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Abstract

As molecular subtyping of breast cancer influences clinical management, evaluation of screening
and adjuvant treatment interventions at the population level needs to account for molecular
subtyping. Performing such analyses are challenging because molecular-subtype-specific long-
term outcomes are not readily accessible as these markers were not historically recorded in tumor
registries. We present a modeling approach to estimate historical survival outcomes by estrogen-
receptor (ER) and human epidermal growth factor 2 (HER2) status. Our approach leverages a
simulation model of breast cancer outcomes and integrates data from two sources: the Surveillance
Epidemiology and End Results (SEER) databases and the Breast Cancer Surveillance Consortium
(BCSC). We not only produce ER,HER2-specific estimates of breast cancer survival in the
absence of screening and adjuvant treatment, but we also estimate mean tumor volume doubling
time (TVDT) and mean mammographic detection threshold by ER/HER2-status. In general, we
found that tumors with ER-negative and HER2-positive status are associated with more aggressive
growth, have lower TVDTs, are harder to detect by mammography and have worse survival
outcomes in the absence of screening and adjuvant treatment. Our estimates have been used as
inputs into model-based analyses that evaluate the effects of screening and adjuvant treatment
interventions on population outcomes by ER and HER? status developed by the Cancer
Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Working Group. In
addition, our estimates enable a re-assessment of historical trends in breast cancer incidence and
mortality in terms of contemporary molecular tumor characteristics. Our approach can be
generalized beyond breast cancer and to more complex molecular profiles.
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INTRODUCTION

Advances in the molecular characterization of breast cancer have allowed researchers to
recognize and study the highly heterogeneous nature of this disease. Currently, several
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molecular markers and genetic signatures have been identified that are predictive of survival,
response to molecularly targeted therapies, and the likelihood of recurrence (1-10). As the
understanding of this heterogeneity becomes increasingly relevant in clinical practice,
population surveillance models will need to evaluate the population impact of current and
emerging screening and adjuvant treatment (hereafter referred to as “treatment”) patterns by
accounting for this molecular heterogeneity.

Simulation-based analyses provide a means to synthesize the available clinical and
population-level data to quantify the effects of cancer control interventions. In prior work
(11), a consortium of independent investigators from the Cancer Intervention and
Surveillance Modeling Network (CISNET) reported on the use of several simulation-based
models to assess the relative contributions of screening mammography and adjuvant
treatment on the reduction in breast-cancer mortality for the overall U.S. population. In that
analysis, all CISNET models began by recreating incidence and mortality trends in the
absence of screening and adjuvant treatment interventions. Then, these interventions were
superimposed based on their dissemination and efficacies across calendar years to assess the
effect of the presence of interventions relative to their absence on outcomes. For this reason,
possessing molecular-subtype data in the absence of screening and treatment are necessary
to estimate the impact of these interventions by molecular-subtype using similar simulation-
based approaches. Assessing molecular-subtype data in the absence of screening and
treatment, however, poses a significant challenge. Given the relatively novel nature of
clinically-relevant molecular markers such as estrogen receptor (ER), and human epidermal
growth factor 2 (HER?2), historical surveillance data reporting them are rare. Therefore,
using existing methods to infer the impact of screening and treatment on breast cancer trends
by ER and HER2 status is not straightforward.

In this work, we focus on ER and HER2 molecular markers because of their clinical
relevance. ER-status serves as a predictor of patient response to systemic therapies (1, 2),
such as hormonal therapy (i.e. tamoxifen). Additionally, when compared to its ER-positive
counterpart, ER-negative breast cancer is also associated with higher tumor aggressiveness
and lower screening benefits due to length time biases (12-14). Although registries such as
Surveillance Epidemiology and End Results (SEER) report breast cancer specific survival
dating back several decades, collection of ER-status began by 1990 in an era where
mammographic screening and treatment were widespread. Hence, ER-specific data that can
be used to estimate underlying survival by these molecular subtypes in the absence of
screening or adjuvant treatment is not readily available. Similarly, acquisition of HER2-
status, which is a strong predictor of tumor aggressiveness and response to trastuzumab (15—
17), only started in the early 2000s and the SEER cancer registries began reporting this data
in 2010. To illustrate this point, Figure 1 presents a timeline showing when screening
mammography and different types of treatment became widely disseminated compared to
when records in the SEER registry were annotated by ER and HER2 status.

