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Abstract

As molecular subtyping of breast cancer influences clinical management, evaluation of screening 

and adjuvant treatment interventions at the population level needs to account for molecular 

subtyping. Performing such analyses are challenging because molecular-subtype-specific long-

term outcomes are not readily accessible as these markers were not historically recorded in tumor 

registries. We present a modeling approach to estimate historical survival outcomes by estrogen-

receptor (ER) and human epidermal growth factor 2 (HER2) status. Our approach leverages a 

simulation model of breast cancer outcomes and integrates data from two sources: the Surveillance 

Epidemiology and End Results (SEER) databases and the Breast Cancer Surveillance Consortium 

(BCSC). We not only produce ER,HER2-specific estimates of breast cancer survival in the 

absence of screening and adjuvant treatment, but we also estimate mean tumor volume doubling 

time (TVDT) and mean mammographic detection threshold by ER/HER2-status. In general, we 

found that tumors with ER-negative and HER2-positive status are associated with more aggressive 

growth, have lower TVDTs, are harder to detect by mammography and have worse survival 

outcomes in the absence of screening and adjuvant treatment. Our estimates have been used as 

inputs into model-based analyses that evaluate the effects of screening and adjuvant treatment 

interventions on population outcomes by ER and HER2 status developed by the Cancer 

Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Working Group. In 

addition, our estimates enable a re-assessment of historical trends in breast cancer incidence and 

mortality in terms of contemporary molecular tumor characteristics. Our approach can be 

generalized beyond breast cancer and to more complex molecular profiles.
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INTRODUCTION

Advances in the molecular characterization of breast cancer have allowed researchers to 

recognize and study the highly heterogeneous nature of this disease. Currently, several 
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molecular markers and genetic signatures have been identified that are predictive of survival, 

response to molecularly targeted therapies, and the likelihood of recurrence (1–10). As the 

understanding of this heterogeneity becomes increasingly relevant in clinical practice, 

population surveillance models will need to evaluate the population impact of current and 

emerging screening and adjuvant treatment (hereafter referred to as “treatment”) patterns by 

accounting for this molecular heterogeneity.

Simulation-based analyses provide a means to synthesize the available clinical and 

population-level data to quantify the effects of cancer control interventions. In prior work 

(11), a consortium of independent investigators from the Cancer Intervention and 

Surveillance Modeling Network (CISNET) reported on the use of several simulation-based 

models to assess the relative contributions of screening mammography and adjuvant 

treatment on the reduction in breast-cancer mortality for the overall U.S. population. In that 

analysis, all CISNET models began by recreating incidence and mortality trends in the 

absence of screening and adjuvant treatment interventions. Then, these interventions were 

superimposed based on their dissemination and efficacies across calendar years to assess the 

effect of the presence of interventions relative to their absence on outcomes. For this reason, 

possessing molecular-subtype data in the absence of screening and treatment are necessary 

to estimate the impact of these interventions by molecular-subtype using similar simulation-

based approaches. Assessing molecular-subtype data in the absence of screening and 

treatment, however, poses a significant challenge. Given the relatively novel nature of 

clinically-relevant molecular markers such as estrogen receptor (ER), and human epidermal 

growth factor 2 (HER2), historical surveillance data reporting them are rare. Therefore, 

using existing methods to infer the impact of screening and treatment on breast cancer trends 

by ER and HER2 status is not straightforward.

In this work, we focus on ER and HER2 molecular markers because of their clinical 

relevance. ER-status serves as a predictor of patient response to systemic therapies (1, 2), 

such as hormonal therapy (i.e. tamoxifen). Additionally, when compared to its ER-positive 

counterpart, ER-negative breast cancer is also associated with higher tumor aggressiveness 

and lower screening benefits due to length time biases (12–14). Although registries such as 

Surveillance Epidemiology and End Results (SEER) report breast cancer specific survival 

dating back several decades, collection of ER-status began by 1990 in an era where 

mammographic screening and treatment were widespread. Hence, ER-specific data that can 

be used to estimate underlying survival by these molecular subtypes in the absence of 

screening or adjuvant treatment is not readily available. Similarly, acquisition of HER2-

status, which is a strong predictor of tumor aggressiveness and response to trastuzumab (15–

17), only started in the early 2000s and the SEER cancer registries began reporting this data 

in 2010. To illustrate this point, Figure 1 presents a timeline showing when screening 

mammography and different types of treatment became widely disseminated compared to 

when records in the SEER registry were annotated by ER and HER2 status.

