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Abstract

COnstraint-Based Reconstruction and Analysis (COBRA) provides a molecular mechanistic 

framework for integrative analysis of experimental molecular systems biology data and 

quantitative prediction of physicochemically and biochemically feasible phenotypic states. The 

COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It 

has found widespread applications in biology, biomedicine, and biotechnology because its 

functions can be flexibly combined to implement tailored COBRA protocols for any biochemical 

network. This protocol is an update to the COBRA Toolbox 1.0 and 2.0. Version 3.0 includes new 

methods for quality controlled reconstruction, modelling, topological analysis, strain and 

experimental design, network visualisation as well as network integration of chemoin-formatic, 

metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code 

integration also enables an expansion in COBRA application scope via high-precision, high-

performance, and nonlinear numerical optimisation solvers for multi-scale, multi-cellular and 

reaction kinetic modelling, respectively. This protocol overviews all of these new features and can 

be adapted to generate and analyse constraint-based models in a wide variety of scenarios. The 

COBRA Toolbox 3.0 provides an unparalleled depth of constraint-based reconstruction and 

analysis methods.
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INTRODUCTION

Development of the protocol

Constraint-based reconstruction and analysis (COBRA1) is a mechanistic integrative 

analysis framework that is applicable to any biochemical system with prior mechanistic 

information, including where mechanistic information is incomplete. The overall approach is 

to mechanistically represent the relationship between genotype and phenotype by 

mathematically and computationally modelling the constraints that are imposed on the 
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phenotype of a biochemical system by physicochemical laws, genetics, and the 

environment2 (see Figure 1). This protocol updates and extends previous protocols on the 

COBRA Toolbox versions 1.03 and 2.04. It provides an introduction into the practical 

application of many of the novel COBRA methods developed in recent years.

Early in the development of the COBRA framework, the need for ease of reproducibility and 

demand for reuse of COBRA methods were recognised. This necessity led to the COBRA 

Toolbox version 1.03, an open source software package running in the MATLAB 

environment, which facilitated quantitative prediction of metabolic phenotypes using a 

selection of the COBRA methods available at the time. With the expansion of the COBRA 

community and the growing phylogeny of COBRA methods, the need was recognised for 

the amalgamation and transparent dissemination of COBRA methods. This demand led to 

the COBRA Toolbox version 2.04, with an enhanced range of methods to simulate, analyse, 

and predict a variety of phenotypes using genome-scale metabolic reconstructions. Since 

then, the increasing functional scope and size of biochemical network reconstructions, as 

well as the increasing breadth of physicochemical and biological constraints that are 

represented within constraint-based models, naturally result in the development of a broad 

arbour of new COBRA methods5.

The present protocol overviews the main novel developments within version 3.0 of the 

COBRA Toolbox (see Table 1), especially the expansion of functionality to cover new 

biochemical network reconstruction and modelling methods. In particular, this protocol 

includes the input and output of new standards for sharing reconstructions and models, an 

extended suite of supported general purpose optimisation solvers, new optimisation solvers 

developed especially for constraint-based modelling problems, enhanced functionality in the 

areas of computational efficiency and high precision computing, numerical characterisation 

of reconstructions, conversion of reconstructions into various forms of constraint-based 

models, comprehensive support for flux balance analysis and its variants, integration with 

omics data, uniform sampling of high dimensional models, atomic resolution of metabolic 

reconstructions via molecular structures, estimation and application of thermodynamic 

constraints, visualisation of metabolic networks, and genome-scale kinetic modelling.

This protocol consists of a set of methods that are introduced in sequence but can be 

combined in a multitude of ways. The overall purpose is to enable the user to generate a 

biologically relevant, high-quality model that enables novel predictions and hypotheses 

generation. Therefore, we implement and enforce standards in reconstruction and simulation 

that have been developed by the COBRA community over the past two decades. All 

explanations of a method are also accompanied by explicit computational commands.

First, we explain how to initialise and verify the installation of the COBRA Toolbox in 

MATLAB (Math-works, Inc.). The main options to import and explore the content of a 

biochemical network reconstruction are introduced. For completeness, a brief summary of 

methods for manual and algorithmic reconstruction refinement are provided, with reference 

to the established reconstruction protocol6. We also explain how to characterise the 

numerical properties of a reconstruction, especially with respect to detection of a 

reconstruction requiring a multi-scale numerical optimisation solver. We explain how to 
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semi-automatically convert a reconstruction into a constraint-based model suitable for flux 

balance analysis. This is followed by an extensive explanation of how to carry out flux 

balance analysis and its variants. The procedure to fill gaps in a reconstruction, due to 

missing reactions, is also explained.

We provide an overview of the main methods to integrate metabolomic, transcriptomic, 

proteomic, and thermochemical data to generate context-specific, constraint-based models. 

Various methods are explained for the addition of biological constraints to a constraint-based 

model. We then explain how to test the chemical and biochemical fidelity of the model. Now 

that a high-quality model is generated, we explain how to interrogate the discrete geometry 

of its stoichiometric subspaces, how to efficiently measure the variability associated with the 

prediction of steady state reaction rate using flux variability analysis, and how to uniformly 

sample steady-state fluxes. We introduce various approaches for prospective uses of a 

constraint-based model, such as strain and experimental design.

We explain how to atomically resolve a metabolic reconstruction by connecting it with 

molecular species structures and how to use cheminformatic algorithms for atom mapping 

and identification of conserved moieties. Using molecular structures for each metabolite, 

and established thermochemical data, we estimate the transformed Gibbs energy of each 

subcellular compartment specific reaction in a model of human metabolism in order to 

thermodynamically constrain reaction directionality and constrain the set of feasible kinetic 

parameters. Sampled kinetic parameters are then used for variational kinetic modelling, in an 

illustration of the utility of recently published algorithms for genome-scale kinetic 

modelling. We also explain how to visualise predicted phenotypic states using a recently 

developed approach for metabolic network visualisation. We conclude with an explanation 

of how to engage with the community of COBRA developers, as well as contribute code to 

the COBRA Toolbox with MATLAB.devTools, a newly developed piece of software for 

community contribution of COBRA methods to the COBRA Toolbox.

All documentation and code is released as part of the openCOBRA project (https://

github.com/opencobra/cobratoolbox). Where reading the extensive documentation 

associated with the COBRA Toolbox does not suffice, we describe the procedure for 

effectively engaging with the community via a dedicated online forum (https://

groups.google.com/forum/#!forum/cobra-toolbox). Taken together, the COBRA Toolbox 3.0 

provides an unparalleled depth of interoperable COBRA methods and a proof-of-concept 

that knowledge integration and collaboration by large numbers of scientists can lead to 

cooperative advances impossible to achieve by a single scientist or research group alone7.

Applications of COBRA methods

Constraint-based modelling of biochemical networks is broadly applicable to a range of 

biological, biomedical, and biotechnological research questions8. Fundamentally, this broad 

applicability arises from the common phylogenetic tree, shared by all living organisms, that 

manifests in a set of shared mathematical properties that are common to biochemical 

networks in normal, diseased, wild-type, or mutant biochemical networks. Therefore, a 

COBRA method developed primarily for use in one scenario can usually be quickly adapted 

for use in a variety of related scenarios. Often, this adaptation retains the mathematical 
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properties of the optimisation problem underlying the original constraint-based modelling 

method. By adapting the input data and interpreting the output results in a different way, the 

same method can be used to address a different research question.

Biotechnological applications of constraint-based modelling include the development of 

sustainable approaches for chemical9 and biopharmaceutical production10, 11. Among these 

applications is the computational design of new microbial strains for production of 

bioenergy feedstocks from non-food plants, such as microbes capable of deconstructing 

biomass into their sugar subunits and synthesising biofuels, either from cellulosic biomass or 

through direct photosynthetic capture of carbon dioxide.

Another prominent biotechnological application is the analysis of interactions between 

organisms that form biological communities and their surrounding environments, with a 

view toward utilisation of such communities for bioremediation12 or nutritional support of 

non-food plants for bioenergy feedstocks. Biomedical applications of constraint-based 

modelling include the prediction of the phenotypic consequences of single nucleotide 

polymorphisms13, drug targets14, enzyme deficiencies15–18, as well as side and off-target 

effects of drugs19–21. COBRA has also been applied to generate and analyse normal and 

diseased models of human metabolism17, 22–25, including organ-specific models26–28, multi-

organ-models29, 30, and personalised models31–33. Constraint-based modelling has also been 

applied to understanding of the biochemical pathways that interlink diet, gut microbial 

composition, and human health34–38.

Key features and comparisons

Besides the COBRA Toolbox, constraint-based reconstruction and analysis can be carried 

out with a variety of software tools. In 2012, Lakshmanan et al.39 made a comprehensive, 

comparative evaluation of the usability, functionality, graphical representation and inter-

operability of the tools available for flux balance analysis. Each of these evaluation criteria 

is still valid when comparing the current version of the COBRA Toolbox with other software 

with constraint-based modelling capabilities. The rapid development of novel constraint-

based modelling algorithms requires continuity of software development. Short term 

investment in new COBRA modelling software applications has led to a plethora of COBRA 

modelling applications39. Each usually provides some unique capability initially, but many 

have become antiquated due to lack of maintenance, failure to upgrade, or failure to support 

new standards in model exchange formats (http://sbml.org/Documents/Specifications). 

Therefore, we also restrict our comparison to software in active development (see Table 2).

Each software tool for constraint-based modelling has varying degrees of dependency on 

other software. Web-based applications exist for the implementation of a limited number of 

standard constraint-based modelling methods. Their only local dependency is on a web 

browser. The COBRA Toolbox depends on MATLAB (Mathworks Inc.), a commercially 

distributed, general-purpose computational tool. MATLAB is a multi-paradigm 

programming language and numerical computing environment that allows matrix 

manipulations, plotting of functions and data, implementation of algorithms, creation of user 

interfaces, and interfacing with programs written in other languages, including C, C++, C#, 

Java, Fortran, and Python. All software tools for constraint-based modelling also depend on 
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at least one numerical optimisation solver. The most robust and efficient numerical 

optimisation solvers for standard problems are distributed commercially, but often with free 

licences available for academic use, e.g., Gurobi Optimizer (http://www.gurobi.com). Stand-

alone constraint-based modelling software tools also exist and their dependency on a 

numerical optimisation solver is typically satisfied by GLPK (https://gnu.org/software/glpk), 

an open-source linear optimisation solver.

It is sometimes perceived that there is a commercial advantage to depending only on open-

source software. However, there are also commercial costs associated with dependency on 

open-source software. That is, in the form of increased computation times as well as 

increased time required to install, maintain and upgrade open-source software dependencies. 

This is an important consideration for any research group whose primary focus is on 

biological, biomedical, or biotechnological applications, rather than on software 

development. The COBRA Toolbox 3.0 strikes a balance by depending on closed-source, 

general purpose, commercial computational tools, yet all COBRA code is distributed and 

developed in an open-source environment (https://github.com/opencobra/cobratoolbox).

The availability of comprehensive documentation is an important feature in the usability of 

any modelling software. Therefore, a dedicated effort has been made to ensure that all 

functions in the COBRA Toolbox 3.0 are comprehensively and consistently documented. 

Moreover, we also provide a new suite of more than 35 tutorials (https://opencobra.github.io/

cobratoolbox/latest/tutorials) to enable beginners, as well as intermediate and advanced 

users to practise a wide variety of COBRA methods. Each tutorial is presented in a variety of 

formats, including as a MATLAB live script, which is an interactive document, or narrative, 

(https://mathworks.com/help/matlab/matlab_prog/what-is-a-live-script.html) that combines 

MATLAB code with embedded output, formatted text, equations, and images in a single 

environment viewable with the MATLAB Live Editor (version R2016a or later). MATLAB 

live scripts are similar in functionality to Mathematica Notebooks (Wolfram Inc.) and 

Jupyter Notebooks (https://jupyter.org). The latter support interactive data science and 

scientific computing for more than 40 programming languages. To date, only the COBRA 

Toolbox 3.0, COBRApy40, KBase41, and COBRA.jl42 offer access to constraint-based 

modelling algorithms via narratives.

KBase is a collaborative, open environment for systems biology of plants, microbes and 

their communities41. It also has a suite of analysis tools and data that support the 

reconstruction, prediction, and design of metabolic models in microbes and plants. These 

tools are tailored toward the optimisation of microbial biofuel production, the identification 

of minimal media conditions under which that fuel is generated, and predict soil 

amendments that improve the productivity of plant bioenergy feedstocks. In our view, KBase 

is currently the tool of choice for the automatic generation of draft microbial metabolic 

networks, which can then be imported into the COBRA Toolbox for further semi-automated 

refinement, which has recently successfully been completed for a suite of gut microbial 

organisms38. However, KBase41 currently offers a modest depth of constraint-based 

modelling algorithms.

Heirendt et al. Page 5

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.gurobi.com/
https://gnu.org/software/glpk
https://github.com/opencobra/cobratoolbox
https://opencobra.github.io/cobratoolbox/latest/tutorials
https://opencobra.github.io/cobratoolbox/latest/tutorials
https://mathworks.com/help/matlab/matlab_prog/what-is-a-live-script.html
https://jupyter.org/


MetaFlux43 is a web-based tool for the generation of network reconstructions directly from 

pathway and genome databases, proposing network refinements to generate functional flux 

balance models from reconstructions, predict steady-state reaction rates with flux balance 

analysis and interpret predictions in a graphical network visualisation. MetaFlux is tightly 

integrated within the PathwayTools44 environment, which provides a broad selection of 

genome, metabolic and regulatory informatics tools. As such, PathwayTools provides 

breadth in bioinformatics and computational biology, while the COBRA Toolbox 3.0 

provides depth in constraint-based modelling, without providing, for example, any genome 

informatics tools. Although an expert can locally install a PathwayTools environment, the 

functionality is closed source and only accessible via an application programming interface. 