We present a modeling approach to estimate several population-level breast cancer survival
by ER and HER2 status, in the absence of screening and treatment. Our approach makes use
of a previously developed natural history model of breast cancer (18-20) to integrate data
from two distinct sources: 1) SEER and 2) Breast Cancer Surveillance Consortium (BCSC).
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Data on women detected with breast cancer between 1996-2010 provided by the BCSC
includes ER/HER2, mode of detection and screening histories (note the BSCS data source in
Figure 1). Our method not only produces ER/HER2-specific breast cancer survival cases in
the absence of screening and adjuvant, we simultaneously produce several other ER/HER2-
specific estimates, including: the distribution of ER/HER2-subtypes by age in the absence of
screening, ER/HER2-specific tumor volume doubling times and tumor-size specific
mammography threshold by ER/HER2.

The estimates presented herein have been recently incorporated into the current versions of
the CISNET breast cancer models (21, 22). Furthermore, the CISNET modeling groups have
already used them to evaluate the relative contributions of screening and adjuvant treatment
by ER-subtype (23) and by ER/HER2-subtypes (24,25).

MATERIALS AND METHODS

This study makes use of a previously developed model (Model S, also referred to as BCOS
for “Breast Cancer Outcomes Simulator™) to simulate the natural history of breast cancer in
the average-risk U.S. population, incorporating the effect of screening and treatment (18—
20). We modify Model S to estimate underlying breast cancer progression and survival by
ER/HER2-status. Specifically, we stratify the natural history of breast cancer by tumor
grade, low (grade I+11) versus high (grade I11), following an approach used in our prior work
(26, 27). The inclusion of grade into our natural history model serves to leverage this
feature’s relationship with ER and HER?2 status. In addition, it expands the model’s ability
to capture a broader spectrum of tumor aggressiveness (27). In this regard, Model S is well
suited for this work because its underlying natural history model is easily adaptable in the
manner (19, 20).

Broadly, our methodology for estimating ER/HER2-specific breast cancer survival in the
absence of screening and treatment consists of several steps. First, we constructed ER-
specific and ER/HER2-specific classifiers that are capable of inferring these molecular
markers based on a patient’s mode of detection, screening history and tumor features at
detection. Then, we simulated an enhanced virtual SEER breast cancer registry that includes
patient-level information not found in SEER such as: the mode of detection, screening
history, tumor features and survival in the presence and absence of screening. We use the
molecular classifier (from the first step) to assign the molecular profile for each individual
patient. In essence, this procedure may be conceptualized as an imputation of molecular-
specific markers run across a virtual patient registry. Later, we demonstrate how this virtual,
enhanced database allows us to evaluate population-level outcomes by ER and HER2
subtypes as if these were measured directly in the general population. Table 1 shows an
overview of our estimation procedure indicating inputs and outputs for each step.

To more fully describe our estimation methodology, we introduce some notation. For each
simulated woman, we define the following features:

ER ER-status, which may be positive or negative.

HER HER2-status, which may be positive or negative.
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g Tumor grade, which may be low-grade (I+11) or high-grade (111) (28).
A: (Aa, Ap) Age at detection in the absence (A) and presence (P) of screening, respectively.
Vi (V4, Vp) Size at detection in the absence (A) and presence (P) of screening, respectively.

N: (N4, Np) Stage at detection in the absence (A) and presence (P) of screening,
respectively.

We used SEER historical stages of local (L), regional (R) and distant (D). (Note that SEER
historical stage combined with tumor size can be used to approximate AJCC stages.)

M Screening history, which includes the mode of detection and the interval between the last
screening examination and breast cancer detection. We consider seven possible scenarios for
this feature:

1. Prevalence detected (Sp): patient was screen-detected during her first screening
examination.
2. Screen detected-Annual (S4): patient was screen-detected and the time since her

last screen was between 0 to 17 months.

