factor receptor (EGFR-TKIs) especially for T790M, a 

common resistance-conferring mutation to first-generation EGFR-TKIs. It can develop via 

distinct evolutionary paths (5) from a reservoir a drug-tolerant persister cells (8), and has 

been found in 1–25% of patients pre-treatment and correlated with shorter time to disease 

progression (15,16). Even though some of these results have been attributed to measurement 

artifacts (17), it seems beyond doubt that pre-existing resistance occurs in some patients.

In general, a tumor’s genomic instability fosters a genetic diversity which is the underlying 

driver for its heterogeneity, which in general leads to inferior outcomes when treated with 

targeted agents. This is not restricted to EGFR/EGFRT790M, but can be observed in a variety 

of activating mutations and resistance mechanisms, as recently comprehensively reviewed 

(18-20). It has been demonstrated that allelic frequencies of specific mutations compared to 

the abundance of the activating EGFR mutation can predict greater tumor volume response 

(20,21). Piotrowska et al. recently also showed that EGFRT790M-positive and -negative 

clones do co-exist in patients, and that the changes in their relative abundance reflects the 

response to various targeted therapies (22).

Another path to resistance is through evolution from drug-resistant “persister” cells (23,24), 

which has been shown to lead to resistance to EGFR-TKIs via the T790M mutation in vitro 
(5,8). While the evolution of acquired resistance is being thoroughly investigated in vitro, 

little is known about its prevalence or importance in vivo. There is a continuing debate over 

the importance of pre-existing versus de novo resistance as the predominant cause of 

progression in patients on targeted therapy, and there is little clinical evidence to support one 

hypothesis over the other. One of the main reasons for this uncertainty is the fact that 

biopsies only provide a limited window, in space as well as in time, into the process of 

resistance development and are unlikely to detect small populations of resistant clones in 
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vivo. Positron Emission Tomography enables imaging of certain drug targets directly (25), 

though imaging of microscopic cell populations in patients remains infeasible.

The aim of this work is to provide an estimate of the size of the resistant and persister 
populations in EGFR-mutant lung cancer patients during treatment with TKIs. We propose a 

general model and two restricted models describing only pre-existing resistance and only de 
novo resistance. The goal is to estimate the sizes of these populations in vivo based on the 

macroscopic behavior of tumor burden, making as few assumptions as possible about the 

mechanisms of resistance themselves. We apply the models to tumor volume trajectories of 

NSCLC patients undergoing treatment with EGFR-TKIs and progressing with a T790M 

mutation.

Materials and Methods

Patient population and data acquisition

We identified metastatic EGFR-mutant patients enrolled on prospective studies treated with 

erlotinib at our institution between 2006 and 2014. All patients had a pathologically 

confirmed diagnosis of stage IV adenocarcinoma and the following characteristics:

• intra-thoracic progression, as defined by Response Evaluation Criteria in Solid 

Tumors (RECIST) 1.1 guidelines (26), at site of previous disease, to ensure a 

complete tumor trajectory pre-treatment as well as post-progression

• measurable growth of at least one intra-thoracic lesion while on erlotinib, using 

3D volume delineation as described below

• presence of EGFR T790M on clinical molecular profiling of tumor biopsy at 

progression

• Absence of other treatments during the observation period

All lesions were segmented on all CT slices to arrive at a 3D volume estimate. Contouring 

was performed using clinically commissioned software for radiation treatment planning 

(MiMvista Corp, Cleveland, OH, USA). Small nodules surrounded by lung tissue were 

contoured using a low threshold (−400HU), while larger primary tumors were contoured 

according to clinical standard using soft and lung tissue windows as appropriate. Complex 

lesions invading the mediastinum or chest wall were contoured and reviewed by a radiation 

oncologist.

The conversion of tumor volume to cell number was done based on experimental 

observations in human NSCLC (27). Based on this work the average tumor cell density was 

calculated to be 2.8*108/cm3. While this parameter can vary from patient to patient, it does 

not impact the results of this study, as is further discussed below.

As we fit parameters to tumor growth representing volume changes by several factors, the 

relative difference in contouring error between small and large lesions can become 

important. To account for this fact we assumed a segmentation error of ±1mm on the entire 

volume surface, i.e.
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volume error = 2 ⋅ 4
3π d + 1

2
3
,

where d is the diameter in mm along the longest axis of the lesion. This error estimate is 

designed to attribute a larger relative error to small tumors compared to larger ones. For 

example, a 1cm nodule in the lung would be attributed a 25% volume error.