This approach does not permit the level of repurposing possible with open-source software. 

As recognised in the computational biology community45, open-source development and 

distribution is scientifically important for tractable reproducibility of results as well as reuse 

and repurposing of code46.

Lakshmanan et al.39 consider the availability of a graphical user interface to be an important 

feature in the usability of modelling software. For example, SurreyFBA47 provides a 

command line tool and graphical user interface for constraint-based modelling of genome-

scale metabolic reaction networks. The time lag between the development of a new 

modelling method and its availability via a graphical user interface necessarily means that 

graphically driven COBRA tools permit a limited depth of novel constraint-based modelling 

methods. While MATLAB provides a generic graphical user interface, the COBRA Toolbox 

is controlled either by scripts or narratives, rather than graphically. Exceptions include the 

input of manually-curated data during network reconstruction48, the assimilation of genome-

scale metabolic reconstructions49, and the visualisation of simulation results in biochemical 

network maps50 via specialised network visualisation software51.

Due to the relative simplicity of the MATLAB programming language, new COBRA 

Toolbox users, including those without software development experience, can rapidly 

become familiar with the basics of constraint-based modelling. This initial learning effort is 

worth it for the flexibility it opens up, especially considering the broad array of constraint-

based modelling methods now available within the COBRA Toolbox 3.0. Although it should 

be technically possible to generate a computational specification of the point-and-click 

analysis steps that are required to generate results using a graphical user interface, to our 

knowledge, none of the graphically-driven modelling tools in Table 2 offers this facility. 

Such a specification would be required for another scientist to reproduce the same results 

using the same tool. This weakness limits the ability to reproduce analytical results, as 

verbal specification is not sufficient for reproducibility46.

Each language-specific COBRA implementation has its benefits and drawbacks, which are 

mainly associated with the programming language itself. PySCeS-CBM52 and COBRApy40 

both provide support for a set of COBRA methods implemented in the Python programming 

language. Python is a multi-paradigm, interpreted programming language for general-

purpose programming. It has a broad development community and a wide range of open-

source libraries, especially in bioinformatics. As such, it is well suited for the amalgamation 

and management of heterogeneous experimental data. At present, the COBRA software 
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tools in Python provide access to standard COBRA methods. In COBRApy40, this 

functionality can be extended by using Python to invoke MATLAB and use the COBRA 

Toolbox. Achieving such interoperability between COBRA software implemented in 

different programming languages and developed together by a united open source 

community is the primary objective of the openCOBRA project (https://

opencobra.github.io).

Sybil53 is an open-source, object-oriented software library that implements a limited set of 

standard constraint-based modelling algorithms in the programming language R, which is a 

free, platform independent environment for statistical computing and graphics. Sybil is 

available for download from the comprehensive R archive network (CRAN), but does not 

follow an open-source development model. The COBRA Toolbox is primarily implemented 

in MATLAB, a proprietary, multi-paradigm, programming language which is interpreted for 

execution rather than compiled prior to execution. As such, MATLAB code typically runs 

slower than compiled code, but the main advantage is the ability to rapidly and flexibly 

implement sophisticated numerical computations by leveraging the extensive libraries for 

general-purpose numerical computing, supplied commercially within MATLAB (Mathworks 

Inc.), and distributed freely by the community (https://mathworks.com/matlabcentral).

For the application of computationally-demanding constraint-based modelling methods to 

high-dimensional or high-precision constraint-based models, the COBRA Toolbox 3.0 

comes with an array of integrated, pre-compiled extensions and interfaces that employ 

complementary programming languages and tools. These include a quadruple precision 

Fortran 77 optimisation solver implementation for constraint-based modelling of multi-scale 

biochemical networks54, and a high-level, high-performance, open-source implementation of 

flux balance analysis in Julia42. The latter is tailored to solve multiple flux balance analyses 

on a subset or all the reactions of large- and huge-scale networks, on any number of threads 

or nodes. To enumerate elementary modes or minimal cut-sets, we provide an interface to 

CellNetAnalyzer55, 56 (https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html), which 

excels at computationally-demanding, enumerative, discrete geometry calculations of 

relevance to biochemical networks. In addition, we included an updated implementation of 

the genetic minimal cut-sets approach57, which extends the concept of minimal cut-sets to 

gene knockout interventions.

In summary, the COBRA Toolbox 3.0 provides an unparalleled depth of constraint-based 

reconstruction and analysis methods, has a highly active and supportive open-source 

development community, is accompanied by extensive documentation and narrative 

tutorials, it leverages the most comprehensive library for numerical computing, and it is 

distributed with extensive interoperability with a range of complementary programming 

languages that exploit their particular strengths to realise specialised constraint-based 

modelling methods. A list of the main COBRA methods now available in the COBRA 

Toolbox is given in Table 1. Moreover, all of this functionality is provided within one 

accessible software environment.
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Experimental Design

The COBRA Toolbox 3.0 is designed for flexible adaptation into customised pipelines for 

constraint-based reconstruction and analysis in a wide range of biological, biochemical, or 

biotechnological scenarios, from single organisms to communities of organisms. To become 

proficient in adapting the COBRA Toolbox to generate a protocol specific to one’s situation, 

it is wise to first familiarise oneself with the principles of constraint-based modelling. This 

can best be achieved by studying the educational material already available. The textbook 

Systems Biology: Constraint-based Reconstruction and Analysis1 is an ideal place to start. It 

is accompanied by a set of lecture videos that accompany each chapter http://

systemsbiology.ucsd.edu/Publications/Books/SB1–2LectureSlides. The textbook 

Optimization Methods in Metabolic Networks58 provides the fundamentals of mathematical 

optimisation and its application in the context of metabolic network analysis. A study of this 

educational material will accelerate one’s ability to utilise any software application 

dedicated to COBRA.

Once one is cognisant of the conceptual basis of COBRA, one can then proceed with this 

protocol, which summarises a subset of the key methods that are available within the 

COBRA Toolbox. To adapt this protocol to one’s situation, users can combine the COBRA 

methods implemented within the COBRA Toolbox in numerous ways. The adaption of this 

protocol to one’s situation may require the development of new customised MATLAB 

scripts that combine existing methods in a new way. Due to the aforementioned benefits of 

narratives, the first choice should be to implement these customised scripts in the form of 

MATLAB live scripts. To get started, the existing tutorial narratives, described in Table 1, 

can be repurposed as templates for new analysis pipelines. Narrative figures and tables can 

then be generated from raw data and used within the main text of scientific articles and 

converted into supplementary material to enable full reproducibility of computational 

results. The narratives specific to individual scientific articles can also be shared with peers 

within https://github.com/opencobra/cobratoolbox/tree/master/papers.

New tutorials can be shared with the COBRA community: https://git.io/COBRA.tutorials. 

Depending on one’s level of experience, or the novelty of an analysis, the adaptation of this 

protocol to a particular situation may require the adaption of existing COBRA methods, or 

development of new COBRA methods, or both.

Software architecture of the COBRA Toolbox 3.0—The source code of the COBRA 

Toolbox (https://github.com/opencobra/cobratoolbox/tree/master/src) is divided into several 

top-level folders, which either mimic the main classes of COBRA methods (reconstruction, 

dataIntegration, analysis, visualisation, design) or contain the basic functions (base) 

available for use within many COBRA methods. For example, the input or output of 

reconstructions and models in various formats as well as all the interfaces to optimisation 

solvers is contained within the base folder. The reconstruction folder contains all of the 

methods associated with the reconstruction and refinement of a biochemical network to 

match experimental data, as well as the conversion of a reconstruction into various forms of 

constraint-based models (see Table 3 for a description of the main fields of a COBRA 

model). The dataIntegration folder contains the methods for integration of metabolomic, 
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transcriptomic, proteomic, and thermodynamic data with a reconstruction or model. The 

analysis folder contains all of the methods for interrogation of the properties of a 

reconstruction or model, and combinations thereof, as well as the prediction of biochemical 

network states using constraint-based models. The visualisation folder contains all of the 

methods for the visualisation of predictions within a biochemical network context, using 

various biochemical cartography tools that interoperate with the COBRA Toolbox. The 

design folder contains new strain design methods and a new modelling language interface to 

GAMS (General Algebraic Modeling System), a high-level modeling system for 

mathematical optimisation59.

Open-source software development with the COBRA Toolbox—Understanding 

how the COBRA Toolbox is developed is most important for developers, so beginners may 

skip this section at first. With an increasing number of contributions from developers around 

the world, the code base is evolving at a fast pace. The COBRA Toolbox has evolved from 

monolingual MATLAB software to a multilingual software suite via integration with C, 

FORTRAN, Julia, Perl and Python code, as well as pre-compiled binaries, for specific 

purposes. For example, the integration with quadruple precision numerical optimisation 

solvers, implemented in FORTRAN, for robust and efficient modelling of multi-scale 

biochemical networks, such as those obtained with integration60 of metabolic61 and 

macromolecular synthesis62 reconstructions, which represent a new peak in terms of 

biochemical comprehensiveness and predictive capacity63. These developments warranted 

an industrial approach to software development of the COBRA Toolbox. Therefore, we 

implemented a continuous integration approach with the aim of guaranteeing a consistent, 

stable, and high-quality software solution for a broad user community.

The COBRA Toolbox is version controlled using Git (https://git-scm.com), a free and open-

source distributed, version control system, which tracks changes in computer files and is 

used for coordinating work on those files by multiple people. The continuous integration 

environment facilitates contributions from the fork of COBRA developers to a development 

branch, whilst ensuring that robust, high-quality, well-tested code is released to end users on 

the master branch. To lower the technological barrier to the use of the aforementioned 

software development tools, we have developed MATLAB.devTools (https://github.com/

opencobra/MATLAB.devTools), a new user-friendly software extension that enables 

submission of new COBRA software and tutorials. A server-side, semi-automated 

continuous integration environment ensures that the code in each new submission is first 

verified automatically, via a comprehensive test suite that detects bugs and integration errors, 

and second, is reviewed manually by at least one domain expert, before integration with the 

development branch. Thirdly, each new contribution to the development branch is evaluated 

in practice by active COBRA researchers, before it becomes part of the master branch.

Until recently, the code quality checks of the COBRA Toolbox have been primarily static: 

the code has been reviewed by experienced users and developers while occasional code 

inspections led to discoveries of bugs. The continuous integration setup defined in Figure 2 

aims at dynamic testing with automated builds, code evaluation, and documentation 

deployment. Often, a function runs properly independently and yields the desired output(s), 
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but when called within a different part of the code, logical errors are thrown. The unique 

advantage of continuous integration is that logical errors are mostly avoided.

Besides automatic testing, manual usability testing is performed regularly by users and is 

key to provide a tested and usable code base to the end user. These users provide feedback 

on the usability of the code base, as well as the documentation, and report eventual issues 

online (https://github.com/opencobra/cobratoolbox/issues). The documentation is 

automatically deployed to https://opencobra.github.io/cobratoolbox based on function 

headers. Moreover, each of the narrative tutorials is presented in a format suitable for web 

browsers (https://opencobra.github.io/cobratoolbox/stable/tutorials).

Controls—COBRA is part of an iterative systems biology cycle1. As such, it can be used 

as a framework for integrative analysis of experimental data in the context of prior 

information on the biochemical network underlying one or many complementary 

experimental datasets. Moreover, it can be used to predict the outcome of new experiments, 

or it can be used in both of these scenarios at once. Assuming all of the computational steps 

are errorless, the appropriate control for any prediction derived from a computational model 

is the comparison with independent experimental data, that is, experimental data that was 

not used for the model-generated predictions. It is also important to introduce quality 

controls to check that the computational steps are free from certain errors that may arise 

during adaptation of existing COBRA protocols or development of new ones.

There are various strategies for the implementation of computational quality controls. Within 

the COBRA Toolbox 3.0, significant effort has been devoted to automatically test the 

functionality of existing COBRA methods. We have also embedded a large number of sanity 
checks, which evaluate whether the input data could possibly be appropriate for use with a 

function. These sanity checks have been accumulated over more than a decade of continuous 

development of the COBRA Toolbox. Their objective is to rule out certain known classes of 

obviously false predictions that might result from an inappropriate use of a COBRA method, 

but they do not (and are not intended) to catch every such error, as it is impossible to 

imagine all of the eventual erroneous inputs that may be presented to a COBRA Toolbox 

function. It is advisable to add own narratives with additional sanity checks, which will 

depend heavily on the modelling scenario. Examples of such narratives can be found under 

https://opencobra.github.io/cobratoolbox/stable/tutorials.