3. Screen detected-Biannual (Sg): patient was screen-detected and the time since
her last screen was between 18 to 30 months.

4. Screen detected-Other (Sp): patient was screen-detected and the time since her
last screen was > 30 months ago.

5. Clinically detected-No Screening (Cp): patient was clinically detected and never
underwent screening.

6. Clinical detected-6 months (C;): patient was clinically detected and the last time
since her previous screen was <= 6 months. These cases correspond to interval
cases detected at most 6 months after the last screen.

7. Clinical detected-6+ months (C2): patient was clinically detected and the last
time since her previous screen was > 6 months. These cases correspond to
interval cases detected with more than 6 months transpired since the last screen.

Ao Survival time in the absence of screening

Note that for A4, V4, Ngand Ag the term “absence of screening’ refers to the age, size and
stage at detection, respectively, for a woman that has never undergone a screening
examination. Alternatively, parameters Ap, Vpand Nprefer to the age, size and stage at
detection, respectively, for a woman who has had at /east one screening. Both sets of
parameters may be equal if a woman is screened but the disease is not detected before
symptoms arise; in fact, these cases correspond to interval cancers. It is relevant to note that
the inclusion of mode of detection as a feature to the classifiers was necessary to account for
the significant length-time biases associated with differences in tumor growth across
different molecular subtypes.
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BCSC data used to determine grade dependent on model of detection

In addition to the inputs required for our natural history model that have been described in
previous work (18-20, 27), our estimation also relies on new inputs obtained from data
provided by the Breast Cancer Surveillance Consortium (BCSC) and the SEER registry. The
BCSC provided individual level patient records from breast cancer cases detected between
1996-2010, which include the following features: age, stage and size at detection (A, Vand
N), mode of detection, time between the last screen and invasive BC detection (M), tumor
grade (z), ER-status (£R) and HER2-status (HER). We removed cases that possessed
missing information, assuming it was missing at random, and worked only with the
remaining 13,900 complete records.

The BCSC data is used in several ways. First, we used it to calculate the probability of an
individual woman’s cancer being low or high-grade conditioned on age of clinical detection:

Ps]4,)

This parameter is a direct input used by the model to determine the tumor grade of every
simulated woman. To avoid potential length time biases, we only use BCSC records for
women who did not undergo screening to estimate the distribution of grade.

BCSC data used to build ER/HER2-classifier

We also used BCSC data to build two classifiers: one to infer ER-status and the other to infer
ER/HER2-status jointly. In the case of ER-status, we are making a two class prediction: (1)
ER-positive versus (2) ER-negative; whereas for the joint ER/HER2-status we make a
prediction across four different classes: (1) ER-positive, HER2-positive, (2) ER-positive,
HER2-negative, (3) ER-negative, HER2-positive and (4) ER-negative, HER2-negative.

We compared the performance of several different machine learning techniques and chose to
use Alternating Decision Trees (ADTree) (29) for the ER-status classifier and its multiclass
counterpart, LADTree (30), for the joint ER/HER2-status classifier, as these performed best
in terms of predictive power (comparisons across other types of classifiers are not shown).
ADTree is a classifier that combines decision trees, voted decision trees, and voted decision
stumps based on the concept of boosting, which produces accurate predictions by combining
a series of “weak” learners together (29). The LADTree algorithm produces a multi-class
prediction alternating decision tree and uses the LogitBoost strategy, which performs
additive logistic regression (30). A graphical representation of the ER/HER2-status
classifiers are provided in the supplemental material Figures S.1 and S.2 for high and low-
grade tumors, respectively. To predict the molecular markers based on a woman’s tumor
features, the tree is traversed adding a different score at each decision stump. The final
prediction is made by choosing the molecular-marker with the highest score after reaching
the lowest leaf. Supplemental tables S.1 and S.2 show the scores associated to each
molecular-marker for each decision stump of the alternating decision tree.