Models describing the temporal evolution of resistance

Resistance can be conceived of in two fundamentally distinct ways: as pre-existing 
resistance stemming from sub-clones already present at initiation of therapy, or de novo 
resistance, acquired during therapy through evolution of drug-tolerant persister cells (4,5,7). 

We have implemented these two approaches as special cases of a general model, using a 

system of ordinary differential equations as outlined in the Guide to Model Equations and 

Assumptions section.

The de novo approach, represented by our persister-evolution model, assumes a sub-

population of drug-tolerant cells that grows slowly in the presence of TKIs and can 

transform into resistant cells. The pre-existing resistance approach assumes an already 

completely resistant cell compartment at treatment start, and no persister population. The 

purpose of this model simplification to two special cases is a reduction in the number of fit 

parameters from eight (general model) to 5 (pre-existing resistance) and 7 (persister-

evolution).

Sequential Model Fitting Process and Data Analysis

For each tumor we extracted a tumor volume trajectory from patient CT scans, starting 

before treatment with erlotinib throughout progression until discontinuation of erlotinib. We 

excluded data post-progression in which the patient was no longer on erlotinib, and similarly 

before initiation of treatment if the patient received another drug. The model parameters 

were sequentially fit to the tumor volume trajectory according to the following procedure 

(for more details see supplementary Figure 1).

First, the post-progression growth rates of the resistant population (λR) and the pre-

treatment growth rate (λS) were fitted using only the relevant subset of the CT scans during 

either regrowth or pre-treatment respectively. The underlying assumption here is that the 

observed macroscopic growth in these periods is representative of the sensitive and resistant 

population sizes and their growth rates. In cases where only one pre-treatment scan was 

available, λR was assumed to be the same as λS. This is a reasonable assumption for two 

reasons. First, there is a trend towards correlation between the two, as described in the 

results. Second, the last pre-treatment CT was on average only 18.5 days before the start of 

erlotinib, i.e. an erroneous growth rate would only affect a short period of time.

Since we model tumor growth using the Gompertz formalism, we convert the growth 

parameters (λ) into volume doubling times pre-treatment (VDTpre) and post-progression 

(VDTpost) for illustration purposes. The volume doubling time is not constant for Gompertz 

growth and decreases with increasing size. Consequently, we quote the normalized volume 
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doubling time, which is the doubling time of the tumor at a size of 1cc, to compare growth 

of tumors of different sizes. This normalized volume doubling time is calculated by solving 

the un-modified Gompertz growth equation

dV
dt = λ log K

V V

for a given growth parameter λ.

With VDTpre and VDTpost determined, the remaining parameters were sequentially fit to 

predict a complete tumor volume trajectory as a function of time using a weighted least-

squares formalism. A detailed description of the sequential parameter fitting process for an 

example patient is outlined in the supplementary material (see supplementary Figure 1). 

Estimation of parameters and their uncertainties was implemented using the Levenberg–

Marquardt method using the lmfit package in Python3.5. The workflow and an example 

patient are shown in the results section.

Guide to Model Equations and Assumptions

Tumor sub-populations can be modeled in a variety of ways, typically either stochastically 

as birth-death processes, or deterministically as systems of differential equations (28), and 

analytical expressions can be found for both approaches (29,30). We describe the evolution 

of tumor sub-populations using a system of ordinary differential equations (ODEs), similar 

to previous approaches (28,30,31). The three compartments represented are drug-sensitive 

cells NS, drug-tolerant persister cells NP and the resistant compartment NR.

A general model describing the dynamics of these compartments is depicted in Figure 1. 

Cells in the drug-sensitive, persister and resistant compartments grow according to the 

Gompertz model with the growth rates λS, λP and λR, respectively. Ntotal represents the 

total number of cells and the capacity K is set to 4.09*1012 cells and constant, derived from 

data of untreated NSCLC cancer patients (32). The robustness of the results towards these 

assumptions is evaluated and discussed further below. The interaction of the cell 

compartments via the Ntotal term in the denominator of the Gompertz growth formulation 

(see Figure 1) leads to competitive release, i.e. the accelerated emergence of the resistant 

clone as soon as it faces less competition from other compartments (33-35).