We present a modeling approach to estimate several population-level breast cancer survival 

by ER and HER2 status, in the absence of screening and treatment. Our approach makes use 

of a previously developed natural history model of breast cancer (18–20) to integrate data 

from two distinct sources: 1) SEER and 2) Breast Cancer Surveillance Consortium (BCSC). 
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Data on women detected with breast cancer between 1996–2010 provided by the BCSC 

includes ER/HER2, mode of detection and screening histories (note the BSCS data source in 

Figure 1). Our method not only produces ER/HER2-specific breast cancer survival cases in 

the absence of screening and adjuvant, we simultaneously produce several other ER/HER2-

specific estimates, including: the distribution of ER/HER2-subtypes by age in the absence of 

screening, ER/HER2-specific tumor volume doubling times and tumor-size specific 

mammography threshold by ER/HER2.

The estimates presented herein have been recently incorporated into the current versions of 

the CISNET breast cancer models (21, 22). Furthermore, the CISNET modeling groups have 

already used them to evaluate the relative contributions of screening and adjuvant treatment 

by ER-subtype (23) and by ER/HER2-subtypes (24,25).

MATERIALS AND METHODS

This study makes use of a previously developed model (Model S, also referred to as BCOS 

for “Breast Cancer Outcomes Simulator”) to simulate the natural history of breast cancer in 

the average-risk U.S. population, incorporating the effect of screening and treatment (18–

20). We modify Model S to estimate underlying breast cancer progression and survival by 

ER/HER2-status. Specifically, we stratify the natural history of breast cancer by tumor 

grade, low (grade I+II) versus high (grade III), following an approach used in our prior work 

(26, 27). The inclusion of grade into our natural history model serves to leverage this 

feature’s relationship with ER and HER2 status. In addition, it expands the model’s ability 

to capture a broader spectrum of tumor aggressiveness (27). In this regard, Model S is well 

suited for this work because its underlying natural history model is easily adaptable in the 

manner (19, 20).

Broadly, our methodology for estimating ER/HER2-specific breast cancer survival in the 

absence of screening and treatment consists of several steps. First, we constructed ER-

specific and ER/HER2-specific classifiers that are capable of inferring these molecular 

markers based on a patient’s mode of detection, screening history and tumor features at 

detection. Then, we simulated an enhanced virtual SEER breast cancer registry that includes 

patient-level information not found in SEER such as: the mode of detection, screening 

history, tumor features and survival in the presence and absence of screening. We use the 

molecular classifier (from the first step) to assign the molecular profile for each individual 

patient. In essence, this procedure may be conceptualized as an imputation of molecular-

specific markers run across a virtual patient registry. Later, we demonstrate how this virtual, 

enhanced database allows us to evaluate population-level outcomes by ER and HER2 

subtypes as if these were measured directly in the general population. Table 1 shows an 

overview of our estimation procedure indicating inputs and outputs for each step.

To more fully describe our estimation methodology, we introduce some notation. For each 

simulated woman, we define the following features:

ER ER-status, which may be positive or negative.

HER HER2-status, which may be positive or negative.
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g Tumor grade, which may be low-grade (I+II) or high-grade (III) (28).

A: (AA, AP) Age at detection in the absence (A) and presence (P) of screening, respectively.

V: (VA, VP) Size at detection in the absence (A) and presence (P) of screening, respectively.

N: (NA, NP) Stage at detection in the absence (A) and presence (P) of screening, 

respectively.

We used SEER historical stages of local (L), regional (R) and distant (D). (Note that SEER 

historical stage combined with tumor size can be used to approximate AJCC stages.)

M Screening history, which includes the mode of detection and the interval between the last 

screening examination and breast cancer detection. We consider seven possible scenarios for 

this feature:

1. Prevalence detected (SP): patient was screen-detected during her first screening 

examination.

2. Screen detected-Annual (SA): patient was screen-detected and the time since her 

last screen was between 0 to 17 months.