Required expertise

Most of this protocol can be implemented by anyone with a basic familiarity with the 

principles of constraint-based modelling. Some methods are only for advanced users. If one 

is a beginner with respect to MATLAB, Supplementary Manual 1 provides pointers to get 

started. MATLAB is a relatively simple programming language to learn, but it is also a 

powerful language for an expert due to the large number of software libraries for numerical 

and symbolic computing that it provides access to. Certain specialised methods within this 

protocol, such as thermodynamically constraining reaction directionality, depend on the 

installation of other programming languages and software, which may be too challenging for 

a beginner with a non-standard operating system.
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If the documentation and tutorials provided within the COBRA Toolbox are not sufficient, 

then Steps 103 and 104 guide the user toward sources of COBRA community support. The 

computational demands associated with the implementation of this protocol for one’s 

reconstruction or model of choice is dependent on the size of the network concerned. For a 

genome-scale model of metabolism, usually a desktop computer is sufficient. However, for 

certain models, such as a community of genome-scale metabolic models, a multi-scale 

model of metabolism and macromolecular synthesis, or a multi-tissue model, more powerful 

processing and extensive memory capacity is required, ranging from a workstation to a 

dedicated computational cluster. Embarrassingly parallel, high-performance computing is 

feasible for most model analysis methods implemented in the COBRA Toolbox, which will 

run in isolation with invocation from a distributed computing engine. It is currently an 

ongoing topic of research, beyond the scope of this protocol, to fully exploit high-

performance computing environments with software developed within the wider 

openCOBRA environment, though some examples42 are already available for interested 

researchers to consult.

Limitations

A protocol for the generation of a high-quality, genome-scale reconstruction, using various 

software applications, including the COBRA Toolbox, has previously been disseminated6; 

therefore, this protocol focuses more on modelling than reconstruction. The COBRA 

Toolbox is not meant to be a general-purpose computational biology tool as it is focussed on 

constraint-based reconstruction and analysis. For example, although various forms of 

generic data analysis methods are available within MATLAB, the input data for integration 

with reconstructions and models within the COBRA Toolbox is envisaged to have already 

been preprocessed by other tools. Within its scope, the COBRA Toolbox aims for complete 

coverage of COBRA methods. The first comprehensive overview of the COBRA methods 

available for microbial metabolic networks5 requires an update to encompass many 

additional methods that have been reported to date, in addition to the COBRA methods 

targeted toward other biochemical networks. The COBRA Toolbox 3.0 provides the most 

extensive coverage of published COBRA methods. However, there are certainly some 

methods that have yet to be incorporated directly as MATLAB implementations, or 

indirectly via a MATLAB interface to a software dependency. Although in principle any 

COBRA method could be implemented entirely within MATLAB, it may be more efficient 

to leverage the core strength of another programming language that could provide 

intermediate results that can be incorporated into the COBRA Toolbox via various forms of 

MATLAB interfaces. Such a setup would enable one to overcome any current limitation in 

coverage of existing methods.

MATERIALS

Equipment setup

Required hardware

• A computer with any 64-bit Intel or AMD processor and at least 8 GB of RAM.
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▲ CRITICAL STEP Depending on the size of the reconstruction or 

model, more processing power and more memory may be needed, especially 

if it is also desired to store the results of analysis procedures within the 

MATLAB workspace.

• A hard drive with free storage of at least 10 GB.

• ! CAUTION A working and stable internet connection is required during 

installation and while contributing to the COBRA Toolbox.

Required software

• A Linux, macOS or Windows operating system that is MATLAB qualified 

(https://mathworks.com/support/sysreq.html). ! CAUTION Make sure that the 

operating system is compatible with the MATLAB version by checking the 

requirements on https://mathworks.com/support/sysreq/previous_releases.html. 

Follow the upgrade and installation procedures on the supplier’s website or ask 

your system administrator for help if required.

• MATLAB (MathWorks Inc. - https://mathworks.com/products/matlab.html), 

version R2014b or above is required. Version R2016a or above is required for 

running MATLAB live scripts (tutorials .mlx files). Note that the tutorials can be 

run on R2014b using the provided .m files. Install MATLAB and its licence by 

following the official installation instructions (https://mathworks.com/help/

install/ug/install-mathworks-software.html) or ask your system administrator. ! 
CAUTION No support is provided for versions older than R2014b. MATLAB is 

released on a twice-yearly schedule. After the latest release (version b), it may be 

a couple of months before certain methods with dependencies on other software 

become compatible. For example, the latest releases of MATLAB may not be 

compatible with the existing solver interfaces, necessitating an update of the 

MATLAB interface provided by the solver developers, or an update of the 

COBRA Toolbox, or both.

• The COBRA Toolbox (https://github.com/opencobra/cobratoolbox) version 3.0 

or above. Install the COBRA Toolbox by following the procedures given on 

https://github.com/opencobra/cobratoolbox. ! CAUTION Make sure that all 

system requirements outlined under https://opencobra.github.io/cobratoolbox/

docs/requirements.html are met. If an installation of the COBRA Toolbox is 

already present, there is no need to re-clone the full repository. Instead, you can 

update the repository from MATLAB or from the terminal.

(A) Update from within MATLAB by running:

>> updateCobraToolbox

(B) Update from the terminal (or shell) by running from within the 

cobratoolbox directory

$ cd cobratoolbox # change to the cobratoolbox directory

$ git checkout master # switch to the master branch
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$ git pull origin master # retrieve changes

▲ CRITICAL STEP The official repository must be cloned as explained in the installation 

instructions in Steps 97–102. The COBRA Toolbox can only be updated if no changes have 

been made locally in the cloned repository. Steps 97–102 provide explanations on how to 

contribute.

In case the update of the COBRA Toolbox fails or cannot be completed, clone the repository 

again.

• A working bash terminal (or shell) with UNIX tools. curl version 7.0 or above 

must be installed to ensure connectivity between the COBRA Toolbox and the 

remote Github server. The version control software git 1.8 or above is required to 

be installed and accessible through system commands. On Linux and macOS, a 

bash terminal with git and curl is readily available. Supplementary Manual 2 

provides a brief guide to the basics of using a terminal. ! CAUTION On 

Windows, the shell integration included with git Bash (https://git-for-

windows.github.io) utilities must be installed. The command line tools such as 

git or curl will be be installed together with git Bash. Make sure that you select 

<Use git Bash and optional Unix tools from the Windows Command prompt 
during the installation process> of git Bash. After installing git Bash, restart 

MATLAB. On macOS, a working installation of Xcode (https://

developer.apple.com/xcode) version 8.0 or above and command line tools is 

mandatory. The Xcode command line tools may be installed by following the 

instructions on https://railsapps.github.io/xcode-command-line-tools.html.

Optional software

• Reading and writing models in SBML (Systems Biology Markup Language) 

format requires the MATLAB interface from the libSBML application 

programming interface, version 5.15.0 or above. The COBRA Toolbox 3.0 

supports the latest SBML Level 3 Flux Balance Constraints Version 2 package 

(http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/fbc). The 

libSBML package, version 5.15.0 or above is already packaged with the COBRA 

Toolbox via the COBRA.binary submodule for all common operating systems. 

Alternatively, binaries can be downloaded separately and installed by following 

the procedure on http://sbml.org/Software/libSBML. The COBRA Toolbox 

developers work closely with the SBML Team to ensure that the COBRA 

Toolbox supports the latest standards, and moreover that standard development is 

also focused on meeting the evolving requirements of the constraint-based 

modelling community. After the latest release of MATLAB, there may be a short 

time lag before input and output become fully compatible. For example, the input 

and output of .xml files in the SBML standard formats relies on platform 

dependent binaries that we maintain (https://github.com/opencobra/

COBRA.binary) for each major platform, but the responsibility for maintenance 

of the source code64 lies with the SBML team (http://sbml.org), who have a 
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specific forum for raising interoperability issues (https://groups.google.com/

forum/#!forum/sbml-interoperability).

• The MATLAB Image Processing Toolbox, the Parallel Computing Toolbox, the 

Statistics and Machine Learning Toolbox, and the Optimization Toolbox and 

Bioinformatics Toolbox (https://mathworks.com/products) must be licensed and 

installed to ensure certain model analysis functionality, such as topology based 

algorithms, flux variability analysis, or sampling algorithms. The individual 

MATLAB toolboxes can be installed during the MATLAB installation process. If 

MATLAB is already installed, the toolboxes can be managed using the built-in 

MATLAB add-on manager as described on https://mathworks.com/help/matlab/

matlab_env/manage-your-add-ons.html.

• The Chemaxon Calculator Plugins (https://chemaxon.com/products/calculator-

plugins - Chem-Axon Ltd), version 16.9.5.0 or above, is a suite offering a range 

of cheminformatics tools. Standardizer is ChemAxon’s solution to transform 

chemical structures into customised, canonical representations to achieve best 

reliability with chemical databases. The Chemaxon Calculator Plugins, version 

16.9.5.0 or above can be installed by following the installation procedures 

outlined in the user guide on https://chemaxon.com/products/calculator-plugins. 

A licence is freely available for academics.

• Java (https://java.com/en/download/help/download_options.xml), version 8 or 

above, is a programming language which enables platform independent 

applications. Java, version 8 or above, may be installed by following the 

procedures given on https://java.com/en/download/help/index_installing.xml.

• Python (https://python.org/downloads), version 2.7, is a high-level programming 

language for general-purpose programming and is required to run NumPy or 

generate the documentation locally (relevant when contributing). Python, version 

2.7 is already installed on Linux and macOS. On Windows, the instructions on 

https://wiki.python.org/moin/BeginnersGuide/Download will guide you to install 

Python.

• NumPy (https://scipy.org/install.html), version 1.11.1 or above, is the 

fundamental package for scientific computing with Python. NumPy may be 

installed by following the procedures on https://docs.scipy.org/doc/

numpy-1.10.1/user/install.html.

• OpenBabel (https://openbabel.org), version 2.3 or above, is a chemical toolbox 

designed to speak the many languages of chemical data. OpenBabel may be 

installed by following the installation instructions on http://openbabel.org/wiki/

Category:Installation.

• Reaction Decoder Tool (RDT - https://github.com/asad/ReactionDecoder/

releases), version 1.5.0 or above, is a Java-based, open-source atom mapping 

software tool. The latest version of the Reaction Decoder Tool (RDT) can be 

installed by following the procedures on https://github.com/asad/

ReactionDecoder#installation.
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Solvers

• Table 4 provides an overview of supported optimisation solvers. At least one 

linear programming (LP) solver is required for basic constraint-based modelling 

methods. Therefore, by default, the COBRA Toolbox installs certain open source 

solvers, including the LP and MILP solver GLPK (https://gnu.org/software/

glpk). However, for more efficient and robust linear optimisation, we recommend 

to also install an industrial numerical optimisation solver. On Windows, the 

OPTI solver suite (https://inverseproblem.co.nz/OPTI) must be installed 

separately in order to use the OPTI interface. ! CAUTION Depending on the 

type of optimisation problem underlying a COBRA method, an additional 

numerical optimisation solver may be required.

• Most steps of the solver installation require superuser or administrator rights 

(sudo) and eventually setting environment variables. Detailed instructions and 

links to the official installation guidelines for installing Gurobi, Mosek, Tomlab 

and IBM Cplex can be found on https://opencobra.github.io/cobratoolbox/docs/

solvers.html. ! CAUTION Make sure that environment variables are properly set 

in order for the solvers to be properly recognised by the COBRA Toolbox.

Application specific software

• Certain solvers have additional software requirements, and some binaries 

provided in the COBRA.binary (https://github.com/opencobra/COBRA.binary) 

repository might not be compatible with your system.

• The dqqMinos and Minos solvers may only be used on Unix. The C-shell csh 
(http://bxr.su/NetBSD/bin/csh) is required. On Linux or macOS, the C-shell csh 
can be installed by following the instructions on https://en.wikibooks.org/wiki/

C_Shell_Scripting/Setup.

• The GNU C-compiler gcc 7.0 or above (https://gcc.gnu.org). The library of the 

gcc compiler is required for generating new binaries of fastFVA with a different 

version of the CPLEX solver than officially supplied. The GNU Fortran compiler 

gfortran 4.1 or above (https://gcc.gnu.org/fortran). The library of the gfortran 
compiler is required for running dqqMinos. The gcc and gfortran compilers can 

be installed by following the links given on https://opencobra.github.io/

cobratoolbox/docs/compilers.html.

Contributing software

• MATLAB.devTools (https://github.com/opencobra/MATLAB.devTools) is highly 

recommended for contributing code to the COBRA Toolbox in a user-friendly 

and convenient way, even for those without basic knowledge of git. The 

MATLAB.devTools can be installed by following the instructions given on 

https://github.com/opencobra/MATLAB.devTools#installation. Alternatively, if 

the COBRA Toolbox is already installed, then the MATLAB.devTools can be 

installed directly from within MATLAB by typing:

>> installDevTools()
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PROCEDURE

Initialisation of the COBRA Toolbox ● TIMING 5 – 30 s

1 | At the start of each MATLAB session, the COBRA Toolbox must be initialised. 

The initialisation can be done either automatically (option A) or 

manually(option B). For a regular user who primarily uses the official 

openCOBRA repository, automatic initialisation of the COBRA Toolbox is 

recommended. It is highly recommended to manually initialise when 

contributing (see Steps 97–102), especially when the official version and a clone 

of the fork are present locally.

(A) Automatically initialising the COBRA Toolbox

(i) Edit the MATLAB startup.m file and add a line with 

initCobraToolbox so that the COBRA Toolbox is initialised 

each time that MATLAB is started.

>> edit startup.m

(A) Manually initialising the COBRA Toolbox

(i) Navigate to the directory where you installed the COBRA 

Toolbox and initialise by running:

>> initCobraToolbox;

▲ CRITICAL STEP During initialisation, a check for software dependencies is made and 

reported to the command window. It is not necessary that all possible dependencies are 

satisfied before beginning to use the toolbox, e.g., satisfaction of a dependency on a multi-

scale linear optimisation solver is not necessary for modelling with a mono-scale metabolic 

model. However, other software dependencies are essential to be satisfied, e.g., dependency 

on a linear optimisation solver must be satisfied for any method that uses flux balance 

analysis. ? TROUBLESHOOTING

2 | At initialisation, one from a set of available optimisation solvers will be selected 

as the default solver. If Gurobi is installed, it is used as the default solver for LP, 

QP, and MILP problems. Otherwise, the GLPK solver is selected for LP and 

MILP problems. It is important to check if the solvers installed are satisfactory. 