We constructed two separate classifiers corresponding to low and high-grade tumors, and all
classifiers use the following features to determine the molecular subtype of each woman:
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(Ap Vi, Np,M). Given these classifiers and the distribution of women with different
combinations of features, let us denote AER, HERg, Ap, Vp,Np,M) as the probability of a
particular ER/HER-2 status given (g, Ap, VipNpM).

SEER survival in pre-screening period defines the baseline survival curves

To ultimately determine ER/HER2-specific survival for patients in the absence of screening
mammography and adjuvant treatment, we leverage SEER survival curves for cases detected
between 1975-1981, when use of screening and adjuvant treatment were not widespread in
the general population. We define a survival curve as a function S(¢, 6) such that:

P(A>16)

S, 6) = P0)

where tand A are survival times, and @is the set of parameters that describe the patient’s
breast tumor characteristics. These survival curves are stratified by tumor grade (low: I+11
and high: 1), age (<=50, >50), tumor size (<=2cm, 2-5cm and >=5cm) and SEER historic
stage (local, regional and distant), and were fit to parametric cure models using CANSURYV,
a statistical software developed by the NCI to analyze population-based survival data. (31).

Molecular-specific Parameter Estimation

The premise behind our estimation is to generate the individual-level characteristics of each
woman’s breast cancer during its pre-clinical course and at the time of clinical detection in
the absence of screening, and then use this information to determine ER/HER2-status by
applying the molecular-subtype classifiers. Note that adjuvant treatment or survival
outcomes are not used to assign molecular subtype at detection. Instead, the breast tumor’s
features at clinical detection are used to determine survival in the absence of screening and
treatment by sampling from the 1975-1981 SEER survival curves. In this manner, we can
compute (or “back-calculate”) survival curves for each molecular subtype. In essence, by
following this procedure, we are generating a “virtual population” of women, conditioning
each of the tumor features and outcomes to form a sample from a distribution:

P(4y 2 Ap: V p N p, ER, HER, M, A

PVpNp A VAN a) = Pligle 4.V 4Ny

P(ER.HER|g. A,V pu N pu M) 5 PPCR(A LV N MIA LV N g

PYH(V N o4 ) = Ple|a )« P(4,)

VA’
R(A

derived by applying the chain rule using conditional probabilities for each set of random
variables.

To obtain stable estimates, we simulated the outcomes of 2,000,000 women for each of the
90 birth cohorts from 1891-1981. Let & be the complete set of simulated women, this
implies that we construct a “virtual population” of over & =180,000,000 women with data
on their breast cancer tumor features and outcomes. In the following subsections, we detail
the modeling of each component of this joint distribution.
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Probability of age at clinical detection P(Ap)—As described in previous work (19,
20), our simulation model begins generating the life history of an individual patient by
determining: date at birth, date of death from other-cause mortality, and age of clinical
detection for the first invasive breast cancer in the absence of screening (A4). For the latter,
we sample from a distribution function of the clinical detection age at symptomatic
detection:

<a)=1- ﬁ (1 - hi)/IOOOOO
i=725

where age ais an integer and A/ is the hazard rate per 100,000 women at age /. Incidence
rates are provided from a prior CISNET’s base case input, commonly referred to as the
“secular trend in breast cancer incidence” from 1975-2000 (32).

Probability of grade, volume and grade at clinical detection, P(g|Aa)—Given
A4, we then determine the woman’s tumor grade by sampling from the distribution AglA 4)
derived from BCSC data. Subsequently, we use the natural history model to determine each
woman’s tumor volume doubling time (7VDT) conditional on age and grade and use it to
model tumor size (V) and stage (/) at symptomatic detection in the absence of screening
and treatment (18, 19). Specifically, let us denote PV(V4,N4| 9, An), as the set of
distributions that characterize the natural history by modeling V4 and A4, given gand Aax.

Probability of grade, volume and grade at screen detection—Having each
woman’s parameters in the absence of screening (A4, V4,NV4), We now superimpose
screening to obtain the set of parameters in the presence of screening (Ag, Vs Np) (19). In
other words, we denote 5% (Ap, Vo, NpM Aa, Via,Ny) as the screening function that
determines the age (Ap), size (Vp) and stage (/Vp) at detection in the presence of screening,
as well as the mode of detection and the interval between the last screening examination and
breast cancer detection (M).