Cell loss, i.e. tumor shrinkage, is modeled according to Norton-Simons dynamics (36), i.e. 

proportional to the growth rate, and is a summary term including cell loss through apoptosis 

as well as other pathways. This is implemented using the cell loss term featuring the cell loss 

parameter β and the drug plasma concentration C(t). All patients included in this study 

received a daily oral dose of 150mg erlotinib, and we modeled plasma concentrations based 

on measured patient levels for this schedule (36,37). Drug pharmacodynamics are described 

using a one-compartment model, with an exponential decay from a maximum concentration 

Cmax of 1.136 (μg/mL) with a half live t1/2 of 20 hours. Lastly, the persister population NP 

undergoes a transition to the resistant compartment with a compound mutation probability μ. 

Note that this compound mutation probability differs from mutation probabilities in birth-

death models in the sense that it is applied to the net growth, and not to each cell division in 
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a continuous birth-death process (38). Under these assumptions the general model including 

persister-evolution and pre-existing resistance takes the form of the coupled set of ODEs 

displayed in Figure 1.

The general model in Figure 1 contains eight parameters, three population sizes and their 

corresponding growth rates, the cell loss parameter β and the compound mutation 

probability μ. Fitting such a large number of parameters simultaneously requires high-

dimensional data, which is arguably not the case for the tumor growth, regression and 

recurrence trajectories at our disposal. To enable model fitting from the tumor trajectory data 

collected from our patients, we employ two strategies. First, we fit the parameters 

sequentially, using assumptions about the dynamics of the underlying populations (see 

methods and supplementary material for a detailed description). Second, we reduce the 

general model to two special cases, involving either only pre-existing resistance or only 
persister-evolution. These strategies allow us to arrive at robust parameter estimates.

The model assuming only pre-existing resistance assumes no persistent cells (NP = 0), and 

therefore a sizeable pre-existing resistant compartment has to exist at treatment initiation to 

explain the re-growth trajectory. The model assuming only persister-evolution conversely 

assumes no resistant cells at treatment start (NR(t=0) = 0), i.e. the all resistant cells are 

created through mutation induction from the persistent compartment after treatment 

initiation.

Results

Clinical Patient Data & Model Fitting

We identified 20 intra-thoracic lesions in 17 patients and analyzed a total of 164 chest CTs 

(median 7 per patient, interquartile range 5.5–8.5) obtained at a median interval of 8 weeks. 

The observation period for every patient was determined by the time to RECIST 

progression: the median progression free survival (PFS) in the population was 12.5 months, 

ranging from 4.2 to 37.3 months, comparable to published EGFR-mutant populations treated 

with TKIs (39). The average lesion volume before commencement of erlotinib was 25.1cc. 

For three patients no pre-treatment volumes could be estimated, in one case due to missing 

data, in the others due to post-obstructive pneumonitis that rendered exact volume 

delineation infeasible. These are excluded from the analysis.

An example patient and model fit is shown in Figure 2: the top part (Figure 2A) shows a 

sub-set of the available CT scans (pre-treatment, during response and after progression) for 

one patient. The model fit for the persister evolution model is demonstrated in Figure 2B. 

The TKI-sensitive population (blue line) first dominates the population, but shrinks quickly 

after treatment initiation, the persister population stays almost stable, while the resistant 

population (red line) takes over and repopulates the tumor to match the observed progression 

trajectory.

Figure 2C demonstrates the case of only pre-existing resistance and no persister population. 

Figure 2D shows the parameter estimates for the volume doubling time pre- and post-
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treatment (VDTpre, VDTpost), and the estimates of the persister and resistant fractions at 

treatment initiation, in this case 0.05 (pre-existing resistance) and 0.11 (persister-evolution).

Figure 3 shows data and model fits for two additional patients, one with average PFS and 

rapid growth (PFS 8 months, 50 days VDT, Figure 3A/B) and one with long PFS and slow 

growth (PFS 36 months, 327 days VDT, Figure 3C/D).

Tumor Growth

Our model fits tumor growth up to ten years, as evidenced by Figure 3C/D. The pre-

treatment volume doubling times observed across the cohort averages 88 days (median 73 

days, range 35–261). Post-treatment doubling times were longer with an average of 178 days 

and a median of 127 days [31–484], though the difference did not reach statistical 

significance (p=0.085, paired t-test). Assuming normally distributed tumor volumes and 

growth rates, there was a strong correlation between the tumor volume pre-treatment and the 

observed volume doubling time (p = 0.005), i.e. larger tumors tended to grow more slowly.

