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Abstract

Background: In randomized clinical trials (RCTs) among critically ill patients, it is uncertain
how choices regarding the measurement and analysis of nonmortal outcomes measured in terms of
duration, such as intensive care unit (ICU) length of stay (LOS), affect studies’ conclusions.

Objectives: Assess the definitions and analytic methods used for ICU LOS analyses in published
RCTs.

Research Design: Systematic review and statistical simulation study.

Results: Among the 80 of 150 trials providing sufficient information regarding the chosen
definition of ICU LOS, three different start-times (ICU admission, trial enrollment/randomization,
receipt of intervention) and two end-times (discharge readiness, actual discharge) were used. In
roughly three-quarters of these studies, ICU LOS was compared using approaches that did not
explicitly account for death, either by ignoring it entirely or stratifying the analyses by survival
status. The remaining studies used time-to-event (discharge) models censoring at death or applied
a fixed LOS value to patients who died. In statistical simulations, we showed that each analytic
approach tested a different question regarding ICU LOS, and that approaches that do not explicitly
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account for death often produce misleading or ambiguous conclusions when treatments produce
small effects on mortality, even if those are not detected as significant in the trial.

Conclusions: There is considerable variability in how ICU LOS is measured and analyzed
which impairs the ability to compare results across trials and can produce spurious conclusions.
Analyses of duration-based outcomes such as LOS should jointly assess the impact of the
intervention on mortality to yield correct interpretations.
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INTRODUCTION

Length of stay (LOS) in the intensive care unit (ICU) is a common randomized clinical trial
(RCT) endpoint used to quantify the duration of time that ICU-level care is needed for
acutely ill patients. It has several attractive qualities as an endpoint including its ease of
measurement in health records. It is also relevant to all ICU patients, in contrast to other
common nonmortal outcomes, such as ventilator- or organ failure-free days, which are most
applicable to patients with specific illnesses. Despite widespread use in RCTs, LOS and
other nonmortal, duration-based outcomes (e.g., time requiring mechanical ventilation) raise
several analytic and definitional challenges that cloud their interpretation. One such
challenge is that many critically ill patients die. As a result, the observed ICU LOS
represents a composite summary of at least two processes: the time until either a patient’s
death or discharge. Thus, investigators must consider how to handle LOS values for those
who died when comparing nonmortal endpoints between study arms. Because the truncation
of follow-up (frequently called “censoring from death”) is a post-randomization event that
may be impacted by the intervention, biased or ambiguous conclusions regarding the
interventions’ effects may result despite the randomized design (1-4).

Though statistical frameworks have been proposed to support statistical inference with
outcome data censored due to death in critical care settings (5-13) uptake of these methods
has been limited and may be challenging to implement or interpret. Therefore, in this
manuscript we sought to identify and examine the inferential consequences of different
approaches chosen by researchers to compare ICU LOS. To accomplish these aims we
performed a systematic review, conducted a statistical simulation study, and, based on our
findings, generated recommendations for reporting and analyzing ICU LOS and other
duration-based, nonmortal outcomes in RCTs.

METHODS

Systematic review

We extended a previously described database of critical care RCTs published in 16 high-
impact journals (14) by two years, such that it spanned January 2007 through June 2015. For
each trial, two abstractors identified the definition of ICU LOS provided by the authors, the
statistical methodology used to compare ICU LOS between study arms, and how the ICU
LOS distribution was reported.
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Simulation study

We designed a statistical simulation study to assess how mortality-specific responses to an
intervention could impact the statistical comparison of a duration-based outcome such as
LOS. Our simulation study does not focus on model performance or estimate precision.
Rather, we are interested in the clinical conclusions of harm (longer required duration of
critical care) or benefit (shorter duration of critical care) for a duration-based outcome in the
presence of small, potentially non-significant, intervention-associated mortality effects.
Though we refer to our simulated values as ICU LOS, any duration-based outcome is
applicable.

We outline the data generation process and our conceptual framework in the Supplementary
Digital Content online and briefly provide our rationale for analytic decisions here. First, we
designed a simulation study of LOS where an intervention would only impact the rate of
mortality, and not discharge. Though unlikely in reality, this “test tube’ approach allows us to
isolate our manipulation to only one part of the observed ICU LOS distribution, and thus
gain insight into the potential inferential consequences of each manipulation. Second, we
considered several ways to simulate hypothetical ICU LOS distributions and acknowledge
that different researchers could approach this question differently. Ultimately, for this Monte
Carlo experiment, we simulated hypothetical RCTs from a competing risks model using the
survsim package in Stata 15 with two cause-specific hazards: time-to-death and time-to-
discharge, following the methodology outlined by Beyersmann and colleagues (4, 15-17).