Determining molecular-subtype and survival at clinical detection—To determine
each patient’s molecular status, we use the features (g, Ap, Vin,Np, M) as inputs to our ER/
HER2-status classifiers. Then, to determine survival time, we use survival curves from
SEER 1975-1981 stratified by tumor grade, age, size and stage; in other words, we sample
from AAg|g. Aa Va,Na) to determine the survival time for clinical detection, Ag. Note that
we specifically condition our survival time on (A4 V4,Ny), instead of (Ap, Vs, Np), because
our ultimate objective is to estimate survival curves by ER/HER2-status in the absence of
screening and adjuvant treatment. Hence, we assume these molecular markers remain
unchanged during the pre-clinical course of the disease; in other words, a tumor will not
change molecular subtype during its natural history.

Using the joint distribution to estimate molecular-specific parameters—Having
simulated the large cohort of women, we utilize the joint distribution of their tumor features
to calculate molecular-specific parameters. For instance, we calculate underlying survival as
follows:
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P(/IOZZ,AA,VA,NA,ER)

P(AA, VN, ER)

S(tI(AA, VA,NA,ER) =

where A Ag =t Aa, Va,Ng, ER) and P(Aa, Va,Ny, ER) are the marginal distributions:

PAy2 1A,V N, ER)= 3 33 D P(lo,g,AP,Vp,NP,ER,M,AA,VA,NA)
pVpp)

0
P(A,,V N4, ER) = %% P4y 8 Ap V ps Np ER. M, A,V 4 N )

We only show the derivation for calculating ER-specific estimates, but the ER/HER?2 case is
analogous. Note that these survival curves are conditioned on (A4, Via,Na, ER), which
make them ER-, age-, size- and stage-specific in the absence of screening and treatment.
Since age and size are continuous variables, we aggregate the survival curves for ages <40,
40-49, 50-59, 60-69 and 70+ and three different size groups: <2cm, 2-5¢cm and >5cm.
These size groups roughly correspond to AJCC stages (28), facilitating use in models that
rely on this stage classification. A subset of the estimated ER-status and ER/HER2-status
showing the underlying survival curve differences across subtypes is shown in Figure 2 and
Figure 3, respectively; the numerical values of the complete set of curves may be found in
supplemental spreadsheet S.1.

Working with the feature estimates of each woman in the virtual population, we also
computed mean tumor volume doubling times (7VDT7), mean mammography detection
thresholds and mean sojourn times for each combination of molecular subtype as described
below.

Mean tumor volume doubling times (TVDT)

where 1£5is an indicator function for a given ER-status and 7VD7;is the tumor volume
doubling time of simulated woman /.

Mean mammography detection thresholds

MTER = min[VP]

across all cases with a given ER-status and with Ap< A4 (i.e., the detection was done due to
screening).
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Mean sojourn time

21W= 1 lERifT(VA ~Vp)

TVDTER =

W
Zio lERl.

where 1z is an indicator function for a given ER-status and fris a function that relates
tumor volume and time that is used as a base assumption for Model S (see (19) for more
details).

Once again, we only show the derivation for calculating ER-specific estimates for these
parameters, but the ER/HER2 case is analogous.

Lastly, to quantify tumor growth relative to molecular-subtype, we also calculate the
distributions of ER and ER/HER2-status conditioned on different ages at clinical detection,
AERIA,) and AER, HER2|A,), respectively, and the distribution of ER/HER2-status
conditioned on TVDT, age, stage and size at clinical detection, AER, HER2| TVDT, A,
Va,N,4). In the latter case, we aggregate age and size in the same groups used for the
survival curves, but with the addition of 16 different TVDT groups in increments of 4
months ranging from 0—4 to 56+ months.