A table stating the solver compatibility and availability is printed to the user 

during initialisation. Check the currently selected solvers with

>> changeCobraSolver;

▲ CRITICAL STEP A dependency on at least one linear optimisation solver must be 

satisfied for flux balance analysis.

Verify and test the COBRA Toolbox ● TIMING ~ 103 s

3 | (optional) Test the functionality of the COBRA Toolbox locally. This is 

recommended if one encounters an error running a function. The test suite runs 
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tailored tests that verify the output and proper execution of core functions on the 

locally configured system. The full test suite can be invoked by typing:

>> testAll

? TROUBLESHOOTING

Importing a reconstruction or a model ● TIMING 10 – 102 s

4 | The COBRA Toolbox offers support for several commonly used data formats for 

describing models, including models in Systems Biology Markup Language 

(SBML), Excel Sheets (.xls) and different Simpheny(c) formats. The COBRA 

Toolbox fully supports the standard format documented in the SBML Level 3 

Version 1 with the Flux Balance Constraints (fbc) package version 2 

specifications (www.sbml.org/specifications/sbml-level-3/version-1/fbc/sbml-

fbc-version-2-release-1.pdf). In order to load a model with a fileName into the 

MATLAB workspace as a COBRAv3 model structure, run:

>> model = readCbModel(fileName);

When filename is left blank, a file selection dialogue window is opened. If no file extension 

is provided, the code will automatically determine the appropriate format from the given 

filename. The readCbModel function also supports reading normal MATLAB files for 

convenience, and checks whether those files contain valid COBRA models. Legacy model 

structures saved in a .mat file are loaded and converted. The fields are also checked for 

consistency with the current definitions.

▲ CRITICAL STEP It is advisable that readCbModel() is used to load new models. This 

is also valid for models provided in .mat files, as readCbModel checks the model for 

consistency with the COBRA Toolbox 3.0 field definitions and automatically performs 

necessary conversions for models with legacy field definitions or field names. In order to 

develop future-proof code, it is good practice to use readCbModel() instead of the built-in 

function load. ? TROUBLESHOOTING

Exporting a reconstruction or a model ● TIMING 10 – 102 s

5 | The COBRA Toolbox offers a set of different output methods. The most 

commonly used formats are SBML .xml and MATLAB .mat files. SBML is the 

preferred output format, as it can be read by most applications in the field of 

computational systems biology. However, some information cannot be encoded 

in standard SBML, so a .mat file might contain information not present in the 

corresponding SBML output. In order to output a COBRA model structure in 

either format, use:

>> writeCbModel(model, fileName);

The extension of the fileName provided is used to identify the type of output requested. The 

model will consequently be converted and saved in the respective format. When exporting a 

reconstruction or model, it is necessary that the model adheres to the model structure in 
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Table 3, and that fields contain valid data. For example, all cells of the the rxnNames field 

should only contain data of type char and not data of type double. ? 
TROUBLESHOOTING

Use of rBioNet to add reactions to a reconstruction ● TIMING 1 – 103 s

6 | We highly recommend using rBioNet48 (a graphical user interface-based 

reconstruction tool) for the addition or removal of reactions and of gene-reaction 

associations.

A stoichiometric representation of a reconstructed biochemical network is contained within 

the model.S matrix. This is a stoichiometric matrix with m rows and n columns. The entry 

model.S(i,j) corresponds to the stoichiometric coefficient of the ith molecular species in the 

jth reaction. The coefficient is negative when the molecular species is consumed in the 

reaction and positive if it is produced in the reaction. If model.S(i,j)== 0, then the molecular 

species does not participate in the reaction. In order to manipulate an existing reconstruction 

in the COBRA Toolbox, one can use rBioNet, use a spreadsheet, or generate scripts with 

reconstruction functions. Each approach has its advantages and disadvantages. When adding 

a new reaction or gene-protein-reaction association rBioNet ensures that reconstruction 

standards are satisfied, but it may make the changes less tractable when many reactions are 

added. A spreadsheet-based approach is tractable, but only allows for the addition, and not 

the removal, of reactions. In contrast, using reconstruction functions provides an exact 

specification for all of the refinements made to a reconstruction. One can also combine these 

approaches by first formulating the reactions and gene-protein-reaction associations with 

rBioNet and then adding sets of reactions using reconstruction functions.

If you do not have existing rBioNet metabolite, reaction, and compartment databases, the 

first step is to create these files. Please refer to the rBioNet tutorial provided in the COBRA 

Toolbox for instructions on how to add new metabolites and reactions to an rBioNet 
database. Make sure that all the relevant metabolites and reactions that you wish to add to 

your reconstruction are present in your rBioNet databases.

There are two options for using rBioNet functionality to add reactions to a reconstruction: 

using the rBioNet graphical interface (option A) or without using the interface (option B). If 

you wish to add the reactions only to the rBioNet database, hence benefiting from the 

included quality control and assurance measures, but then afterwards use the COBRA 

Toolbox commands to add reactions to the reconstruction, use option B.

(A) Adding reactions from an rBioNet database to a reconstruction using the 

rBioNet graphical user interface.

(i) Verify your rBioNet settings

First, make sure the paths to your rBioNet reaction, metabolite, 

and compartment databases are set correctly

>> rBioNetSettings;

(ii) Load the .mat files that hold your reaction, metabolite, and 

compartment databases.
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(iii) To add reactions from an rBioNet database to a reconstruction, invoke 

the rBioNet graphical user interface with:

>> ReconstructionTool;

Select File > Open Model Creator.

(iv) Load your reconstruction by selecting File > Open Model > Complete 

Reconstruction.

(v) Add reactions from the rBioNet database by selecting ‘Add Reaction’ 

and selecting a reaction. Repeat for all reactions that should be added 

to the reconstruction.

(vi) Save your updated reconstruction by selecting File > Save > As 

Reconstruction Model. As rBioNet was created using the old COBRA 

model structure, use the following command to convert your model to 

the new model structure:

>> model = convertOldStyleModel(model);

(B) Adding reactions from the rBioNet database without using the rBioNet interface.

(i) Load (or create) a list of reaction abbreviations ReactionList to be 

added from the rBioNet reaction database:

>> load(‘Reactions.mat’);

(ii) Load the rBioNet reaction database ‘rxnDB’:

>> load(‘rxnDB.mat’);

(iii) Then, add new reactions:

>> for i = 1:length(ReactionList) model = addReaction(model, 

ReactionList{i}, ‘reactionFormula’, … 

rxnDB(find(ismember(rxn(:, 1), ReactionList{i})), 3)); end

Use of a spreadsheet to add reactions to a reconstruction ● TIMING 1 – 103 s

7 | Load reactions from a spreadsheet with a pre-specified format17 into a new 

model structure modelNewR:

>> modelNewR = xls2model(‘NewReactions.xlsx’);

8 | Merge the existing reconstruction model with the new model structure 

modelNewR to obtain a reconstruction with expanded content modelNew:

>> modelNew = mergeTwoModels(model, modelNewR, 1);

Use of scripts with reconstruction functions ● TIMING 1 – 102s

9 | In order to ensure traceability of all manipulations to a reconstruction, generate, 

execute and save a script that calls reconstruction functions rather than using the 

command line. The function addReaction can be used to add a reaction to a 

reconstruction:
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>> model = addReaction(model, ‘GAPDH’, ‘metaboliteList’, {‘g3p[c]’, ‘nad[c]’, ‘pi[c]’, … 

‘13bpg[c]’, ‘nadh[c]’, ‘h[c]’}, ‘stoichCoeffList’, [−1; −1; −2; 1; 1; 1]);

The use of metaboliteList provides a cell array of compartment specific molecular species 

abbreviations, while stoichCoeffList is used to provide a numeric array of stoichiometric 

coefficients. If particular metabolites do not exist in model.mets, then this function will add 

them to the list of metabolites. In the function addReaction(), duplicate reactions are 

recognized even when the order of metabolites or the abbreviation of the reaction are 

different. Certain types of reactions, such as exchange, sink, and demand reactions65, may 

also be added by using the functions addExchangeRxn, addsinkReactions, or 

addDemandReaction, respectively.

After adding one or multiple reactions to a reconstruction, it is important to verify that these 

reactions can carry flux; that is, that they are functionally connected to the remainder of the 

network.

10 | Check whether the added reaction(s) have a nonzero flux value (in other words, 

can carry flux). To do this for each newly added reaction NewRxn, change it to 

be the objective function using:

>> model = changeObjective(model, ‘NewRxn’) ;

then maximise ‘max’ and minimise ‘min’ the flux through this reaction.

>> FBA = optimizeCbModel(model, ‘max’) ;

>> FBA = optimizeCbModel(model, ‘min’);

If the reaction should have a negative flux value (e.g., a reversible metabolic reaction or an 

uptake exchange reaction), then the minimisation should result in a negative objective value 

FBA.f < 0. If both maximisation and minimisation return an optimal flux value of zero (i.e., 

FBA.f == 0), then this newly added reaction cannot carry a non-zero flux value under the 

given simulation condition and the cause for this must be identified.

If the reaction(s) can carry non-zero fluxes, please repeat Steps 20 and 47 to ensure 

stoichiometric consistency, as well as the chemical and biochemical fidelity.

11 | Remove reactions. In order to remove reactions from a reconstruction, use:

>> modelOut = removeRxns(model, rxnRemoveList);

For example, if manual curation of the literature reveals that a reaction in the generic human 

metabolic reconstruction, Recon366, is not active in a specific cell type being modelled, then 

one should remove the corresponding reaction from the reconstruction.

12 | Remove metabolites. In order to remove metabolites only, run:

>> model = removeMetabolites(model, metaboliteList, removeRxnFlag);

Note that the removal of one or more metabolites makes sense only if they do not appear in 

any reactions or if one wishes to remove all reactions associated with one or more 
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metabolites. For example if a network contains reactions A + B ⇔ C and A ⇔ B, removing 

metabolite C will remove the former reaction also.

13 | Remove trivial stoichiometry. If metabolites with zero rows, or reactions with 

zero columns are present in a stoichiometric matrix, they can be removed with:

>> modelOut = removeTrivialStoichiometry(model);

After removing one or more reactions (or metabolites) from the reconstruction, please repeat 

Steps 9 to 13 in order to check that these modifications did not alter existing metabolic 

functions of the reconstruction-derived models.

Check the scaling of a reconstruction ● TIMING 1 – 102 s

14 | Most optimisation solvers are designed to work with data (e.g., stoichiometric 

coefficients, bounds, and objective coefficients in linear optimisation problems) 

that is well scaled. Standard solvers are based on 16-digit double-precision 

floating-point arithmetics, so the input data should not require a solution with 

more than 8 significant digits in order to ensure that solutions are accurate to the 

remaining 8 digits of precision. Such a solution approach is sufficient for most 

metabolic models, except, for instance, if micro and macronutrients are 

simultaneously being considered. Multi-scale models of metabolism and 

macromolecular synthesis require higher precision solvers, but they only need to 

be used when necessary, so it is useful to check the scaling of a new 

reconstruction or model.

Check the scaling of a stoichiometric matrix with:

>> [precisionEstimate, solverRecommendation, scalingProperties] = checkScaling(model);

Select a double- or quad-precision optimisation solver ● TIMING 1 – 5 s

15 | The COBRA Toolbox is integrated with a wide variety of different optimisation 

solvers (cf. Table 4). Quad MINOS54, 67 is a quadruple-precision version of the 

general-purpose, industrial-strength linear and nonlinear optimisation solver 

MINOS. This solver operates with 34 digits of precision, and was developed 

with multi-scale constraint-based modelling problems in mind. Higher precision 

solvers are more precise but less computationally efficient than standard solvers. 

They must be used when necessary, i.e., with multi-scale reconstructions and 

models. To solve multi-scale linear optimisation problems, the COBRA Toolbox 

offers a Double-Quad-Quad MINOS method (DQQ) that combines the use of 

Double and Quad solvers in order to improve efficiency while maintaining high 

accuracy in the solution. One can set the optimisation solver used by the 

COBRA Toolbox as solverStatus = changeCobraSolver(solverName, 

solverType) where solverName specifies the solver to be used, while solverType 

specifies the type of problems to solve with the solver specified by solverName 

(‘LP’ for linear optimisation problem, ‘MILP1 for mixed integer linear 

problems, ‘QP’ for quadratic problems, ‘MIQP’ for mixed integer quadratic 

problems, ‘NLP’ for non-linear problems, or ‘ALL’ to change the solver for all 
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the previously mentioned problem types. Depending on the precisionEstimate, 

there are two options: choose a double precision solver (option A) or a quad 

precision solver (option B).

(A) The solverRecommendation is double

(i) If the recommendation shows that a double precision solver 

is probably sufficient, then, for example, set the Gurobi 

solver to solve linear programming problems with:

>> solverStatus = changeCobraSolver(‘gurobi’, ‘LP’);

A positive solverStatus also indicates that the COBRA 

Toolbox will use Gurobi as the default linear 

optimisation solver.