3. Screen detected-Biannual (SB): patient was screen-detected and the time since 

her last screen was between 18 to 30 months.

4. Screen detected-Other (SO): patient was screen-detected and the time since her 

last screen was > 30 months ago.

5. Clinically detected-No Screening (C0): patient was clinically detected and never 

underwent screening.

6. Clinical detected-6 months (C1): patient was clinically detected and the last time 

since her previous screen was <= 6 months. These cases correspond to interval 

cases detected at most 6 months after the last screen.

7. Clinical detected-6+ months (C2): patient was clinically detected and the last 

time since her previous screen was > 6 months. These cases correspond to 

interval cases detected with more than 6 months transpired since the last screen.

λ0 Survival time in the absence of screening

Note that for AA, VA, NA and λ0 the term ‘absence of screening’ refers to the age, size and 

stage at detection, respectively, for a woman that has never undergone a screening 
examination. Alternatively, parameters AP, VP and NP refer to the age, size and stage at 

detection, respectively, for a woman who has had at least one screening. Both sets of 

parameters may be equal if a woman is screened but the disease is not detected before 

symptoms arise; in fact, these cases correspond to interval cancers. It is relevant to note that 

the inclusion of mode of detection as a feature to the classifiers was necessary to account for 

the significant length-time biases associated with differences in tumor growth across 

different molecular subtypes.
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BCSC data used to determine grade dependent on model of detection

In addition to the inputs required for our natural history model that have been described in 

previous work (18–20, 27), our estimation also relies on new inputs obtained from data 

provided by the Breast Cancer Surveillance Consortium (BCSC) and the SEER registry. The 

BCSC provided individual level patient records from breast cancer cases detected between 

1996–2010, which include the following features: age, stage and size at detection (A, V and 

N), mode of detection, time between the last screen and invasive BC detection (M), tumor 

grade (τ), ER-status (ER) and HER2-status (HER). We removed cases that possessed 

missing information, assuming it was missing at random, and worked only with the 

remaining 13,900 complete records.

The BCSC data is used in several ways. First, we used it to calculate the probability of an 

individual woman’s cancer being low or high-grade conditioned on age of clinical detection:

P g AA

This parameter is a direct input used by the model to determine the tumor grade of every 

simulated woman. To avoid potential length time biases, we only use BCSC records for 

women who did not undergo screening to estimate the distribution of grade.

BCSC data used to build ER/HER2-classifier

We also used BCSC data to build two classifiers: one to infer ER-status and the other to infer 

ER/HER2-status jointly. In the case of ER-status, we are making a two class prediction: (1) 

ER-positive versus (2) ER-negative; whereas for the joint ER/HER2-status we make a 

prediction across four different classes: (1) ER-positive, HER2-positive, (2) ER-positive, 

HER2-negative, (3) ER-negative, HER2-positive and (4) ER-negative, HER2-negative.

We compared the performance of several different machine learning techniques and chose to 

use Alternating Decision Trees (ADTree) (29) for the ER-status classifier and its multiclass 

counterpart, LADTree (30), for the joint ER/HER2-status classifier, as these performed best 

in terms of predictive power (comparisons across other types of classifiers are not shown). 

ADTree is a classifier that combines decision trees, voted decision trees, and voted decision 

stumps based on the concept of boosting, which produces accurate predictions by combining 

a series of “weak” learners together (29). The LADTree algorithm produces a multi-class 

prediction alternating decision tree and uses the LogitBoost strategy, which performs 

additive logistic regression (30). A graphical representation of the ER/HER2-status 

classifiers are provided in the supplemental material Figures S.1 and S.2 for high and low-

grade tumors, respectively. To predict the molecular markers based on a woman’s tumor 

features, the tree is traversed adding a different score at each decision stump. The final 

prediction is made by choosing the molecular-marker with the highest score after reaching 

the lowest leaf. Supplemental tables S.1 and S.2 show the scores associated to each 

molecular-marker for each decision stump of the alternating decision tree.