In our data generation model a hypothetical patient could be in one of three states at any
given time: alive in the ICU, dead, or discharged, with the latter two as absorbing states (i.e.,
we did not allow for readmissions). In all settings, the true intervention effect on the
discharge-specific hazard rate was 0 (i.e., null). Three varying intervention-associated
mortality effects were applied in the mortality-specific hazard model. These scenarios
summarize the majority of observed survival functions in published RCTs, with real-world
examples shown in Figure E1. Simulated survival functions matching those in Figure E1 are
displayed visually in Figure 1 and summarized below.

Setting 1: Null mortality effect. in this setting, there was no intervention-associated mortality
reduction (i.e., no treatment effect on mortality).

Setting 2: Constant mortality effect. in this setting, the intervention imposed a constant
effect on the mortality rate over time (i.e., proportional hazards). As a result, the intervention
impacted both early and late ICU mortality in the simulated trials.

Setting 3: Time-dependent mortality effect: in this setting, we model an intervention that
only impacts late ICU mortality. To do so, we generated data using a time-dependent effect
on the mortality rate such that there was no intervention-associated mortality reduction
during the first two-thirds of the simulated sample’s ICU LOS, but there was a constant
intervention effect on the mortality rate in the final one-third of the LOS distribution. This
setting, observed for example in the ACURASYS trial (18), reflects the possibility that a
treatment might help only the sickest patients who tend to have a longer LOS (19, 20).
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Although we simulate beneficial intervention-associated mortality effects, identical results
would manifest had we imposed the mortality reduction on the control arm. Thus, the results
of the simulation study also apply to cases of harmful intervention effects.

By restricting the impact of the intervention to the mortality rate in our data generation
process, any observed effect of the intervention on LOS must be due to the intervention-
associated mortality effects or chance (i.e., stochastic error). Such effects could arise if an
intervention extended patients’ LOS by saving them, or lengthened time-to-death (i.e.,
postponed death), because the intervention helped but did not save patients who nonetheless
die. To assess the mechanistic consequence of intervention-associated mortality effects in
the statistical frameworks identified in our systematic review, we summarize the percentage
of 1,000 Monte Carlo replicates that reported a statistically significant difference in LOS
between the intervention and comparator arms, and the direction of this effect.
Administrative censoring occurred at 30-days to reflect common follow-up periods in
published studies (14) and we used a two-sided alpha ( a)=0.05 to determine statistical
significance, which is conventional in ICU-based RCTs. Based on our review of published
RCTs (detailed in the results), we examined the following statistical approaches for
comparing ICU LOS between study arms: linear regression and a Wilcoxon rank-sum test
among all patients (ignoring mortality) and then among survivors only (stratified analysis), a
Cox Proportional Hazards model for time-to-discharge with censoring at the time of death,
ICU-free days (defined as O for a patient who died before day 30, and 30-1CU LOS for
others) and a competing risks model (as used for our data generation).

We systematically adjusted four parameters in each of the three mortality settings outlined
above. First, the control arm 30-day mortality was set to 30% or 10% (i.e., a probability of
death of 0.30 and 0.10), representing relatively high and low in-hospital mortality rates for
modern RCTs (14). Second, we imposed an absolute mortality reduction of 2.5% or 5.0%
(i.e., an average probability difference of —0.025 and —0.050) in the intervention arm. We
chose these effect sizes because they would be clinically important, and reflect actual
differences observed in published RCTs, but most critical care RCTs would fail to detect
them as statistically significant (14). Third, we examined short (e.g., median of 3 days,
interquartile range [IQR]=1.5 to 4.5) and long (e.g., median of 10 days, IQR=5to 17) LOS
distributions, guided by RCTs where LOS was the primary outcome (21-23). Finally, we
simulated the total sample size as 250 or 1,000 patients (125 or 500 patients per arm) as we
sought to examine the potential impact of small intervention-associated mortality effects in
the finite sample sizes of the vast majority of modern critical care RCTs (14, 24).

We identified 193 eligible RCTs among ICU patients from 2007 to 2015. Of these, 150
(78%) RCTSs reported a statistical test comparing ICU LOS. In 132 of these trials, ICU LOS
was specified as an a priori primary outcome (n=6) or secondary outcome (n=126).