Table 1 shows growth rates pre-treatment and post-progression, together with PFS for all 

tumors. We found a strong correlation between PFS and the post-treatment doubling time 

(Spearman’s rank p= 0.005). Three of the patients had two lesions contoured each (marked 

with symbols in the table). The growth rates of lesions within these patients were more 

homogeneous than between different patients, the variance being a factor 6 lower than in the 

group as a whole. It is not possible to draw definite conclusions from this observation, but it 

indicates that in this cohort different lesions within a patient grow at similar rates.

Population Sizes for either only Pre-Existing Resistance or only Persister-Evolution in 
NSCLC Patients during Treatment with Erlotinib

Figure 4 shows the model predictions for the size of the resistant population (top) and their 

error estimates (bottom) at the initiation of treatment with erlotinib for the model assuming 

only pre-existing resistance. The fraction of pre-existing resistance (red symbols) ranges 

from 10−4 to 0.6, the median across all tumors is 5.3%. The errors estimated in the lower 

part are expressed as percentage of the total clonogenic population and are on the order of 

~1% for most tumors. The error relative to the initial resistant fraction itself is ~10% for 

most tumors, for details see supplementary Figure 2A.

For 5 tumors the predicted fraction of pre-existing resistance is above 20%. These are 

tumors that demonstrated very little volume decrease and slow growth of the tumor post 

progression, but still exhibited short progression-free survival. Consequently, the model 

predicts a very high fraction of pre-existing resistance as likeliest explanation of the 

observed tumor volume trajectory.

For the persister-evolution model, there is no single optimal choice for the underlying 

parameters, because of the larger number of variables to fit: the fraction of persister cells NP, 

their growth rate λR, and the compound mutation induction probability μ. While the size and 

growth rate of the persister population is not known exactly in a patient, it has been observed 

in vitro that the persister population grows with four times the volume doubling time of the 

untreated population (5). Based on these results we conducted a robustness analysis and 
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assumed a range of three values for the growth of the persister population: two, four or eight 

times slower than the tumor before therapy. We further explore a range of mutation 

induction probabilities μ, from 8 down to 10-2. For these combinations we did fit the fraction 

of persister cells that would result in the observed tumor growth trajectory. The results of 

this parameter exploration are shown in Figure 5, with the colored panel indicating the 

goodness of fit achieved for a given choices of persister growth rate λP and compound 

mutation induction probability. The panels to the left and right demonstrate examples of the 

best fit for the indicated combination of parameter choices. This demonstrates that 

depending on the growth rate of the persister population, no viable solutions can be found 

below a specific mutation induction probability. If μ falls below 0.05, the observed 

trajectories can no longer be explained by the model. The mutation induction probabilities 

above 1 are not realistic, as they indicate that the rate of resistant cells being created is larger 

than the net tumor growth, leading to a declining persister population.

General Model: Mixed Persister-Resistant Population

As demonstrated above, assuming either only pre-existing resistance or only persister-

evolution leads to unrealistic parameter estimates. The former leads to very high estimates 

(>0.2) for the fraction of pre-existing resistance, while the latter leads to very high estimates 

for the mutation induction probability (above 0.05).

For the general model we assume that the persister population grows with four times the 

volume doubling time of the untreated population, as observed in vitro (5), and that the 

compound mutation induction rate is 10−7, based on analyses of the rate of accumulation of 

sub-clonal mutations in lung adenocarcinoma (40). We explored the latter assumption 

further in a detailed robustness analysis, see below.

Using this general model we estimated the size of the resistant population at the beginning 

of treatment, which leads to the mixed population size estimates shown in Figure 6A, 

together with their error estimates (Figure 6B) and detailed growth curves for two tumors 

(Figure 6C). The fraction of pre-existing resistance is on average less than half the size 

compared to the case of pre-existing resistance only, with a median of 0.027 (red line), and a 

total volume fraction <0.1 for all tumors. In this scenario the function of the persister 

population is to maintain the tumor volume during the response period, while the resistant 

population causes the regrowth at progression and beyond. A good example for this is tumor 

#20, in which the fraction of pre-existing resistance is reduced by several orders of 

magnitude in the combined model. This also leads to the largest error estimate for this tumor 

relative to the population size (see supplementary Figure 2B), the error expressed as fraction 

of total clonogens is however only 2% (see Figure 6B). This tumor had little volume 

reduction after TKI initiation (~20%) but a relatively long time to progression of 16.8 

months. In the pre-existing resistance only case, the model was forced to assume a large 

fraction to account for the small volume reduction, while in the combined model the 

persister population can explain this behavior.