We constructed two separate classifiers corresponding to low and high-grade tumors, and all 

classifiers use the following features to determine the molecular subtype of each woman: 
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(AP, VP, NP,M). Given these classifiers and the distribution of women with different 

combinations of features, let us denote P(ER, HER|g, AP, VP,NP,M) as the probability of a 

particular ER/HER-2 status given (g, AP, VP,NP,M).

SEER survival in pre-screening period defines the baseline survival curves

To ultimately determine ER/HER2-specific survival for patients in the absence of screening 

mammography and adjuvant treatment, we leverage SEER survival curves for cases detected 

between 1975–1981, when use of screening and adjuvant treatment were not widespread in 

the general population. We define a survival curve as a function S(t, θ) such that:

S(t, θ) = P(λ ≥ t θ)
P(θ)

where t and λ are survival times, and θ is the set of parameters that describe the patient’s 

breast tumor characteristics. These survival curves are stratified by tumor grade (low: I+II 

and high: III), age (<=50, >50), tumor size (<=2cm, 2–5cm and >=5cm) and SEER historic 

stage (local, regional and distant), and were fit to parametric cure models using CANSURV, 

a statistical software developed by the NCI to analyze population-based survival data. (31).

Molecular-specific Parameter Estimation

The premise behind our estimation is to generate the individual-level characteristics of each 

woman’s breast cancer during its pre-clinical course and at the time of clinical detection in 

the absence of screening, and then use this information to determine ER/HER2-status by 

applying the molecular-subtype classifiers. Note that adjuvant treatment or survival 

outcomes are not used to assign molecular subtype at detection. Instead, the breast tumor’s 

features at clinical detection are used to determine survival in the absence of screening and 

treatment by sampling from the 1975–1981 SEER survival curves. In this manner, we can 

compute (or “back-calculate”) survival curves for each molecular subtype. In essence, by 

following this procedure, we are generating a “virtual population” of women, conditioning 

each of the tumor features and outcomes to form a sample from a distribution:

P λ0, g, AP, VP, NP, ER, HER, M, AA, V A, NA = P λ0 g, AA, V A, NA ∗

P ER, HER g, AP, VP, NP, M ∗ PSCR AP, VP, NP, M AA, V A, NA, g ∗

PNH V A, NA g, AA ∗ P g AA ∗ P AA

derived by applying the chain rule using conditional probabilities for each set of random 

variables.

To obtain stable estimates, we simulated the outcomes of 2,000,000 women for each of the 

90 birth cohorts from 1891–1981. Let & be the complete set of simulated women, this 

implies that we construct a “virtual population” of over & =180,000,000 women with data 

on their breast cancer tumor features and outcomes. In the following subsections, we detail 

the modeling of each component of this joint distribution.
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Probability of age at clinical detection P(AA)—As described in previous work (19, 

20), our simulation model begins generating the life history of an individual patient by 

determining: date at birth, date of death from other-cause mortality, and age of clinical 

detection for the first invasive breast cancer in the absence of screening (AA). For the latter, 

we sample from a distribution function of the clinical detection age at symptomatic 

detection:

P AA ≤ a = 1 − ∏
i = 25

a
1 − hi /100000

where age a is an integer and ℎi is the hazard rate per 100,000 women at age i. Incidence 

rates are provided from a prior CISNET’s base case input, commonly referred to as the 

“secular trend in breast cancer incidence” from 1975–2000 (32).

Probability of grade, volume and grade at clinical detection, P(g|AA)—Given 

AA, we then determine the woman’s tumor grade by sampling from the distribution P(g|AA) 

derived from BCSC data. Subsequently, we use the natural history model to determine each 

woman’s tumor volume doubling time (TVDT) conditional on age and grade and use it to 

model tumor size (VA) and stage (NA) at symptomatic detection in the absence of screening 

and treatment (18, 19). Specifically, let us denote PNH(VA,NA| g, AA), as the set of 

distributions that characterize the natural history by modeling VA and NA, given g and AA.

Probability of grade, volume and grade at screen detection—Having each 

woman’s parameters in the absence of screening (AA, VA,NA), we now superimpose 

screening to obtain the set of parameters in the presence of screening (AP, VP,NP) (19). In 

other words, we denote PSCR (AP, VP,NP,M| AA, VA,NA) as the screening function that 

determines the age (AP), size (VP) and stage (NP) at detection in the presence of screening, 

as well as the mode of detection and the interval between the last screening examination and 

breast cancer detection (M).