Definition and measurement of LOS

In 70 (47%) RCTs reporting on ICU LOS, insufficient details were provided to determine
how ICU LOS was measured. Of the remaining 80 (53%) RCTs, at least the start or the end
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time was reported by the authors (n=54, 36%), or one of these times could be reasonably
deduced based on the descriptions of the study design or other trial outcomes (n=26, 17%).
In 70 trials with reported or deducible “start times,” LOS measurement began at: a) the time
of ICU admission (47%), b) the time of randomization or trial enroliment (34%), or c) the
time of intervention initiation (7%). In the remaining 11% of trials, more than one start time
was reported or two or more of these times appeared to overlap. In 70 trials with reported or
deducible LOS “end times,” these times were specified as: a) ICU discharge and/or death
(93%), or b) time of critical illness resolution (7%). As a result, current ICU RCTSs report
LOS as one of six distinct durations. The reported units of LOS also varied, with 60 trials
(40%) reporting LOS in 24-hour periods without rounding to the nearest day, 77 trials (51%)
reporting LOS as “days” without clarifying if days were calendar days or 24-hour periods,
and 13 (9%) reporting LOS in hours.

Statistical analysis of ICU LOS

The analytic approach used by authors to compare ICU LOS between trial arms was
generally poorly reported. Based on the published trial reports we concluded that 92 (61%)
RCTs compared ICU LOS between study arms in all patients without discussion or
statistical consideration of mortality. An additional 13 (9%) RCTs assessed a stratified
sample of survivors, and 4 (3%) reported both stratified and all patients results. The
remaining 41 (27%) trials reported at least one approach that we infer to have been chosen to
account for the potential effects of mortality. These approaches, summarized in Table E1,
may be categorized as follows: (a) an event-free outcome (e.g., ICU-free days), (b) changing
the value of LOS to be the longest LOS for patients who die, or (c) using a time-to-event
(e.g., time-to-discharge) model.

Simulation study

In setting 1, where the true treatment effect for both the mortality and discharge hazard was
0, we observed a similar percentage of replicates concluding harm or benefit across all
approaches, aligning nearly symmetrically with the two-sided a value of 0.05/2 (Figure 2
and E2). That is, the presence of high mortality (and thus censoring) alone did not impact
the results of any statistical method. In contrast, in settings 2 and 3, when there was a true
simulated beneficial intervention-associated mortality effect, but none on time-to-discharge,
we observed disparate conclusions between approaches (Figure 2, E2-E5). Thus, only
simulations with a differential mortality rate due to the intervention impacted clinical
conclusions regarding ICU LOS.

The difference in the percent of replicates suggesting harm or benefit alongside the
underlying hypothesis that is tested by each analytic approach showed that an intervention
can impact ICU LOS comparisons through three mechanisms: (i) incidence, (ii) duration
(i.e., distribution of observed LOS), or (iii) the rate of an event (i.e., discharge). For
example, approaches that compared observed LOS durations (i.e., rank-sum and linear
models) were the most susceptible to misleading conclusions of harm in our simulated
settings. Specifically, both the linear regression models as well as the Wilcoxon rank-sum
tests identified longer overall LOS times (suggesting a negative or harmful effect) in the
intervention arms that had reduced mortality. In contrast, the competing risk model showed

Med Care. Author manuscript; available in PMC 2020 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Harhay et al.

Page 6

that the declines in mortality we imposed resulted in a statistically significant increase in the
probability of discharge in several replicates. The increased incidence of discharges in the
intervention arm corresponded to fewer individuals dying, and thus more ICU-free days. As
a result, the competing risk and ICU-free days approach to comparing LOS more frequently
suggested a beneficial treatment effect. The time-to-event (discharge) analyses with
censoring for death produced the lowest rates of perceived harm or benefit. These results
reflect the increase in the incidence of discharge due to the beneficial intervention effect on
mortality, while there was no direct effect on the rate of discharge in our data generation.

The magnitude of the intervention-associated mortality effects on the conclusions from
different approaches to comparing ICU LOS in the presence of differential mortality
depended on the total sample size, magnitude of the mortality effect, and time dependency
of the mortality effect (i.e., constant versus time-dependent intervention effects) (Figure 2,
E2-E5). When the mortality intervention effect was constant (setting 2, Figure 1), we found
that summary comparisons of the entire sample (which ignore differences between deaths
and discharges) were most likely to suggest harmful (longer) LOS treatment effects, with
small differences between parametric and non-parametric comparisons. While we found
high rates of harmful LOS treatment effects when only survivors were evaluated in setting 2,
this effect was most pronounced when the intervention-associated mortality effect was
isolated to the sickest patients (setting 3, Figure 1).

DISCUSSION

This study demonstrates considerable variability in how ICU LOS is measured and analyzed
in critical care RCTs, and reveals the importance of how investigators account for mortality
when analyzing this endpoint. Several specific results yield recommendations for future
measurement, analysis, and reporting of ICU LOS.