RESULTS

Molecular-specific modeling parameters

Table 2 shows the estimated mean tumor volume doubling time (TVDT) by ER and HER?2
status. The fastest growing subtype is ER—, HER2+ with a mean TVDT of 6.8 months. The
slowest growing is ER+, HER2- with a mean TVDT of 9.8 months. Table 3 shows the
estimated mean tumor size mammography detection thresholds by ER and HER2 status. The
mean mammography detection threshold was highest for ER-/HER2+ disease, at 1.05 cm,
and lowest for ER+,HER2- disease, at 0.89 cm. Note that the difference between the
smallest and largest mean threshold is 1.6mm. To put this difference into context, consider a
spherical tumor of diameter 0.8cm, a 1.6mm increase in diameter size would be achieved, on
average, between 4.9 months (for a ER—, HER2+ tumor) and 7.1 months (for a ER+, HER2-
tumor). Table 4 shows the distribution of ER/HER2 status by age at detection, in the
presence of screening. For validation purposes, this table compares the distribution of joint
ER/HER2-status by different ages estimated through our modeling approach versus those
found in the SEER. Consistent with SEER, our modeling results show that the proportion of
ER- tumors is higher for younger women and, in fact, decreases as women age. For
instance, the percent difference between the proportion of women with ER/HER2-status
across the youngest group (<40 years) and the eldest group (70+) was approximately 10%.
Lastly, Table 5 shows the distribution of ER/HER?2 status by size at detection, in the
presence of screening, comparing the estimates estimated with the model versus those
observed in SEER. As a form of validation, we show that our estimates follow a similar
pattern to that observed in SEER: for example, the more aggressive cancer subtypes (ER- or
HER2+ subtypes) had a higher likelihood of presenting as larger tumors at detection.
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Underlying breast-cancer specific survival by ER-status and ER/HER2-status

Figure 2 and Figure 3 show the estimated survival curves by ER status and ER/HER2-status,
respectively, in the absence of screening and treatment. We found that both ER and HER2
status were strong predictors of prognosis. Specifically, in the absence of adjuvant therapy,
ER+,HER2- cases had better survival compared to ER-, HER2+ cases, independent of stage
or size at detection.

In the Supplemental spreadsheet, we present all the estimated survival curves stratified by
ER-status only, ER/HER-status, stage (local and regional), tumor size (<2cm, 2-5cm and
5+cm) and age at detection (<40, 40-49, 50-59, 60-69 and 70+). It is important to note that,
since the sample size was not sufficient to support estimation for all age and size
combinations for patients with distant-stage disease at initial diagnosis, we chose to group
these cases into a single survival curve for all ages and sizes.

When comparing the survival curves in the absence of screening and adjuvant treatment, we
find that, the breast cancer subtype with the worst survival is ER—, HER2+ with a 5-year
survival ranging from 70.5% to 89.3% across different tumor sizes, ages and local/regional
stages. On the other hand, the best survival is seen for is ER+, HER2- cases, with a 5-year
survival ranging from 80.7% to 94.4% across different tumor sizes, ages and local/regional
stages. Incorporating these survival curves into BSOC, we simulate ER/HER2-specific
survival curves in the presence of screening and treatment, and where sufficient data is
available, we demonstrate consistency with SEER (20). It is relevant to note that there exist
important differences when comparing the survival curves in absence of screening and
treatment to contemporary survival data in the presence of screening and treatment. In
particular, our results demonstrated that the effect of trastuzumab improve the outcomes of
ER-,HER2+ patients to the point in which they have better outcomes than ER-,HER2-
patients, for which there is yet no targeted treatment.

In supplemental Figure S.3 and S.4, we also show the annual hazards associated with the
underlying breast cancer survival curves. Interestingly, we found that there is exists a cross-
over between ER+ and ER- annual hazards in the absence of screening and adjuvant.
Compared to ER+ disease, ER- disease exhibits a higher risk of death in the first 5 years but
has lower risk afterwards (Figure S.3).