The dynamics of relapse are primarily determined by the initial fraction of resistant cells and 

their growth rate (7). Our cohort shows a strong correlation of the time to progression with 

post-treatment tumor growth rate, though not with the estimated fraction of resistant cells. 
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This indicates that among those two factors the growth rate of the resistant population is the 

main determinant for time to progression.

Discussion

Pre-Existing Resistance, Persister-Evolution & the General Model

Assuming solely persister-evolution leads to high estimates for the mutation induction 

probability, many orders of magnitude higher than those found in the literature ranging from 

10−7 to 10−11 (12,41,42). These mutation induction probabilities are a rough estimate within 

the confines of the model presented, but indicate that in the tumors analyzed in this study it 

is unlikely that acquired resistance alone was responsible for progression. Some extent of 

pre-existing resistance must have been present to explain the observed tumor volume 

trajectories. This is also in line with observations in patients that TKI-resistant clones share a 

common clonal origin and clonal divergence most likely occurred before initiation of 

treatment (43,44).

For the case of only pre-existing resistance, the model produces large population estimates 

for pre-existing resistance in some tumors, up to 60% for tumor #17 (see Figure 4). The 

reason for these large estimates is that there is no persister population that can explain 

trajectories with little volume shrinkage. If this would indeed have been the case, such a high 

fraction of pre-existing T790M cells would certainly have been identified by clinical 

genotyping, supporting the notion that this model is invalid.

Nevertheless, even though we used a sequential parameter fitting process restricted by 

several assumptions (see supplementary material for detailed example), we could initially 

not parameterize the general model because one tumor trajectory does not contain enough 

information to fit the required parameters for two sub-populations. But with the knowledge 

that the persister population alone cannot explain the observed progression trajectories with 

realistic mutation induction rates, we set the mutation induction probability to a realistic 

value (10−7) and estimated the amount of pre-existing resistance that would be required to 

explain the observed clinical data. A robustness analysis (see below), shows that our results 

do not critically depend on this assumption. In the general model the function of the 

persister population is to maintain the tumor volume during the response period, while the 

resistant population causes the regrowth at progression and beyond, as illustrated by the 

examples in Figure 6.

The relative errors for the estimated resistant population are on the order of 10–50% for 

many tumors (see supplementary figure 2), which is small relative to the total clonogen 

number (see Figure 6B). This exemplifies that naturally we cannot estimate the size of these 

populations very accurately based on microscopic growth dynamics. However, it confirms 

that based on the model and reasonable assumptions, a pre-existing resistant population of 

this order of magnitude is necessary to explain the observed recurrence dynamics.

Even though the estimated pre-existing resistant fraction is small, small enough to be 

undetected in a biopsy that samples only a few locations in the tumor, we do predict a finite 

amount of resistance present at treatment initiation for all patients in the cohort. However, 
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within our model it is also conceivable that progression occurs exclusively due to resistance 

arising after initiation of treatment (de novo), even though this was not observed in our 

cohort. This could be the case in patients that have very long progression-free survival, but 

nevertheless a rapidly growing resistant population, i.e. a tumor that stays radiographically 

stable over a long period of time and then grows explosively (volume doubling time <30 

days) without changes in treatment.

Co-Existence & Fitness of the Resistant Sub-Population

Our results indicate that a sizeable resistant and persistent sub-population co-exists with the 

drug-sensitive population at the initiation of treatment, which has recently also been shown 

in several EGFR-mutant patients (22). We did observe a trend towards slower post- than pre-

treatment growth, though the difference did not reach statistical significance. This would 

indicate that the resistant T790M+ population is at a slight fitness disadvantage, but could 

also be connected to the fact that the combined growth of persister and resistant populations 

can appear slower than for a purely resistant population. Slightly deleterious mutations can 

get fixed in the population even if they reduce the total fitness value of the tumor, if they 

emerge early enough (45). Leder et al. measured the fitness of different resistance-conferring 

mutations to different TKIs, and showed that the resistance-conferring mutations decreased 

fitness in the majority, resulting in growth rates 5–40% lower than in the sensitive population 

(46). This tendency of the resistant sub-population to exhibit a slower growth rate is in line 

with other clinical observations (47) and the phenomenon of disease flare after TKI 

discontinuation (48).

However this observation might not be applicable to other oncogenic drivers, such as 

NSCLC exhibiting mutations in the anaplastic lymphoma kinase (ALK). In experiments 

studying the growth rates of ALK-positive cells lines during treatment with Alectinib, it has 

been observed that also in the absence of drug, resistant cell populations can have higher 

growth rates than their parental cell lines (49).