In regards to measuring ICU LOS, the considerable variability we identified limits the
ability to compare interventions’ effects on LOS across trials. Similar problems arise from
the noted variability across trials in the start and stop times of ICU LOS, and in the scale of
LOS reporting (i.e., calendar days, 24-hour periods without rounding, or hours), which may
also influence the magnitude of measurement errors (25). Therefore, we recommend a
standardized measurement of ICU LOS that begins with receipt of a trial intervention and
ends when a patient is deemed clinically ready for discharge (26) (Table 1).

We also identified at least four distinct analytic approaches that were commonly used to
compare LOS between study arms (Table 2). These variations in statistical methods lead to
the testing of fundamentally different research questions. The most common approach is to
contrast overall LOS distributions in each study arm without accounting for mortality. Our
simulations suggest that this approach commonly generated misleading results in the context
of even small intervention-associated mortality effects. This limits the ability to differentiate
interventions that seem to lengthen LOS due to beneficial, albeit perhaps underpowered
mortality effects, versus those that #u/y lengthen LOS without such corresponding benefits.
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The other three approaches attend to mortality in different ways, with some raising greater
interpretive challenges than others. First, assessment of LOS among survivors reduces
analytic sample sizes, which may be small in critical care trials to begin with (14, 27, 28).
Additionally, such restriction can yield misleading results if an intervention shifts very sick
patients from the “deceased” cohort to the “survived” cohort, where they may contribute an
unusually long LOS (20). Setting 3 of the simulation study showed that this approach can be
especially problematic in RCTs in which the benefit of an intervention is largest among
relatively sicker patients (29).

Second, investigators may use time-to-event models that estimate time-to-discharge.
Although censoring on death is likely superior to ignoring it altogether, such censoring
assumes that death is random and non-informative. This assumption is almost certainly
untenable, as patients’ acuities and comorbid conditions are related to both their probability
of dying and their LOS if they survive (30). Thus, the probability of censoring may be time-
dependent, and thus introduce bias despite randomization (31). Therefore, the observation
that time-to-event analyses produced the fewest instances of bias in our simulations should
not necessarily be interpreted as a reason to advocate using this approach, because the
validity of the results rests upon the untestable and unlikely assumption that death is non-
informative.

The final approach values death as a fixed LOS for decedents, most commonly using an
ICU-free day method where LOS is set equal to the maximum follow-up time minus ICU
LOS for live discharges and zero for decedents (10). Another valuation approach changes
the LOS of those who died to the longest LOS but does not transform to ICU-free days. A
prior simulation study suggested that when non-parametric tests are used to compare LOS
distributions among treatment and control groups, this latter approach to valuing LOS can
accommodate a range of values for death, such as coding it at the 80t percentile of the LOS
distribution or as the worst possible LOS (20). Wang and colleagues have also proposed
recent innovations to composite outcome measurement and analysis, focusing on approaches
to ranking death and nonmortal outcomes in critical care (9, 11). Combining death and a
nonmortal outcome is an attractive approach as it preserves a study’s sample size (and thus
supports an intention to treat analysis). However, combining outcomes into a composite rank
provides little insight about an intervention’s direct impact on mortality or LOS. Instead, this
approach gauges an intervention’s “net” impact on both morbidity and mortality. Thus, the
approach is unbiased, but proper interpretation is dependent on the value given to those who
died being acceptable to and understood by key stakeholders. A benefit of testing a range of
death values (20) is that it enables investigators to assess whether the conclusions drawn are
sensitive to how patients value death versus prolonged ICU stays.

In practice, researchers must find a balance between acceptability and potential bias. That is,
while more complex analytic methods exist (5-9, 12) for contrasting “truncated by death”
outcomes, they may not be well received by regulatory agencies, journal editors, or
reviewers. Testing for the stability of an observed treatment effect using more than one
approach in sensitivity analyses may be infeasible for every secondary outcome, but we
recommend that multiple methods be examined for concordance in the results of contrasts
between at least the primary, and ideally key secondary trial outcomes. In addition to the
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traditional ICU-free days (or an alternative rank-based method) and competing risk method
we assessed, we believe two other methods should be utilized by researchers if their data
permits. The first is a joint longitudinal and survival model, which provides an effect
estimate specific to the nonmortal outcome through the end of the study period (i.e.,
longitudinal submodel) that accounts for missing outcome data due to death (survival
submodel) (12, 13, 32). In addition, a principal stratification approach can estimate the
survivor average causal effect if certain data elements and follow-up are available (5-7, 11).