Determining molecular-subtype and survival at clinical detection—To determine 

each patient’s molecular status, we use the features (g, AP, VP,NP,M) as inputs to our ER/

HER2-status classifiers. Then, to determine survival time, we use survival curves from 

SEER 1975–1981 stratified by tumor grade, age, size and stage; in other words, we sample 

from P(λ0|g, AA, VA,NA) to determine the survival time for clinical detection, λ0. Note that 

we specifically condition our survival time on (AA, VA,NA), instead of (AP,VP,NP), because 

our ultimate objective is to estimate survival curves by ER/HER2-status in the absence of 

screening and adjuvant treatment. Hence, we assume these molecular markers remain 

unchanged during the pre-clinical course of the disease; in other words, a tumor will not 

change molecular subtype during its natural history.

Using the joint distribution to estimate molecular-specific parameters—Having 

simulated the large cohort of women, we utilize the joint distribution of their tumor features 

to calculate molecular-specific parameters. For instance, we calculate underlying survival as 

follows:
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S t | AA, V A, NA, ER =
P λ0 ≥ t, AA, V A, NA, ER

P AA, V A, NA, ER

where P(λ0 ≥ t, AA, VA,NA, ER) and P(AA, VA,NA, ER) are the marginal distributions:

P λ0 ≥ t, AA, V A, NA, ER = ∑
λ0 ≥ t

∑
M

∑
g

∑
AP, VP, NP

P λ0, g, AP, V p, NP, ER, M, AA, V A, NA

P AA, V A, NA, ER = ∑
λ0

∑
M

∑
g

∑
AP, VP, NP

P λ0, g, AP, VP, NP, ER, M, AA, V A, NA

We only show the derivation for calculating ER-specific estimates, but the ER/HER2 case is 

analogous. Note that these survival curves are conditioned on (AA, VA,NA, ER), which 

make them ER−, age-, size- and stage-specific in the absence of screening and treatment. 

Since age and size are continuous variables, we aggregate the survival curves for ages <40, 

40–49, 50–59, 60–69 and 70+ and three different size groups: <2cm, 2–5cm and >5cm. 

These size groups roughly correspond to AJCC stages (28), facilitating use in models that 

rely on this stage classification. A subset of the estimated ER-status and ER/HER2-status 

showing the underlying survival curve differences across subtypes is shown in Figure 2 and 

Figure 3, respectively; the numerical values of the complete set of curves may be found in 

supplemental spreadsheet S.1.

Working with the feature estimates of each woman in the virtual population, we also 

computed mean tumor volume doubling times (TVDT), mean mammography detection 

thresholds and mean sojourn times for each combination of molecular subtype as described 

below.

Mean tumor volume doubling times (TVDT)

TVDTER =
∑i = 1

W 1ERi
TVDTi

∑i = 1
W 1ERi

where 1ER is an indicator function for a given ER-status and TVDTi is the tumor volume 

doubling time of simulated woman i.

Mean mammography detection thresholds

MTER = min VP

across all cases with a given ER-status and with AP < AA (i.e., the detection was done due to 

screening).
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Mean sojourn time

TVDTER =
∑i = 1

W 1ERi
f T V A − VP

∑i = 1
W 1ERi

where 1ER is an indicator function for a given ER-status and fT is a function that relates 

tumor volume and time that is used as a base assumption for Model S (see (19) for more 

details).

Once again, we only show the derivation for calculating ER-specific estimates for these 

parameters, but the ER/HER2 case is analogous.

Lastly, to quantify tumor growth relative to molecular-subtype, we also calculate the 

distributions of ER and ER/HER2-status conditioned on different ages at clinical detection, 

P(ER|AA) and P(ER, HER2|AA), respectively, and the distribution of ER/HER2-status 

conditioned on TVDT, age, stage and size at clinical detection, P(ER, HER2|TVDT, AA, 

VA,NA). In the latter case, we aggregate age and size in the same groups used for the 

survival curves, but with the addition of 16 different TVDT groups in increments of 4 

months ranging from 0–4 to 56+ months.