(B) The solverRecommendation is quad

(i) If the recommendation shows that a higher precision solver is 

required, then, for example, select the quad-precision 

optimisation solver dqqMinos for solving linear optimisation 

problems with:

>> solverStatus = changeCobraSolver(‘dqqMinos’, 

‘LP’);

▲ CRITICAL STEP A dependency on at least one linear optimisation solver must be 

satisfied for flux balance analysis. If any numerical issues arise while using a double 

precision solver, then a higher precision solver should be tested. For instance, a double 

precision solver may incorrectly report that an ill-scaled optimisation problem is infeasible 

although it actually might be feasible for a higher precision solver. The checkScaling 

function may be used on all operating systems, but the dqqMinos or quadMinos interfaces 

are only available on UNIX operating systems. ? TROUBLESHOOTING

Identify stoichiometrically consistent and inconsistent reactions ● TIMING 1 – 105s

16 | All biochemical reactions conserve mass; therefore, it is essential that each 

biochemical reaction in a model does actually conserve mass. Reactions that do 

not conserve mass68 are, however, often added to a reconstruction in order to 

represent the flow of mass into and out of a system, e.g., during flux balance 

analysis. Every reaction that does not conserve mass, but is added to a model in 

order to represent the exchange of mass across the boundary of a biochemical 

system, is henceforth referred to as an external reaction, e.g., D ⇌ Ø, where Ø 

represents null. Every reaction that is supposed to conserve mass is referred to as 

an internal reaction. Besides exchange reactions, a reconstruction may contain 

mass imbalanced internal reactions due to incorrect or incompletely specified 

stoichiometry. This situation results in one or more sets of stoichiometrically 
inconsistent reactions69. For instance, the reactions A + B ⇌ C and C ⇌ A are 

stoichiometrically inconsistent because it is impossible to assign a positive 

molecular mass to all species whilst ensuring that each reaction conserves mass. 
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By combining flux through both of the former reactions in the forward direction, 

the net effect is B → Ø, that is, inadvertent exchange of B across the boundary 

of the model.

In order to distinguish between the reactions in a model that are stoichiometrically consistent 

and stoichiometrically inconsistent, there are three options: identify reactions with only one 

stoichiometric coefficient based on the stoichiometric matrix (option A), checking the 

reactions that are elementally imbalanced based on the chemical formulae of molecular 

species (option B), or identify the largest set of reactions in a reconstruction that are 

stoichiometrically consistent (option C).

(A) Use stoichiometric matrix or reaction names

(i) Pinpoint external reactions by identifying reactions with only one 

stoichiometric coefficient, or reactions with the model.rxns 

abbreviation prefixes EX_, DM_ and sink_, for exchange, demand and 

sink reactions, respectively:

>> model = findSExRxnlnd(model);

In the result, model.sIntRxnBool gives a boolean vector of 

reactions that are heuristically thought to be internal. ? 
TROUBLESHOOTING

(B) Use the checkMassChargeBaiance function

(i) When model.metFormulas is populated with the chemical formulae of 

molecular species, it is possible to check which reactions are 

elementally imbalanced with:

>> [massImbalance] = checkMassChargeBalance(model);

The output massImbalance is a n × t matrix with a non-zero entry 

for any elemental imbalance in a reaction. The other outputs from 

this function can also be used to analyse imbalanced reactions to 

suggest modifications to the stoichiometric specification that can 

resolve the imbalance. A resolution of mass imbalance should 

ensure that the reaction stoichiometry is consistent with the 

known biochemical mechanism of the reaction. ? 
TROUBLESHOOTING

(C) Use the findStoichConsistentSubset function

(i) Given stoichiometry alone, a non-convex optimisation problem can be 

used to approximately identify the largest set of reactions in a 

reconstruction that are stoichiometrically consistent.

>>[~, SConsistentRxnBool, SInConsistentRxnBool, 

unknownSConsistencyRxnBool, … model] = 

findStoichConsistentSubset(model, massBalanceCheck);
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When checking for stoichiometric inconsistency, external 

reactions identified via Option B can be used to warm start the 

algorithm for Option C if massBalanceCheck == 1. The non-zero 

entries of unknownSConsistencyRxnBool and 

unknownSConsistencyMetBool denote reactions and uniquely 

involved molecular species where consistency could not be 

established.

▲ CRITICAL STEP Any supposedly internal reaction that is actually stoichiometrically 

inconsistent with the remainder of a reconstruction should be omitted from a model that is 

intended to be subjected to flux balance analysis, otherwise erroneous predictions may result 

due to inadvertent violation of the steady-state mass conservation constraint. ? 
TROUBLESHOOTING

Identify stoichiometrically consistent and inconsistent molecular species ● TIMING 1 – 
103 s

17 | Identify the molecular species that only participate in reactions that are 

stoichiometrically inconsistent using:

>>[SConsistentMetBool, ~, SInConsistentMetBool, ~, unknownSConsistencyMetBool, ~, 

model] = … findStoichConsistentSubset(model, massBalanceCheck);

Set simulation constraints ● TIMING 1 – 103 s

18 | In order to set the constraints on a model, type

>> model = changeRxnBounds(model, rxnNameList, vaiue, boundType);

The list of reactions for which the bounds should be changed is given by rxnNameList, 

while the vector vaiue contains the new boundary reaction rate values. This type of bound 

can be set to a lower ( ‘l’ ) or upper bound (‘u’). Alternatively, both bounds can be changed 

simultaneously (‘b’).

▲ CRITICAL STEP The more biochemically realistic the applied constraints are with 

respect to a particular context, the more likely network states that are specific to that context 

are to be predicted, as opposed to those predicted from a generic model. All else being 

equal, a model derived from a comprehensive yet generic reconstruction will be less 

constrained than a model derived from a less comprehensive yet generic reconstruction. That 

is, in general, the more comprehensive a reconstruction is, the greater attention must be paid 

to setting simulation constraints.

Identify molecular species that leak, or siphon, across the boundary of the model ● 
TIMING 1 – 103 s

19 | Identification of internal and external reactions using findSExRxnInd in Step 

16A is the fastest option, but may not always be accurate. It is therefore wise to 

check whether there exist molecular species that can be produced from nothing 

(leak) or consumed giving nothing (siphon) in a reconstruction, with all external 

reactions blocked. If modelBoundsFlag == 1, then the leak testing uses the 
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model bounds on internal reactions, and if modelBoundsFlag == 0, then all 

internal reactions are assumed reversible.

>> modelBoundsFlag = 1;

>> [leakMetBool, leakRxnBool, siphonMetBool, siphonRxnBool] = ... 

findMassLeaksAndSiphons(model, model.SIntMetBool, model.SIntRxnBool, 

modelBoundsFlag);

▲ CRITICAL STEP Non-zero entries in leakMetBool, or siphonMetBool, indicate that the 

corresponding molecular species can be produced from nothing, or consumed giving 

nothing, and may invalidate any flux balance analysis prediction.

Identify flux inconsistent reactions ● TIMING 1 – 103 s

20 | In flux balance analysis, the objective is to predict reaction fluxes subject to a 

steady state assumption on internal molecular species and a mass balance 

assumption for molecular species exchanged across the boundary of the model. 

It is therefore useful to know, before making any flux balance analysis 

prediction, which reactions do not admit a non-zero steady state flux, i.e., the 

reactions that are flux inconsistent, also known as blocked reactions. In order to 

identify these reactions that do not admit a non-zero flux, use:

>>[fluxConsistentMetBool, fluxConsistentRxnBool, fluxInConsistentMetBool, … 

fluxInConsistentRxnBool] = findFluxConsistentSubset(model);

Flux balance analysis ● TIMING 1 – 102 s

21 | In standard notation, flux balance analysis70 is the linear optimisation problem

max
v ∈ ℝn

ρ(υ): = cTυ

s.t. Sυ = 0,

l ≤ υ ≤ u,

(1)

where c ∈ ℝn is a parameter vector that linearly combines one or more reaction 

fluxes to form the objective function, denoted ρ(υ). In the COBRA Toolbox, 

model.c contains the objective coefficients. S ∈ ℝm × n is the stoichiometric 

matrix stored in model.S, and the lower and upper bounds on reaction rates, l, u 

∈ ℝn are stored in model.lb and model.ub, respectively. The equality constraint 

represents a steady state constraint (production = consumption) on internal 

metabolites and a mass balance constraint on external metabolites (production + 

input = consumption + output). The solution to Problem (1) can be obtained 

using a variety of linear programming (LP) solvers that have been interfaced 

with the COBRA Toolbox. Table 4 gives the various options. A typical 

application of flux balance analysis is to predict an optimal steady-state flux 
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vector that optimises a microbial biomass production rate71, subject to literature 

derived bounds on certain reaction rates. Deciphering the most appropriate 

objective function for a particular context is an important open research 

question. The objective function in Problem (1) can be modified by changing 

model.c directly, or using the convenient function:

>> model = changeObjective(model, rxnNameList, objectiveCoeff);

A cell array rxnNameList and numeric array objectiveCoeff are used to give the reaction 

abbreviation and corresponding linear objective coefficient for one or more reactions to be 

optimised. By default, objectiveCoeff(p)> 0 and objectiveCoeff(q)< 0 correspond to 

maximisation and minimisation of the pth and qth reaction abbreviation in rxnNameList.

22 | Flux balance analysis, and many of its variants, can be computed using the 

versatile function optimizeCbModel. That is, the default method implemented 

by optimizeCbModel is flux balance analysis, as defined in Problem (1), but 

depending on the optional arguments provided to optimizeCbModel, many 

methods that are variations on flux balance analysis are also implemented and 

accessible with slight changes to the input arguments.

(A) Computing a flux balance analysis solution

(i) A solution to the flux balance analysis Problem (1) can be 

computed using:

>> FBAsolution = optimizeCbModel(model);

▲ CRITICAL STEP Assuming the constraints are 

feasible, the optimal objective value FBAsolution.f is 

unique; however, the optimal flux vector FBAsolution.v 

is most likely not unique. It is unwise to base any 

biological interpretation on a single optimal flux vector 

if it is one of many alternative optima, because the 

optimal vector returned can vary depending on the 

solver chosen to solve the problem. Therefore, when a 

flux vector is interpreted, it should be a unique solution 

to some optimisation problem.

(B) Computing the unique flux balance analysis solution

(i) In order to predict a unique optimal flux vector, it is 

necessary to regularise the objective by subtracting a strictly 

concave function from it. That is ρ(υ) = cTυ – θ(υ), where 

θ(υ) is a strictly convex function. This can be achieved with:

>> osenseStr = ‘max’;

>> minNorm = 1e–6;

>> solution = optimizeCbModel(model, osenseStr, 

minNorm);
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Assuming the constraints are feasible, the optimal 

objective value solution.f and the optimal flux vector 

solution.v are unique. Setting minNorm to 10−6 is 

equivalent to maximising the functio ρ(υ): = cTυ − σ
2 υTυ

with σ = 10−6 and θ(υ) = σ
2 υTυ is a regularisation 

function. With high-dimensional models, it is wise to 

ensure that the optimal value of the regularisation 

function is smaller than the optimal value of the original 

linear objective in Problem (1), that is ρ υ⋆ ≫ θ υ⋆ . A 

pragmatic approach is to select minNorm = 1e–6;, then 

reduce it if necessary.

The solution structure FBAsolution from optimizeCbModel always has the same form, even 

if the meaning of the fields changes depending on the optional input arguments to the 

function. The field .stat contains a standardised solver status. If FBAsolution.stat == 1, then 

an optimal solution has been found and will be returned. The field .v is a flux vector such 

that the optimal value of the objective function is attained, .y yields the vector of dual 

variables for the equality constraints, and .w contains the vector of optimal dual variables for 

the inequality constraints. The field .stat is translated from the solver specific 

status .origStat. The latter is idiosyncratic to each numerical optimisation solver, and this is 

translated to the standardised solver status in order to enable other functions within the 

COBRA Toolbox to operate in a manner invariant with respect to the underlying solver, to 

the maximum extent possible. If FBAsolution.stat == 2, then the lower and upper bounds are 

insufficient to limit the value of the objective function and the problem is unbounded, so no 

optimal solution is returned. If FBAsolution.stat == 0, then the constraints in Problem (1) do 

not admit any feasible steady state flux vector and therefore no optimal solution exists. If 

FBAsolution.stat == −1, then no solution is reported, due to a time limit or numerical 

issues. ? TROUBLESHOOTING

Relaxed flux balance analysis ● TIMING 1 – 103 s

23 | Every solution to Problem (1) must satisfy Sυ = 0 and l ≤ υ ≤ u, independent of 

any objective chosen to optimise over the set of constraints. It may occur that 

these constraints are not all simultaneously feasible, i.e., the system of 

inequalities is infeasible. This situation might be caused by an incorrectly 

specified reaction bound. In order to resolve the infeasibility, one can use 

relaxed flux balance analysis, which is an optimisation problem that minimises 

the number of bounds to relax in order to render a flux balance analysis problem 

feasible. The optimisation problem is
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min
υ, p, q

α p
0

+ α q
0

s.t. Sυ = 0

l − p ≤ υ ≤ u + q

p, q ≥ 0,

(2)

where p, q ∈ ℝn denote the relaxations on the lower and upper bounds of the 

reaction rates vector υ, and where r ∈ ℝm denotes the relaxations of the mass 

balance constraint. A non-negative vector parameter α ∈ ℝ+
n  may be used to 

prioritise relaxation of bounds on some reactions rather than others, e.g., 

relaxation of bounds on exchange reactions rather than internal reactions. The 

optimal choice of parameters depends heavily on the biochemical context. A 

relaxation of the minimum number of constraints is desirable because, ideally, 

one should be able to justify the relaxation of each bound with reference to the 

literature. The scale of this task is proportional to the number of bounds 

proposed to be relaxed, motivating the sparse optimisation problem to minimise 

the number of relaxed bounds. Relaxed flux balance analysis can be 

implemented with:

>> solution = relaxFBA(model, relaxOption);

The structure relaxOption can be used to prioritise the relaxation of one type of bound over 

another. For example, in order to disallow relaxation of bounds on all internal reactions, set 

the field .internalRelax to 0 and to allow the relaxation of bounds on all exchange reactions 

set the field .exchangeRelax to 2. If there are certain reaction bounds that should not be 

relaxed, then this can be specified using the boolean vector field .excludedReactions. The 

first application of relaxFBA to a model may predict bounds to relax that are not supported 

by literature or other experimental evidence. In this case the field .excludedReactions can be 

used to disallow the relaxation of bounds on certain reactions.