Our model only aims at predicting the fraction of persister and resistant cells at the time of 

treatment initiation. The size of the T790M-positive sub-population at that time is dependent 

on the interplay of several complex processes such as clonal selection, immune system 

escape and random drift (50), which are not described by our model. Nevertheless, from 

time of TKI initiation onwards, our three-population model is a valid description of the 

underlying dynamics, as the selection pressure exerted by the drug is strong enough to 

effectively separate the population into three compartments: sensitive – persister – resistant.

The co-existence and relative fraction of pre-existing resistance predicted by our model are 

in line with models of neutral clonal evolution. Williams et al. (40) have demonstrated in a 

pan-cancer cohort that within-tumor clonal dynamics are not dominated by strong selection 

but are consistent with neutral evolutionary dynamics, meaning that individual sub-clones 

with distinct mutational patterns (such as T790M) will grow at similar rates, coexisting 

within the tumor for long periods of time without outcompeting one another.
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Tumor Growth

The results show that the Gompertz growth formalism is able to simulate the observed size 

of lung tumors in patients over long periods of time and multiple orders of magnitude, as 

illustrated in Figure 3C/D. This is an important observation, as we also use the Gompertz 

model to extrapolate down to microscopic populations, which are not observable by current 

imaging techniques. The Gompertz model incorporates an increased growth rate for small 

cell populations and is widely applied in cancer growth modeling (51,52). We have recently 

shown that this model describes the growth of NSCLC better than the exponential model 

over all stages of disease (32). Results using an exponential growth model are discussed 

further below. It can however be argued that all sigmoidal growth models exhibiting 

decreasing growth rates, such as the Gompertz, Logistic and Bertalanffy approaches, show 

better agreement with experimental data than exponential growth (51) and would yield 

similar performance here. Furthermore, other authors have used the assumption of a fixed 

growth rate and a patient-specific carrying capacity to express inter-patient variation in 

observed growth (53). We have chosen a constant carrying capacity based on our previous 

work (54), though it is likely that a similar fit to the observed trajectories can be achieved 

using a variable carrying capacity.

We demonstrate a significant correlation of post-treatment growth rate to outcome, which 

has been observed clinically in lung cancer patients (55,56), but no such correlation was 

observed for the initial fractions of pre-existing resistance. This underscores again that while 

we are confident that a sizeable population of pre-existing resistance exists in these patients, 

on the order of 0.01 to a few percent of the total, its exact size is subject to the inherent 

stochastic nature of interacting cell populations and therefore difficult to estimate using our 

simplified model.

Robustness towards Assumptions and Limitations

The population estimates are robust towards the exact choice of mutation induction rate. 

Varying it from 10−3 to 10−11 does not change the predicted fraction of pre-existing 

resistance (see supplementary figures 3A/B). Even assuming a very high mutation induction 

probability does not yield enough resistant cells produced by the persister population in such 

a short time, and the pre-existing compartment has to explain the clinically observed 

progression trajectories (see supplementary figure 3C/D for two examples). If the resistant 

compartment would be populated by many separate mutation events from the persister 

population, it would also contradict genomic data that the resistant population usually comes 

from a single clone that transformed, not the accumulation of many clones that transformed 

independently over time (43,44).

To test the robustness towards the assumption of Gompertzian growth, we have repeated our 

entire analysis with an exponential growth model instead. This leads to even higher 
estimates of pre-existing resistance, as small populations grow with the same rate in the 

exponential model, while they grow faster in the sigmoidal approaches.

The number of CT scans available impacts our ability to perform the sequential model fitting 

process outlined in the methods. To derive the growth rate and size of the resistant 
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compartment from the post-treatment scans, at least one scan after the detection of 

recurrence (according to RECIST criteria) is beneficial, but is often not clinically available.

The estimated fractions are also independent of the tumor cell density (we assumed 

2.8*108/cm3). There is a range of tumor cell densities reported in the literature, from 105 to 

109 (57,58). However, a different choice of density would only shift the tumor trajectory on 

the log plots displayed, but not affect the VDTs or persister and resistant fractions estimated 

by the model. It would however impact estimates of the absolute numbers of persister and 

resistant cells, and relative changes in percentage of tumor cells versus stroma. This makes 

the results also independent of systematic contouring errors. To test this we contoured 

several patients using soft-tissue as well as lung windowing, leading to different tumor 

volumes but without effect on the resulting parameters and fraction sizes.