RESULTS

Molecular-specific modeling parameters

Table 2 shows the estimated mean tumor volume doubling time (TVDT) by ER and HER2 

status. The fastest growing subtype is ER−, HER2+ with a mean TVDT of 6.8 months. The 

slowest growing is ER+, HER2− with a mean TVDT of 9.8 months. Table 3 shows the 

estimated mean tumor size mammography detection thresholds by ER and HER2 status. The 

mean mammography detection threshold was highest for ER−/HER2+ disease, at 1.05 cm, 

and lowest for ER+,HER2− disease, at 0.89 cm. Note that the difference between the 

smallest and largest mean threshold is 1.6mm. To put this difference into context, consider a 

spherical tumor of diameter 0.8cm, a 1.6mm increase in diameter size would be achieved, on 

average, between 4.9 months (for a ER−, HER2+ tumor) and 7.1 months (for a ER+, HER2− 

tumor). Table 4 shows the distribution of ER/HER2 status by age at detection, in the 

presence of screening. For validation purposes, this table compares the distribution of joint 

ER/HER2-status by different ages estimated through our modeling approach versus those 

found in the SEER. Consistent with SEER, our modeling results show that the proportion of 

ER− tumors is higher for younger women and, in fact, decreases as women age. For 

instance, the percent difference between the proportion of women with ER/HER2-status 

across the youngest group (<40 years) and the eldest group (70+) was approximately 10%. 

Lastly, Table 5 shows the distribution of ER/HER2 status by size at detection, in the 

presence of screening, comparing the estimates estimated with the model versus those 

observed in SEER. As a form of validation, we show that our estimates follow a similar 

pattern to that observed in SEER: for example, the more aggressive cancer subtypes (ER− or 

HER2+ subtypes) had a higher likelihood of presenting as larger tumors at detection.
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Underlying breast-cancer specific survival by ER-status and ER/HER2-status

Figure 2 and Figure 3 show the estimated survival curves by ER status and ER/HER2-status, 

respectively, in the absence of screening and treatment. We found that both ER and HER2 

status were strong predictors of prognosis. Specifically, in the absence of adjuvant therapy, 

ER+,HER2− cases had better survival compared to ER−, HER2+ cases, independent of stage 

or size at detection.

In the Supplemental spreadsheet, we present all the estimated survival curves stratified by 

ER-status only, ER/HER-status, stage (local and regional), tumor size (<2cm, 2–5cm and 

5+cm) and age at detection (<40, 40–49, 50–59, 60–69 and 70+). It is important to note that, 

since the sample size was not sufficient to support estimation for all age and size 

combinations for patients with distant-stage disease at initial diagnosis, we chose to group 

these cases into a single survival curve for all ages and sizes.

When comparing the survival curves in the absence of screening and adjuvant treatment, we 

find that, the breast cancer subtype with the worst survival is ER−, HER2+ with a 5-year 

survival ranging from 70.5% to 89.3% across different tumor sizes, ages and local/regional 

stages. On the other hand, the best survival is seen for is ER+, HER2− cases, with a 5-year 

survival ranging from 80.7% to 94.4% across different tumor sizes, ages and local/regional 

stages. Incorporating these survival curves into BSOC, we simulate ER/HER2-specific 

survival curves in the presence of screening and treatment, and where sufficient data is 

available, we demonstrate consistency with SEER (20). It is relevant to note that there exist 

important differences when comparing the survival curves in absence of screening and 

treatment to contemporary survival data in the presence of screening and treatment. In 

particular, our results demonstrated that the effect of trastuzumab improve the outcomes of 

ER−,HER2+ patients to the point in which they have better outcomes than ER−,HER2− 

patients, for which there is yet no targeted treatment.

In supplemental Figure S.3 and S.4, we also show the annual hazards associated with the 

underlying breast cancer survival curves. Interestingly, we found that there is exists a cross-

over between ER+ and ER− annual hazards in the absence of screening and adjuvant. 

Compared to ER+ disease, ER− disease exhibits a higher risk of death in the first 5 years but 

has lower risk afterwards (Figure S.3).