Sparse flux balance analysis ● TIMING 1 – 103 s

24 | The prediction of the minimal number of active reactions required to carry out a 

particular set of biochemical transformations72, consistent with an optimal 

objective derived from flux balance analysis, is based on a cardinality 

minimisation problem termed sparse flux balance analysis

Heirendt et al. Page 28

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min
υ

υ
0

s.t. Sυ = b

l ≤ υ ≤ u

cTυ = ρ⋆,

(3)

where the last constraint is optional and represents the requirement to satisfy an 

optimal objective value ρ⋆ derived from any solution to Problem (1). The 

optimal flux vector can be considered as a steady-state biochemical pathway 

with minimal support, subject to the bounds on reaction rates and satisfaction of 

the optimal objective of Problem (1). There are many possible applications of 

such an approach; here, we consider one example.

Sparse flux balance analysis is used to find the smallest active stoichiometrically balanced 

cycle that can produce ATP at a maximal rate using the ATP synthase reaction (https://

vmh.uni.lu/#reaction/ATPS4m). We use the Recon3Dmodel.mat66(naming subject to 

change), which does not have such a cycle active due to bound constraints, but does contain 

such an active cycle with all internal reactions set to be irreversible. First the model is 

loaded, then the internal reactions are identified and blocked and finally the objective is set 

to maximise the ATP synthase reaction rate. Thereafter, the sparse flux balance analysis 

solution is computed.

>> model = readCbModel(‘Recon3Dmodel.mat’);

>> model = findSExRxnInd(model);

>> modelClosed = model;

>> modelClosed.lb(model.SIntRxnBool) = 0;

>> modelClosed.ub(model.SIntRxnBool) = 0;

>> modelClosed_ATPS4mi = changeObjective(modelClosed, ‘ATPS4mi’, 1);

>> osenseStr = ‘max’;

>> minNorm = ‘zero’;

>> sparseFBAsolution = optimizeCbModel(modelClosed_ATPS4mi, osenseStr, minNorm);

Identify dead-end metabolites and blocked reactions ● TIMING ~102 s

25 | Manually curated as well as automatically created genome-scale metabolic 

reconstructions contain dead-end metabolites, which can either only be produced 

or only be consumed in the metabolic network (including transport to/from the 
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system boundary). Given a model, the function detectDeadEnds identifies all 

dead-end metabolites in a model:

>> deadEndMetabolites = detectDeadEnds(model);

26 | The deadEndMetabolites may be split into downstreamGaps and rootGaps. 

Metabolites that cannot be produced or consumed by any of the reactions in the 

network are referred to as rootGaps.

>> [deadEndMetabolites, rootGaps, downstreamGaps] = gapFind(model, ‘true’);

Dead-end metabolites listed in deadEndMetabolites are metabolites that are both produced 

and consumed based on network topology alone but are still dead-end metabolites because 

there are not any two reactions that can actively produce and consume the metabolite in any 

steady state.

27 | Both the root and the downstream metabolites are part of reactions that cannot 

carry any flux (i.e., blocked reactions) given the network topology subject to the 

current bounds on reaction rates. In order to identify blocked reactions, use:

>> blockedReactions = findBlockedReaction(model);

Gap fill a metabolic network ● TIMING 102 – 105 s

28 | Dead-end metabolites show that there are missing reactions in the network that 

must enable their consumption/production. Thus, they define the boundaries of 

network gaps that must be filled with one or more reactions to complete our 

representation of the full metabolic network. These gaps are due to 

incompleteness of our current knowledge, even in well-studied model 

organisms73. This is partially due to orphan enzymes, whose biochemical 

functions have been described but no corresponding gene sequences have yet 

been found in any organism74. Such biochemical functions cannot be added to 

reconstructions by automatic (sequence-based) inference, but must be added 

manually or by some non-sequence related computational approach. Moreover, 

gene annotations have been experimentally validated in only a limited number of 

organisms, which may lead to annotation errors when annotations are 

propagated across a large number of genes using sequence based methods 

only75. Genome-scale metabolic reconstructions can assist in identifying 

missing knowledge by detecting and filling network gaps, as has been 

demonstrated for various organisms, including E. coli76, 77, Chlamydomonas 
reinhardtii78, and Homo sapiens79, 80.

The COBRA Toolbox facilitates the identification and filling of gaps using gapFind81 and 

fastGapFill82. fastGapFill uses a reference database (U, e.g. KEGG REACTION) and a 

transport and exchange reaction database X that consists of transport and exchange reactions 

for each metabolite in both the reference database and the reconstruction. Reactions and 

pathways are proposed for addition to the metabolic reconstruction during gap filling from 

the combined UX database. fastGapFill works for both compartmentalised and 

decompartmentalised reconstructions. It relies on fastcc.m, which was developed within 
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fastCORE in order to approximate the most compact (i.e., least) number of reactions to be 

added to fill the highest possible number of gaps.

Prioritise reaction types in the reference database to use for filling gaps using a weights 

parameter structure. The parameters weights.MetabolicRxns, weights.ExchangeRxns, and 

weights.TransportRxns allow different priorities to be set for internal metabolic reactions, 

exchange reactions, and transport reactions, respectively. Transport reactions include 

intracellular and extracellular transport reactions. The lower the weight for a reaction type, 

the higher is its priority. Generally, a metabolic reaction should be prioritised in a solution 

over transport and exchange reactions, with for example:

>> weights.MetabolicRxns = 0.1;

>> weights.ExchangeRxns = 0.5;

>> weights.TransportRxns = 10;

29 | Use the function prepareFastGapFill to prepare a gap filling problem. A 

reconstruction is given as a model structure along with the optional inputs: list of 

compartments (listCompartments), a parameter epsilon that is needed for the 

fastCORE algorithm, the fileName for the universal database (e.g., KEGG; 

default: ‘reaction.lst’), dictionaryFile, which lists the universal database IDs and 

their counterpart in the reconstruction as defined in model.mets (default: 

‘KEGG_dictionary.xls’), and blackList, which permits the exclusion of certain 

reactions from the universal database (default: no blacklist).

>> [consistModel, consistMatricesSUX, blockedRxns] = …

prepareFastGapFill(model, listCompartments, epsilon, fileName, dictionaryFile, blackList);

The first output variable is consistModel, which contains a flux consistent subnetwork of the 

input model.

consistMatricesSUX represents the flux consistent SUX matrix, which contains the flux 

consistent S matrix (model), the universal database placed in all cellular compartments along 

with transport reactions for each metabolite from cytosol to compartment and exchange 

reactions for all extracellular metabolites. Finally, blockedRxns lists again the blocked 

reactions in the input model.

30 | The main aim of the fastGapFill function is to find a compact set of reactions 

from the UX matrix to be added to the input model to close the gaps in the 

model. Gap filling may be carried out using one of two options, depending on 

the amount of metadata required to aid the interpretation of proposed reactions 

to be added to the model to fill gaps. The two options are:

(A) Without returning additional metadata

(i) In order to fill gaps without returning additional metadata, 

run:
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>> epsilon = 1e–4;

>> addedRxns = fastGapFill(consistMatricesSUX, 

epsilon, weights);

The parameter epsilon defines the minimum non-zero 

flux requested in a blocked reaction when filling gaps. 

In a multi-scale model, the value of epsilon may need to 

be decreased, when using a quadruple precision solver 

(see Step 15). The output addedRxns contains the 

reactions from the UX matrix added to fill the gap(s).

(B) With returning additional metadata

(i) In order to return additional metadata for assistance with the 

manual evaluation of proposed reactions, use:

>> addedRxnsExtended = 

postProcessGapFillSolutions(addedRxns, model, 

blockedRxns);

The output structure addedRxnsExtended contains the 

information present in addedRxns as well as the 

statistics and whether desired pathways contain the flux 

vectors.

The main result is a list of candidate reactions to be added to the metabolic reconstructions. 

These reactions need to be evaluated for their biological and physiological plausibility in the 

organism, or cell-type, under consideration.

▲ CRITICAL STEP Algorithmic approaches help to identify new candidate reactions, but 

these candidates must be manually curated before being added to a reconstruction. This step 

is critical for obtaining a high-quality metabolic reconstruction. Adding the least number of 

reactions to fill gaps may not be the most appropriate assumption from a biological 

viewpoint. Consequently, the reactions proposed to be added to reconstruction require 

further manual assessment. Proposed gap filling solutions must be rejected if they are 

biologically incorrect.

The mapping between the metabolite abbreviations in the universal database (e.g., KEGG) 

and the reconstruction metabolite abbreviations in model.mets, will ultimately limit how 

many blocked reactions might be resolved with fastGapFill. The larger the number of 

metabolites that map between these different namespaces, the larger the pool of metabolic 

reactions from the universal database that can be proposed to fill gaps. The mapping 

between the reconstruction and universal metabolite database can be customised using the 

dictionaryFile, which lists the universal database identifiers and their counterparts in the 

reconstruction.
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Extracellular metabolomic data ● TIMING 103 – 105 s

31 | Metabolomics is an indispensable analytical method in many biological 

disciplines including microbiology, plant sciences, biotechnology, and 

biomedicine. In particular, extracellular metabolomic data are often generated 

from cell lines in order to characterise and phenotype them under different 

experimental conditions (e.g., drug treatment or hypoxia). However, the analysis 

and interpretation of metabolomic data is still in its infancy, limiting the 

interpretation to potential metabolic pathways rather than providing a 

comprehensive understanding of the underlying mechanistic basis of the 

observed data.

MetaboTools is a COBRA Toolbox extension65, that integrates semi-quantitative and 

quantitative extracellular metabolomic data with metabolic models. The resulting models 

allow for the interpretation and generation of experimentally testable mechanistic 

hypotheses. With MetaboTools, extracellular metabolomic data are integrated with a 

COBRA model structure, e.g., the generic human metabolic model66, in a way that ensures 

the integration of a maximal number of measured metabolites, while adding a minimal 

number of additional uptake and secretion metabolites such that the specified constraints on 

the metabolic network can be sustained.

It is assumed that the extracellular metabolomic experiments are carried out with a defined 

fresh medium and that the corresponding model can only take up the components of the 

medium (plus dissolved gases). To apply constraints that are representative of the chemical 

composition of the fresh medium used in an experiment, use the setMediumConstraints 

function:

>> modelMedium = setMediumConstraints(starting_model, set_inf, current_inf, … 

medium_composition, met_Conc_mM, cellConc, t, cellWeight, mediumCompounds, … 

mediumCompounds_lb);

The starting_model is the model before addition of fresh medium constraints. The 

current_inf input argument allows one to specify a value for the large magnitude finite 

number that is currently used to represent an effectively infinite reaction rate bound, then 

harmonise them to a new value specified by set_inf. When no information on the bounds of 

a reaction is known, the ideal way to set reaction bounds is model.lb(j)= −inf; and 

model.ub(j)= inf;. However, depending on the optimisation solver, an infinite lower or upper 

bound may or may not be accepted. Therefore, when no information on the bounds of a 

reaction are known, except perhaps the directionality of the reaction, then the upper or lower 

bound may be a large magnitude finite number, e.g., model.ub(j)= 1000;.

The fresh medium composition must be specified with a vector of exchange reaction 

abbreviations for metabolites in the cell medium medium_composition and the 

corresponding millimolar concentration of each medium component met_Conc_mM. The 

density of the culture (cellConc, cells per mL), the time between the beginning and the end 

of the experiment (t, hours), and the measured cellular dry weight (cellWeight, gDW) must 

also be specified. Basic medium components (mediumCompound), such as protons, water 
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and bicarbonate, and the corresponding lower bounds on exchange reactions 

(mediumCompounds_lb), must also be specified. Even though they are present, they are not 

usually listed in the specification of a commercially defined medium, but they are needed for 

cells and the generic human metabolic model in order to support the synthesis of biomass. 

The modelMedium is a new model with external reaction bounds set according to the 

defined fresh medium.

32 | Next, prepare the quantitative exometabolomic data using the 

prepIntegrationQuant function:

>> prepIntegrationQuant(modelMedium, metData, exchanges, sampleNames, test_max, 

test_min, … outputPath);

The fluxes for each metabolite are given as uptake (negative) and secretion (positive) flux 

values in a metabolomic data matrix metData, in which each column represents a sample in 

sampleNames and each row in exchanges represents an exchanged metabolite. The units 

used for fluxes must be consistent within a model. For the input model in modelMedium, the 

prepintegrationQuant function tests whether the qualitative uptake (test_max, e.g., +/−500) 

and secretion (test_min, e.g., 10−5) of the metabolites is possible for each sample defined in 

the metabolomic data matrix metData. If a metabolite cannot be secreted or taken up, it will 

be removed from the data matrix for that particular sample. Possible reasons for this could 

be missing production or degradation pathways, or blocked reactions. For each sample, the 

uptake and secretion profile compatible with the input model in modelMedium is saved to 

the location specified in outputPath using the unique sample name.