We have simplified the known heterogeneity of tumors to only three cell compartments, 

representing resistant, persister and sensitive cells. More realistic descriptions that include a 

spectrum of drug sensitivity, growth rate, and mutation probability, would require 

significantly more compartments. The available macroscopic patient data is insufficient to 

inform such a detailed microscopic description.

We have restricted the study population to patients progressing with a confirmed T790M 

mutation, to make the sample homogeneous regarding the resistance mechanism. The 

modeling framework could also capture the dynamics of other, different resistance 

mechanisms, such as the transition to small-cell lung cancer observed clinically (1). A 

possible limitation is the retrospective nature of the study, the number of tumors, and the fact 

that we only used patients in which we could measure tumor volume increase during 

treatment with erlotinib. While this might have skewed the results towards more indolent 

tumors, it does not change our conclusions.

Measuring Persister Populations and Pre-Existing Resistance in vivo

There have been studies measuring the fraction of persister and resistant cells in vivo. It has 

been shown that Fluorothymidine (FLT) PET can detect MET-mediated resistance to EGFR 

TKIs in NSCLC (59). FLT PET, which has been shown to be a stable marker of cell 

proliferation, has generally emerged as a predictor of response to EGFR TKIs in NSCLC 

(60). The existence of a FLT PET signal after initiation of TKIs hints at the presence of a 

sizeable population of cells that is still proliferating, attributable to the persister/resistant 

population. Even though FLT PET predicts time to progression, it is not trivial to discern if a 

given FLT signal comes from a small population proliferating quickly, or a larger population 

proliferating slowly. Therefore, the model described above could be used to transform semi-

quantitative input from imaging modalities such as PET to quantitative estimates for the size 

of the persistent and resistant cell populations and estimate the temporal dynamics in 

between imaging timepoints. Imaging the dynamics of resistant sub-populations in patients 

could also be used to validate the model in itself and enable prediction of patient-specific 

tumor trajectories based on early tumor imaging.

Liquid biopsies can overcome some of the limitations of traditional tissue biopsies, and 

lately significant advances have been made specifically in using plasma-based assays to 
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detect T790M mutations (19). They have the potential to become a useful clinical tool to 

tailor therapy to the specific patient characteristics and could provide the patient-specific 

input to parameterize models such as the one presented here.

Possible Applications: Exploiting Temporal Evolutions of Subpopulations

Insights into the temporal evolution of resistant sub-populations could yield useful 

information to design therapeutic approaches. For example, knowledge about the size of 

sub-populations exhibiting resistance can provide useful information to guide the timing of 

localized therapeutic interventions, such as radiotherapy. The recent success of adding 

Durvalumab after chemo-radiation in locally-advanced NSCLC has shown how impactful 

the integration of new systemic agents can be for earlier stages of disease (61). However, the 

fact that the addition of Durvalumab yielded an increase in progression-free survival in all 

patient subgroups except EGFR-mutant tumors highlights the fact that strategies to 

incorporate EGFR-TKIs into the treatment of locally-advanced disease are urgently needed.

There are multiple trials exploring various approaches of combining targeted agents with 

radiation (62), in stage III (NCT01553942, NCT01822496) as well as metastatic disease 

(NCT02314364). Especially for locally-advanced NSCLC, there are remaining questions 

that can be comprehensively investigated using computational modeling, the best example 

being the length of the TKI induction period before starting concurrent chemo-radiation. 

There are obvious trade-offs involved: the shorter the induction period, the less we risk 

competitive release of a dormant sub-population and production of new resistant clones from 

persister cells. Some induction however is beneficial, as the cell kill in the sensitive sub-

population makes the tumor more likely to be controlled by concurrent chemo-radiation and 

reduces the field size leading to less toxicity and other benefits for the patient. To 

quantitatively explore such trade-offs using realistic parameters, our model or similar 

approaches (63), need to be combined with traditional radiation biology models to estimate 

tumor control probabilities of multi-modality regimen in an integrated fashion.

Conclusion

We have applied two separate, simplified resistance models to clinically observed tumor 

volume trajectories of EGFR-mutant patients treated with erlotinib and progressing with a 

T790M mutation. Neither a persister-evolution, nor a pre-existing resistance model alone 
could explain the observed progression trajectories. Only persister-evolution would require 

unrealistically high mutation induction rates to explain the observations and would 

contradict other studies showing the common clonal history of resistant clones. Only pre-

existing resistance leads to unrealistically high fractions of resistant cells at treatment 

initiation for some patients in the cohort, which is not in line with pre-treatment biopsies. 