The categorization of each RCT’s methods in the systematic review was limited by
differential reporting practices by authors as well as standards and requirements at different
journals (e.g., publication of trial protocols). It is possible that many trials utilized detailed
and standardized definitions, measurements, and contrasts of LOS, but did not report them,
particularly when LOS was a secondary outcome. However, it is unlikely that more complete
reporting would have reduced the considerable variability in the measurement and
comparison methods we identified. Second, it is possible that our search did not identify
some trials published in the 16 target journals. Such omissions are unlikely to have been
systematic, and would not be expected to alter our conclusions.

Third, our simulation study did not address all potential ICU trial settings. Instead, we chose
a limited set of scenarios to illustrate how missing or truncated outcome data may alter the
conclusions formed in studies of ICU interventions. We did not model other scenarios, such
as those in which treatments directly affect LOS, because we sought to highlight problems
that may result due to small mortality changes resulting from an intervention, rather than to
provide an exhaustive accounting of the magnitudes of these problems in all possible
scenarios.

This study reveals that although ICU LOS is a commonly used outcome in contemporary
critical care RCTs, tremendous variability exists among trials in how it is reported and
analyzed. Similar heterogeneity of outcome use and definition have been documented in
trials of patients requiring mechanical ventilation and other fields of clinical research
(33-35). However, the present study extends this descriptive literature by illustrating how
these choices may impact the interpretation of trial results. While we chose to focus on ICU
LOS, our results are likely applicable to most duration-based outcomes measured among
critically ill patients. We therefore provide recommendations to help investigators measure
and report trial results that will aid in their interpretation and synthesis. Specifically,
employing primary, or at least predefined secondary, analyses with novel statistical
approaches, such as the aforementioned rank-based method (20) and joint modeling
approaches (12, 13), would enable experience to be gained with these methods to determine
whether they ought to become standard. Although it is possible that no single method will
solve the analytic challenges that arise in duration-based outcomes in which substantial
portions of patients die during longitudinal evaluation, this work will help researchers
consider, when designing their protocols and reporting their results, the advantages and
disadvantages of different approaches to evaluating trial outcomes.
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Setting 1: Null mortality effect

Setting 2: Constant mortality effect
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Setting 3: Time-dependent mortality effect
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Figurel.

Example Kaplan-Meier curves from the three simulated mortality settings. The three panels
show one replicate from each setting randomly generated using an average 30% control arm
mortality rate and 5% absolute treatment-associated mortality reduction.
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Conclusion from the length of stay analysis
A) Setting 1: Null mortality effect
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Figure2.
Percent of simulations suggesting clinical harm (i.e., an increase in intensive care unit (ICU)

length of stay (LOS)) or benefit (i.e., a decrease in ICU LOS). These results correspond to
the simulation settings with n = 250 or n = 1,000 patients (with 1:1 randomization) and a
30% control arm mortality rate. On average, setting 1 (Panel A) had no treatment-associated
mortality reduction, whereas settings 2 (Panel B) and 3 (Panel C) had an absolute treatment-
associated mortality reduction of 2.5%. Setting 3 restricted the treatment-associated
mortality effect to simulated patients who survived beyond the longest tertile of their
hypothetical ICU LOS. Additional details of the Monte Carlo simulation study are
summarized in the EMethods.
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Table 2.

Common approaches used to account for mortality in the analysis of intensive care unit (ICU) length of stay
(LOS).
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Approach

Conceptual and empirical issues

Contrast a pooled LOS distribution of survivors and
decedents together without acknowledging death.

LOS treatment effects for survivors and decedents may differ both in magnitude and
direction. Patients saved by a treatment may experience longer LOS.

Contrast the LOS distribution among survivors only.

Survival may be affected by the intervention. Thus, it is a post-randomization
variable. Conditioning on survival reduces statistical power and can erode
randomization inference.

Contrast time-to-discharge in a time-to-event model
and treat mortality as a form of non-administrative
censoring.

« Risk set subsequent to the first death comprises a new subset of patients who have
not previously died or been censored. Thus, the balance of confounders assumed by
randomization is potentially eroded.

« Statistical model assumes LOS at the time of death is not related to the
intervention.

Contrast a composite endpoint that includes both a
value for death and LOS (e.qg., ICU-free day metric
where those who died are assumed to have zero ICU-
free days or changing LOS to the longest value).

« Valuing death inserts subjectivity into the statistical analysis and changes the causal
question.

« Composite outcome (e.g., ICU-free day) may summarize the net effect of an
intervention but does not have a real-world translation.
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