33 | The model constrained by the defined fresh medium composition modelMedium 

and the output of the prepintegrationQuant function can now be used to generate 

a set of functional, contextualised, condition-specific models using:

>> [ResultsAllCellLines, OverViewResults] = setQuantConstraints(modelMedium, samples, 

tol, … minGrowth, obj, no_secretion, no_uptake, {}, {}, 0, outputPath);

A subset of samples can be specified with samples. All fluxes smaller than tol will be treated 

as zero. A lower bound (minGrowth, e.g., 0.008 per hour) on a specified objective function, 

e.g., obj = biomass_reaction2; needs to be defined, along with metabolites that should not be 

secreted, e.g., no_secretion = ‘EX_o2[e]’, or taken up (no_uptake = ‘EX_o2s’). The function 

returns a ResultsAllCellLines structure containing the context-specific models as well as an 

overview of model statistics in OverViewResults. For each sample, a condition-specific 

model is created, in which the constraints have been set in accordance with the medium 

specification and the measured extracellular metabolomic data. This set of condition-specific 

models can then be phenotypically analysed using the various additional functions present in 

the COBRA Toolbox as detailed in the MetaboTools protocol65.

Intracellular metabolomic data ● TIMING 102 – 104 s

34 | COBRA methods have also been developed for integration with intracellular 

metabolomic measurements83–85, further improving the ability of the COBRA 

Toolbox to be used for the integration and interpretation of metabolomic data. In 

particular, unsteady-state flux balance analysis (uFBA85) enables the integration 
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of absolutely quantified time-course metabolomic data into a metabolic model, 

generating constraints on intracellular fluxes even when intracellular metabolite 

levels are not at steady-state. The main steps in the ufba method are illustrated in 

Figure 3.

The first step is to experimentally quantify the absolute concentrations of a set of 

extracellular and intracellular metabolites at regular time intervals85.

35 | Plot the time-course metabolomic data. If the data is non-linear, use principal 

component analysis to define a sequence of temporal stages during which the 

time-course metabolomic data can be considered piecewise linear.

36 | Use linear regression to estimate the rate of change of concentration with respect 

to time for each measured metabolite and for each temporal stage.

37 | Load a standard COBRA model structure containing the 

fields .s, .b, .lb, .ub, .mets, and .rxns.

38 | Integrate the rate of change in concentration for each measured metabolite with 

a COBRA model with:

>> uFBAoutput = buildUFBAmodel(model, uFBAvariables);

The uFBAvariables structure must contain the following fields: .metNames is a list of 

measured metabolites, .changeslopes provides the rate of change of concentration with 

respect to time for each measured metabolite, .changeintervals yields the difference between 

the mean rate of change of concentration with respect to time and the lower bound of 95% 

percent confidence interval. The list ignoreSlopes contains metabolites whose measurements 

should be ignored due to insignificant rate of change.

The output is a uFBAoutput structure that contains the following fields: .model, a COBRA 

model structure with constraints on the rate of change of metabolite 

concentrations, .metsToUse with a list of metabolites with metabolomic data integrated into 

the model, and .relaxedNodes with a list of metabolites that deviate from steady-state along 

with the direction (i.e., accumulation or depletion) and magnitude (i.e., reaction bound) of 

deviation. The uFBA algorithm automatically determines sink or demand reactions needed 

to return a model with at least one feasible flux balance solution, by automatically 

reconciling potentially incomplete or inaccurate metabolomic data with the model structure. 

The added sink or demand reactions allow the corresponding metabolites, defined 

by .relaxedNodes, to deviate from a steady state to ensure model feasibility. The default 

approach is to minimise the number of metabolites that deviate from steady state.

The buildUFBAmodel function integrates quantitative time course metabolomic data with a 

model by setting rates of change with respect to time for a set of measured intracellular and 

extracellular metabolites. A set of sink reactions, demand reactions, or both, may have been 

added to certain nodes in the network to ensure that the model admits at least one feasible 

mass balanced flux.

39 | The obtained model can then be minimized using optimizeCbModel:
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>> model_ufba = optimizeCbModel(uFBAoutput.model);

Integration of transcriptomic and proteomic data ● TIMING 102 – 104 s

40 | Given a generic reconstruction of a biochemical network for a particular 

organism, some reactions may only be active in a specific tissue, cell-type, or 

under specific environmental conditions. It is necessary to extract a context-

specific model from a generic model in order to create a model that is 

representative of the part of the biochemical network that is active within a 

particular context. Each context-specific model is therefore a subset of a generic 

model. A variety of experimental data can be used to determine the set of 

reactions that must be part of a context-specific model, including transcriptomic, 

proteomic, and metabolomic data, as well as complementary experimental data 

from the literature.

Several model extraction methods have been developed, with different underlying 

assumptions, and each has been the subject of multiple comparative evaluations86–88. The 

selection of a model extraction method and its parametrisation, as well as the methods 

chosen to preprocess and integrate the aforementioned omics data, significantly influences 

the size, functionality, and accuracy of the resulting context-specific model. Currently, there 

is insufficient evidence to assert that one model extraction method universally gives the most 

physiologically accurate models. Therefore, a pragmatic approach is to test the biochemical 

fidelity of context-specific models generated using a variety of model extraction methods.

The COBRA Toolbox offers six different model extraction methods, accessible via a 

common interface:

>> tissueModel = createTissueSpecificModel(model, options);

The different methods and associated parameters are selected via the options structure. 

The .solver field indicates which method shall be used. The other fields of the options 

structure vary depending on the method and often depend on bioinformatic preprocessing of 

input omics data. There are additional optional parameters for all algorithms, with the 

default being the values indicated in the respective papers. Please refer to the original papers 

reporting each algorithm for details on the requirements for preprocessing of input data. 

Each of the six different model extraction methods can be invoked using:

(A) The FASTCORE89 algorithm

(i) One set of core reactions that is guaranteed to be active in the extracted 

model is identified by FASTCORE. Then, the algorithm finds the 

minimum number of reactions possible to support the core; .core field 

provides the core reactions which have to be able to carry flux in the 

resulting model.

(B) The GIMME90 algorithm

(i) With this algorithm, the usage of low-expression reactions is 

minimised while keeping the objective (e.g., biomass) above a certain 

value; .expressionRxns field provides the reaction expression, with −1 
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for unknown reactions or reactions not linked to genes; .threshold field 

sets the threshold above which a reaction is assumed to be active.

(C) The iMAT91 algorithm

(i) iMAT finds the optimal trade-off between including high-expression 

reactions and removing low-expression reactions; .expressionRxns 

field is defined as above; .threshold_lb field is the threshold below 

which reactions are assumed to be inactive; .threshold_ub field is the 

threshold above which reactions are assumed to be active.

(D) The INIT92 algorithm

(i) The optimal trade-off between including and removing reactions based 

on their given weights is determined by this algorithm; .weights field 

provides the weights w for each reaction in the objective of 

INIT max ∑i ∈ Rwiyi + ∑ j ∈ M x j . Commonly a high expression leads 

to higher positive values and low or no detection leads to negative 

values.

(E) The MBA93 algorithm

(i) MBA defines high-confidence reactions to ensure activity in the 

extracted model. Medium confidence reactions are only kept when a 

certain parsimony trade-off is met. .medium_set field provides the set 

of reactions that have a medium incidence, while .high_set field 

provides the set of reactions that have to be in the final model. Any 

reaction not in the medium or high set is assumed to be inactive and 

preferably not present in the final model.

(F) The mCADRE94 algorithm

(i) A set of core reactions is first found and all other reactions are then 

pruned based on their expression, connectivity to core, and confidence 

score. Reactions that are not necessary to support the core or defined 

functionalities are thus removed. Core reactions are removed if they 

are supported by a certain number of zero-expression 

reactions. .confidenceScores field provides reliability for each reaction, 

generally based on literature, while .ubiquityScore field provides the 

ubiquity score of each reaction in multiple replicates, i.e., the number 

of times the reaction was detected as active in experimental data under 

the investigated condition.

▲ CRITICAL STEP When integrating omics data, parameter selection is critical, 

especially the threshold for binary classification, e.g., the threshold for genes into active or 

inactive sets. Algorithmic performance often strongly depends on parameter choices and on 

the choice of data preprocessing method87. However, createTissueSpecificModel does not 

offer data preprocessing tools, because the selection of the discretisation method and 

parameters depend on the origin of the data. However, the COBRA Toolbox offers 
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functionality to map preprocessed expression data to reactions via the function 

mapExpressionToReactions(model, expression).

Adding biological constraints to a flux balance model ● TIMING ~ 102 s

41 | A cell-type or organ-specific model can be converted into a condition-specific 

model, based on the imposition of experimentally derived constraints. There are 

several types of constraints that can be imposed on a metabolic network, such as 

biomass maintenance requirements, environmental constraints, or maximal 

enzyme activities. In general, biomass constraints71 are added as part of a 

biomass reaction. In some instances, however, a cell-type (e.g., neuron) does not 

divide, but is only required to turn over its biomass components. Turnover rates 

are commonly expressed as half-lives and represent the time required for half of 

the biomass precursor to be replaced95. A model can be constrained with 

inequality constraints so as to require a minimal rate of turnover for a 

metabolite. If that metabolite possesses only one degradation pathway, then it is 

sufficient to adjust the bounds on a reaction in that pathway. However, if there 

are multiple possible degradation pathways, then it is necessary to impose a 

lower bound on the total rates of a set of irreversible degradation reactions, one 

for each possible degradation pathway of the metabolite in question.

The implementation of such a constraint is illustrated in the following example. In the brain, 

phosphatidylcholine (PC) can be degraded by three different metabolic pathways96:

• Phospholipase D acts on the choline/phosphate bond of PC to form choline and 

phosphatidic acid (PCHOLP_hs, https://vmh.uni.lu/#reaction/PCHOLP_hs).

• Phospholipase A2 acts on the bond between the fatty acid and the hydroxyl 

group of PC to form a

• fatty acid (e.g., arachidonic acid or docosahexaenoic acid) and 

lysophosphatidylcholine (PLA2_2, https://vmh.uni.lu/#reaction/PLA2_2).

• Ceramide and PC can also be converted to sphingomyelin by sphingomyelin 

synthetase (SMS, https://vmh.uni.lu/#reaction/SMS).

Load a COBRA model and define the set of reactions that will represent degradation of the 

metabolite in question:

>> multipleRxnList = {‘PCHOLP_hs’, ‘PLA2_2’, ‘SMS’};

▲ CRITICAL STEP Correctly converting the literature data into bound constraints with 

the same units used for the model fluxes may be a challenge. Indeed, the curation of 

biochemical literature to abstract the information required to quantitatively bound turnover 

rates can take between 4–8 weeks, when the target is to retrieve the biomass composition 

and the turnover rates of each of the different biomass precursors. Once all the constraints 

are available, imposing the corresponding reaction bounds takes less than 5 minutes.

42 | Verify that all the reactions are irreversible (the lower and upper bounds should 

be greater or equal to 0).
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>> rxnInd = findRxnIDs(model, multipleRxnList);

>> model.lb(rxnInd);

>> model.ub(rxnInd);

43 | Generate and add the constraint:

>> c = [1, 1, 1];

>> d = 2.674;

>> ineqSense = ‘G’;

>> modelConstrained = constrainRxnListAboveBound(model, multipleRxnList, c, d, 

ineqSense);

where c is a vector forming the inequality constraint cTv ≥ d, and d is a scalar. ineqSense 

encodes the sense of these inequality (‘L’ for a lower inequality, or ‘G’ for an upper 

inequality). In this example, all entries of c are positive as we seek for the sum of the rates of 

the three reactions (irreversible in the forward direction) to be greater than d. This extra 

constraint is encoded in the model.C field.

44 | Check that the constraints are correctly added to the model:

>> [nMet, nRxn] = size(modelConstrained.S);

45 | Solve the FBA problem with the extra constraint cTv ≥ d:

>> solution = optimizeCbModel(modelConstrained, ‘max’, 1e–6);

46 | Check the values of the added fluxes. The sum of fluxes should be greater than 

or equal to the value of d:

>> solution.v(rxnInd);

>> sum(c*FBAsolution.v(rxnInd));

Qualitative chemical and biochemical fidelity testing ● TIMING 102 – 103 s

47 | Once a context-specific model is generated, it is highly advisable to frequently 

compare preliminary model predictions with published experimental data6. Such 

predictions must be compared directly with an unbiased selection of appropriate 

independent biological literature in order to identify possible sources of 

misconception or computational misspecification. It is challenging to compare 

genome-scale predictions with experimental data that may only be available for 

a subset of a biochemical network. In this context, it is important to first turn to 

literature relevant to the aspect of the biological network being represented by a 

model and then check if the literature result is correctly predicted by the model. 

Inevitably, this is an iterative approach with multiple rounds of iterative 

refinement of the reconstruction and the model derived from it, before finalising 
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a model version and comparison of final predictions with independent 

experimental data.

A draft model should be subjected to a range of quantitative and qualitative chemical and 

biochemical fidelity tests. As described in Step 16, chemical fidelity testing includes testing 

for stoichiometric consistency. This should not be necessary if one starts with a 

stoichiometrically consistent generic model and extracts a context-specific model from it. 