However, combining pre-existing resistance with persister cells can explain the observed 

tumor volume trajectories, and provides robust estimates of the pre-existing resistant fraction 

in EGFR-mutant lung cancers that progress due to a T790M mutation.

The proposed model can be extended to other resistance conferring mutations and oncogene-

drivers and has the potential to inform combination approaches such as the timing of 
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radiotherapy in oligometastatic disease, the integration of targeted agents as induction 

therapy with radiation in the locally advanced setting, or combinations of targeted agents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Findings quantify pre-existing resistance and persister cell populations, which is essential 

for the integration of targeted agents into the management of locally-advanced disease 

and the timing of radiotherapy in metastatic patients.
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Fig 1. 
General Model and system of differential equations describing the temporal evolution of all 

subpopulations, including both persister-evolution and pre-existing resistance.
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Fig 2. 
Schematic overview over the model fitting and parameter extraction process. A. tumor 

volume is extracted by contouring serial CT scans. B. persister-evolution model, C. pre-

existing resistance model, both in logarithmic scale. D. overview over the extracted 

parameters and their range. Error bars represent volume-dependent contouring error as 

described in the methods section.
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Fig 3. 
A/C: patient with a PFS of 8m, and a fast-growing tumor (VDT 50 days). C/D: patient with 

long PFS of 36.8m, and very slow tumor growth with a doubling time of 327 days. Only 

persister-evolution model depicted on the left, only pre-existing resistance on the right.
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Fig 4. Population sizes expressed as fractional volume at treatment start assuming only pre-
existing resistance.
Top: Fraction of pre-existing resistance in logarithmic scale for 17 tumors, ordered by 

fraction of pre-existing resistance. The labeling corresponds to Table 1. Bottom: error 

estimates given by the fitting procedure for the fractional volume, displayed as fraction of 

the total clonogen number. To view the error expressed as percentage of the initial fraction 

please consult the supplementary material.
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Fig 5. Parameter estimation for the persister-evolution model.
The panel represents results for three choices of persister growth rate λ (1/2, 1/4 and 1/8 of 

the untreated growth rate), and several choices of compound mutation induction probability 

ranging from 10−2 to 8. The colorbar represents the goodness of fit quantified by the 

residuals of the least-square parameter optimization in logarithmic scale.
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Fig 6. Population sizes expressed as fractional volume at treatment start for the combined model
A. Fraction of pre-existing resistance (circles) and of persister cells (squares) in logarithmic 

scale for 17 tumors. Dotted lines represent median of persister and resistant fraction among 

all patients. The order of the tumors is the same as in Figure 5 B. Error estimates for the 

fractions of pre-existing resistance and persister cells, displayed as fraction of the total 

clonogen number. For additional details regarding the sequential fitting process see 

supplementary material C. Combined model growth curves for tumors 2 and 12
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Table 1.

Growth Rates and progression free survival (PFS) for all patients sorted by PFS. Missing pre-treatment growth 

rates are due to availability of only one scan pre-treatment. Numbers in brackets reflect the error in the 

parameter estimate, (−) indicates an uncertainty in volume doubling time (VDT) of < 0.1 day. Note the 

intervals are asymmetric as the error in the growth rate affects the VDT in a non-linear fashion. The symbols 

(¶,§,○) mark tumors in the same patient.

Tumor
number

VDTpre [days] VDTpost [days] PFS Tumor
number

VDTpre
[days]

VDTpost [days] PFS

1 61.4 (−) 200.2 (−) 4.2 11 - 344.3 (333.8,355.5) 12.1

2 87.9 (74.8, 107) 37 (34.4, 39.9) 4.3 12 - 132.2 (128.8, 135.7) 12.8

3§ - 103.1 (100.6, 105.8) 4.4 13 - 328.5 (229.8, 576) 13.8

4§ - 85.4 (72.3, 104.3) 4.4 14 - 483.7 (−) 16.8

5 - 36.3 (−) 5.8 15 - 99.6 (92.6, 107.7) 20.3

6 - 82.6 (−) 7.5 16 84.1 (−) 243.5 (−) 22.9

7○ 96.7 (−) 30.6 (−) 8.6 17 - 355.6 (334.9, 379.1) 25.3

8○ 35.2 (−) 72.3 (−) 8.6 18 260.5 (−) 327.4 (−) 36.8

9 - 39.9 (39.4,40.3) 9.3 19¶ 45.3 (−) 122.3 (−) 37.3

10 - 209.3 (195.6, 224.9) 12.1 20¶ 35.8 (−) 216.9 (−) 37.3
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