DISCUSSION

We present a modeling approach to estimate ER and HER2-specific breast cancer features
and survival in the absence of screening and treatment. Our methodology is data-driven as it
leverages data from two large sets, SEER and BCSC, and builds a link between them by
making use of a model of the natural history of breast cancer. The results provide insights
into the nature of ER/HER2-subtypes. In general, ER-negative status and HER2-positive
status are associated with higher tumor aggressiveness, are harder to detect by
mammography and are more frequent (percent-wise) among younger women. The
underlying survival estimated through this approach suggests that both ER and HER2-status
are strong predictors of long-term prognosis, even in the absence of screening and treatment.
Our analysis also revealed a crossover between ER+ and ER- annual hazards of breast

Med Decis Making. Author manuscript; available in PMC 2019 July 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Munoz and Plevritis

Page 11

cancer death, where the latter exhibits a much higher risk of death in the first 5 years but has
lower risk afterwards. This result is consistent with two other studies that have analyzed
clinical data with definite local regional therapy but without systemic therapy (33) and with
only low-doses of cyclosphosphamide, doxorubicin or fluorouracil regimens (2).

Our ER, HER?2 estimates can serve as input for simulation models aimed at recreating
incidence and mortality trends by molecular-subtype. All models in the CISNET Breast
Cancer Working Groups have already implemented these estimates to model molecular-
specific incidence and mortality trends (22). The analyses include comparing modeled ER-
specific trends to SEER data have been presented elsewhere (23-25).

Although our method is computationally intensive, it has several advantages. First, it is data-
driven and it maintains the observed correlations between patient age, stage, survival and
ER-status. Second, it enables us to associate molecular subtypes with the probability of
being screen detected, correcting for the length bias induced over-sampling of ER+ by
screen detection. Finally, our approach is flexible enough to account for new evidence that
may demonstrate a different relationship between age, stage, survival and molecularly-
specific subgroups.

Our approach has some limitations. First, it does not account for DCIS. DCIS was not
considered in Model S due to issues of nonidentifiability concerning the estimation of
natural history parameters that describe the progression of DCIS to invasive disease. We
assume that ER-status, HER-status and tumor grade remain unchanged during the preclinical
course of the disease because we do not have data to inform the model under what
conditions these molecular marker might transition. This particular assumption adds a
degree of uncertainty to our approach that is not trivial to evaluate, as it would elicit
quantifying its impact on several other modeling assumptions including the secular trend of
breast cancer, the natural history model of breast cancer and the detection characteristics of
screening mammography.

Despite the limitations, our approach is validated against SEER. We generate estimates of
ER/HER2-specific characteristics in the absence of screening and adjuvant treatment that are
modeled in the presence of these interventions to produce results consistent with ER/HER2
observations found in contemporary cancer registries (in the presence of screening and
adjuvant treatment). In this manner, we produce a virtual SEER registry with historic ER/
HER2-specific characteristics well before these molecular markers were collected in SEER.
More generally, our approach offers a means to integrate long-term historical cancer registry
observations with contemporary molecular-specific data. With the emergence of precision
medicine, deeper molecular characterization of breast cancer, and all diseases, is imminent.
Our approach may be extended to any disease where molecular markers influence clinical
intervention and there is a need to understand how these markers affect cancer outcomes by
assessing outcomes both in the presence and absence of clinical intervention by the
molecular markers.

Med Decis Making. Author manuscript; available in PMC 2019 July 17.
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Figure 1.

Timeline showing when screening mammography and different types of treatment became
widespread in the general population compared to data available in the Surveillance
Epidemiology and End Results (SEER) registry and incidence records with screening

histories provided by the Breast Cancer Surveillance Consortium (BCSC). * Estrogen-
receptor (ER) status and human epidermal growth factor 2 (HER2) status were available in

1996-2010 and 1999-2010, respectively.
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Figure 2.

Estimated survival curves by estrogen-receptor (ER) status, stage (local and regional), and
tumor size (<=2cm, 2-5cm, >=5cm) in the absence of screening and adjuvant treatment.
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Figure 3.

Estimated annual mortality hazards by joint estrogen-receptor and human epidermal growth
factor 2 (HER2) status, stage (local and regional), and tumor size (<=2cm, 2-5cm, >=5cm)
in the absence of screening and adjuvant treatment.
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