DISCUSSION

We present a modeling approach to estimate ER and HER2-specific breast cancer features 

and survival in the absence of screening and treatment. Our methodology is data-driven as it 

leverages data from two large sets, SEER and BCSC, and builds a link between them by 

making use of a model of the natural history of breast cancer. The results provide insights 

into the nature of ER/HER2-subtypes. In general, ER-negative status and HER2-positive 

status are associated with higher tumor aggressiveness, are harder to detect by 

mammography and are more frequent (percent-wise) among younger women. The 

underlying survival estimated through this approach suggests that both ER and HER2-status 

are strong predictors of long-term prognosis, even in the absence of screening and treatment. 

Our analysis also revealed a crossover between ER+ and ER− annual hazards of breast 
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cancer death, where the latter exhibits a much higher risk of death in the first 5 years but has 

lower risk afterwards. This result is consistent with two other studies that have analyzed 

clinical data with definite local regional therapy but without systemic therapy (33) and with 

only low-doses of cyclosphosphamide, doxorubicin or fluorouracil regimens (2).

Our ER, HER2 estimates can serve as input for simulation models aimed at recreating 

incidence and mortality trends by molecular-subtype. All models in the CISNET Breast 

Cancer Working Groups have already implemented these estimates to model molecular-

specific incidence and mortality trends (22). The analyses include comparing modeled ER-

specific trends to SEER data have been presented elsewhere (23–25).

Although our method is computationally intensive, it has several advantages. First, it is data-

driven and it maintains the observed correlations between patient age, stage, survival and 

ER-status. Second, it enables us to associate molecular subtypes with the probability of 

being screen detected, correcting for the length bias induced over-sampling of ER+ by 

screen detection. Finally, our approach is flexible enough to account for new evidence that 

may demonstrate a different relationship between age, stage, survival and molecularly-

specific subgroups.

Our approach has some limitations. First, it does not account for DCIS. DCIS was not 

considered in Model S due to issues of nonidentifiability concerning the estimation of 

natural history parameters that describe the progression of DCIS to invasive disease. We 

assume that ER-status, HER-status and tumor grade remain unchanged during the preclinical 

course of the disease because we do not have data to inform the model under what 

conditions these molecular marker might transition. This particular assumption adds a 

degree of uncertainty to our approach that is not trivial to evaluate, as it would elicit 

quantifying its impact on several other modeling assumptions including the secular trend of 

breast cancer, the natural history model of breast cancer and the detection characteristics of 

screening mammography.

Despite the limitations, our approach is validated against SEER. We generate estimates of 

ER/HER2-specific characteristics in the absence of screening and adjuvant treatment that are 

modeled in the presence of these interventions to produce results consistent with ER/HER2 

observations found in contemporary cancer registries (in the presence of screening and 

adjuvant treatment). In this manner, we produce a virtual SEER registry with historic ER/

HER2-specific characteristics well before these molecular markers were collected in SEER. 

More generally, our approach offers a means to integrate long-term historical cancer registry 

observations with contemporary molecular-specific data. With the emergence of precision 

medicine, deeper molecular characterization of breast cancer, and all diseases, is imminent. 

Our approach may be extended to any disease where molecular markers influence clinical 

intervention and there is a need to understand how these markers affect cancer outcomes by 

assessing outcomes both in the presence and absence of clinical intervention by the 

molecular markers.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Timeline showing when screening mammography and different types of treatment became 

widespread in the general population compared to data available in the Surveillance 

Epidemiology and End Results (SEER) registry and incidence records with screening 

histories provided by the Breast Cancer Surveillance Consortium (BCSC). * Estrogen-

receptor (ER) status and human epidermal growth factor 2 (HER2) status were available in 

the Breast Cancer Surveillance Consortium (BCSC) data for women diagnosed between 

1996–2010 and 1999–2010, respectively.
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Figure 2. 
Estimated survival curves by estrogen-receptor (ER) status, stage (local and regional), and 

tumor size (<=2cm, 2–5cm, >=5cm) in the absence of screening and adjuvant treatment.
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Figure 3. 
Estimated annual mortality hazards by joint estrogen-receptor and human epidermal growth 

factor 2 (HER2) status, stage (local and regional), and tumor size (<=2cm, 2–5cm, >=5cm) 

in the absence of screening and adjuvant treatment.
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