However, it is possible that misspecified reactions might have been inadvertently added 

during refinement of a reconstruction, therefore retest for stoichiometric consistency. 

Beyond chemical fidelity, it is advised to test again for biochemical fidelity. Such tests are 

very specific to the particular biological domain that is being modelled. Here we focus on 

human metabolism and use modelClosed, the Recon3Dmodel66 with all external reactions 

closed, from Steps 21–22.

It is important to encode and conduct qualitative fidelity tests for anticipated true negatives. 

The following test is for the production of ATP from water alone in a closed model:

>> modelClosedATP = changeObjective(modelClosed, ‘DM_atp[c]’);

>> modelClosedATP = changeRxnBounds(modelClosedATP, ‘DM[atp_c]’, 0, ‘l’);

>> modelClosedATP = changeRxnBounds(modelClosedATP, ‘EX_h2o[e]’, −1, ‘l’);

>> FBAsol = optimizeCbModel(modelClosedATP);

If FBAsol.stat == 0, then the model is incapable of producing ATP from water, as expected. 

If FBAsol.stat == 1, then the supposedly closed model can produce ATP from water. This 

indicates that there are stoichiometrically inconsistent reactions in the network, which need 

to be identified. See Step 16 for instructions how to approach this analysis.

48 | It is also important to encode and conduct qualitative fidelity tests for anticipated 

true positives. The following metabolic function test is for the production of 

mitochondrial succinate from 4-Aminobutanoate in a model that is closed to 

exchange of mass across the boundary of the system, except for the metabolites 

‘gly[c]’, ‘co2[c]’,and ‘nh4[c]’.

>> modelClosed = addSinkReactions(modelClosed, {‘gly[c]’, ‘co2[c]’, ‘nh4[c]’}, …

[−100, −1; 0.1, 100; 0.1, 100]);

>> modelClosed = changeObjective(modelClosed, ‘sink_nh4[c]’);

>> sol = optimizeCbModel(modelClosed, ‘max’, ‘zero’);

If FBAsol.stat == 1, then it is feasible for the model to produce mitochondrial succinate 

from 4-Aminobutanoate. If FBAsol.stat == 0, then this metabolic function is infeasible. This 

is not anticipated and indicates that further gap filling is required (see Steps 28–30).
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Quantitative biochemical fidelity testing ● TIMING 102 – 103 s

49 | It is important to check if a model can reproduce or closely approximate known 

quantitative features of the biochemical network being represented. Here we 

illustrate how to predict the ATP yield from different carbon sources under 

aerobic or anaerobic conditions for Recon3D66. These are compared with the 

values for the corresponding ATP yields obtained from the biochemical 

literature. This approach can be adapted for condition- and cell-type specific 

models derived from Recon3D in order to test whether these models are still 

able to produce physiologically relevant ATP yields. Add and define the ATP 

hydrolysis reaction DM_atp[c] to be the objective reaction in the model with:

>> modelClosed = addReaction(modelClosed, ...

‘DM_atp[c]’, ‘h2o[c] + atp[c] -> adp[c] + h[c] + pi[c]’);

>> modelClosed = changeObjective(modelClosed, ‘DM_atp[c]’);

50 | Allow the model to uptake oxygen and water, then provide 1 mol/gdw/hr of a 

carbon source, e.g., glucose (VMH ID: glc_D[e]):

>> modelClosed.lb(find(ismember(modelClosed.rxns, ‘EX_o2[e]’))) = −1000;

>> modelClosed.lb(find(ismember(modelClosed.rxns, ‘EX_h2o[e]’))) = −1000;

>> modelClosed.ub(find(ismember(modelClosed.rxns, ‘EX_h2o[e]’))) = 1000;

>> modelClosed.ub(find(ismember(modelClosed.rxns, ‘EX_co2[e]’))) = 1000;

>> modelClosed.lb(find(ismember(modelClosed.rxns, ‘EX_glc_D[e]’))) = −1;

>> modelClosed.ub(find(ismember(modelClosed.rxns, ‘EX_glc_D[e]’))) = −1;

51 | Compute a flux balance analysis solution with maximum flux through the 

DM_atp[c] reaction:

>> FBAsolution = optimizeCbModel(modelClosed, ‘max’, ‘zero’);

MinSpan Pathways: a sparse basis of the nullspace of a stoichiometric matrix ● TIMING 
102 − 104 s

52 | COBRA models are often mathematically deconstructed into feasible steady 

state flux vectors in biochemical networks that can be biologically 

conceptualized as pathways. Much development and analysis has been done for 

such pathway vectors in terms of elementary flux modes97, extreme pathways98, 

and elementary flux vectors99. As the number of elementary or extreme vectors 

scales exponentially with the size of a typical metabolic network, increasingly 

efficient algorithms become essential for enumerating elementary or extreme 

vectors at genome-scale. An alternate approach100 is to approximately compute 

a set of n – rank(S) sparse linearly independent flux vectors that together form a 

basis of the right nullspace of a stoichiometric matrix and also satisfy specified 
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constraints on reaction directionality. This approach requires the solution of a 

greedy sequence of mixed-integer linear optimisation problems, each of which 

computes a sparse flux mode that is linearly independent from the rest of the 

vectors within a nullspace basis. The end result is a sparse set of linearly 

independent flux modes denoted MinSpan pathways.

Given a model with a stoichiometric matrix, reaction bounds and reaction identifiers, the 

MinSpan algorithm may be invoked with:

>> Z = detMinSpan(model, params);

The params structure provides the user ability to change key parameters. Among others, the 

main parameters include the amount of time .timeLimit for each iterative solve in seconds 

and the number of threads for the MILP solver to use. The output Z ∈ Rn×(n-rank(S)) is a 

sparse set of n – rank(S) linearly independent flux modes, each corresponding to a MinSpan 
pathway.

Low dimensional flux variability analysis ● TIMING 1 – 103 s

53 | Flux balance analysis does not, in general, return a unique optimal flux vector. 

That is, Problem (1) returns an optimal flux vector, υ⋆ ∈ ℝn with one flux value 

for each reaction, but typically an infinite set of steady state flux vectors exist 

that can satisfy the same requirement for an optimal objective, cTυ⋆ = cTυ, as 

well as the other equalities and inequalities in Problem (1). Flux variability 

analysis is a widely used method for evaluating the minimum and maximum 

range of each reaction flux that can still satisfy the aforementioned constraints 

using two optimisation problems for each reaction of interest

max\min
υ

υ j

s.t. Sυ = 0,

l ≤ υ ≤ u,

cTυ = cTυ⋆ .

(4)

Just as there are many possible variations on flux balance analysis, there are many possible 

variations on flux variability analysis. The COBRA Toolbox offers a straightforward 

interface to implement standard flux variability analysis and a wide variety of options to 

implement variations on flux balance analysis.

(A) Standard flux variability analysis

(i) The following command can be invoked to compute standard flux 

variability analysis:

>> [minFlux, maxFlux] = fluxVariability(model);
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The result is a pair of n dimensional column vectors, minFlux and 

maxFlux, with the minimum and maximum flux values satisfying 

Problem (4).

(B) Advanced flux variability analysis

(i) The full spectrum of flux variability analysis options can be accessed 

using the command:

>> [minFlux, maxFlux, Vmin, Vmax] = fluxVariability(model, 

optPercentage, osenseStr, … rxnNameList, verbFlag, allowLoops, 

method);

The optPercentage parameter allows one to choose whether to consider solutions that give at 

least a certain percentage of the optimal solution. For instance optPercentage = 0 would just 

find the flux range of each reaction, without of any requirement to satisfy any optimality 

with respect to flux balance analysis. Setting the parameters osenseStr = ‘min’ or osenseStr 

= ‘max’ determines whether the flux balance analysis problem is first solved as a 

minimisation or maximisation. The rxnNameList accepts a cell array list of reactions to 

selectively perform flux variability upon. This is useful for high dimensional models, for 

which the computation of a flux variability for all reactions is more time consuming. The 

additional n × k output matrices Vmin and Vmax return the flux vector for each of the k ≤ n 
fluxes selected for flux variability. The verbFlag input determines how much output shall be 

printed. The parameter allowLoops == 0 invokes a mixed integer linear programming 

implementation of thermodynamically constrained flux variability analysis for each 

minimisation or maximisation of a reaction rate. The method input argument determines 

whether the output flux vectors also minimise the 0–norm, 1–norm or 2–norm while 

maximising or minimising the flux through one reaction.

The default result is a pair of maximum and minimum flux values for every reaction. 

Optional parameters may be set. For instance, parameters can be set to control which subset 

of k ≤ n reactions of interest that shall be be obtained, or to determine the characteristics of 

each of the 2 × k flux vectors.

High dimensional flux variability analysis ● TIMING 1 – 105 s

54 | Besides flux balance analysis, flux variability analysis is the most widely used 

constraint-based modelling method for high-dimensional models. However, its 

use in this setting requires a more sophisticated computational approach, with a 

multi-core processor101, or computational cluster42, and a commercial-grade 

linear optimisation solver. In this setting, advanced users have two options:

(A) Use fastFVA with MATLAB

(i) Solve the 2 × k linear optimisation problems using multiple 

threads running on parallel processors with fastFVA, which 

depends on the CPLEX solver (IBM Inc.), using the 

command :
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>> [minFlux, maxFlux, optsol] = fastFVA(model, 

optPercentage, osenseStr);

The output argument optsol returns the optimal solution 

of the initial FBA.

(B) Use distributedFBA.jl with Julia

(i) An alternative is to solve the 2 × k linear optimisation 

problems using multiple threads running on parallel 

processors or a cluster using distributedFBA.jl, an 

openCOBRA extension that permits the solution of flux 

balance analysis, a distributed set of flux balance problems, 

or a flux variability analysis using a common of solver 

(GLPK, CPLEX, Clp, Gurobi, Mosek). Assuming that 

distributedFBA.jl has been correctly installed and 

configured, the commands to go back and forth between a 

model or results in MATLAB and the computations in Julia 

are:

>> save(‘high_dimensional_model.mat’, unimodel);

# -- switch to Julia --

julia> model = 

loadModel(“high_dimensional_model.mat”);

julia> workersPool, nWorkers = createPool(128);

julia> minFlux, maxFlux, optSol, fbaSol, fvamin, 

fvamax = distributedFBA(model, … solver, nWorkers = 

nWorkers, optPercentage = optPercentage, preFBA = 

true); julia> 

saveDistributedFBA(“high_dimensional_FVA_results.m

at”);

# -- switch to MATLAB --

>> load(‘high_dimensional_FVA_results.mat’);

Here, nWorkers = 128 will distribute the flux variability 

analysis problem amongst 128 Julia processes on one or 

more computing nodes in a computational cluster.

Uniform sampling of steady-state fluxes ● TIMING 1 – 103 s

55 | An unbiased characterisation of the set of flux vectors consistent with steady 

state, mass balance, and reaction bound constraints can be obtained by 

uniformly sampling the feasible set Ω: = v |Sv = 0; l ≤ v ≤ u . The feasible set 

for sampling should be defined based on biochemically justifiable constraints. 

These are the same conditions that apply when formulating the flux balance 

analysis Problem (1), except that there is no need to formulate a linear objective. 
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To ensure the sample is statistically representative of the entire feasible set, a 

sufficiently large number of flux vectors and the flux vectors must be collected 

randomly within the feasible set. Recently, we distributed new software to 

uniformly sample feasible sets of steady state fluxes102 based on a coordinate 
hit-and-run with rounding (CHRR) algorithm103, 104 that is guaranteed to return 

a statistically uniform distribution when appropriately utilised. The CHRR 

sampling algorithm is therefore used by default. Figure 4 illustrates the basics of 

this algorithm.

Sampling of a model is invoked either by using the default setting or by tailoring the 

parameters with more arguments to the interface. A pragmatic approach is to first try Option 

(A) with the default parameters, then check the quality of the marginal flux distribution for a 

subset of reactions (see Figure 4). Especially for higher dimensional models, it may be 

necessary to tune the parameters with Option (B).

(A) Sampling of a mono-scale model with ≲ 2000 variables

(i) A Model that contains less than 2000 variables can usually be sampled 

using the default settings:

>> [modelSampling, samples] = sampleCbModel(model);

The samples output is an n × p matrix of sampled flux vectors, 

where p is the number of samples. In order to accelerate any 

future rounds of sampling, use the modelSampling output. This is 

a model storing extra variables acquired from preprocessing the 

model for sampling (see Figure 4).

(B) Sampling of a model with ≲ 10000 variables

(i) Larger Models containing less than 10000 variables may be sampled 

by tuning the optional input parameters:

>> [modelSampling, samples] = sampleCbModel(model, 

sampleFile, samplerName, options, … modelSampling);

The variable sampleFile contains the name of a .mat file used to 

save the sample vectors to disk. A string passed to samplerName 

can be used to sample with non-default solvers. The options 

structure contains fields that control the sampling density (.nSkip) 

and the number of samples (.nSamples). The total number of 

samples returnedis p = nSkip × nSamples. The output 

modelSampling may be used in subsequent rounds of sampling. 

Although rounding large models is computationally demanding, 

the results can be reused when sampling the same model more 

than once. The CHRR algorithm provably converges to a uniform 

stationary sampling distribution if enough samples are obtained 

and has been tested with mono-scale metabolic models with up to 

10000 reactions. The default parameters are set using heuristic 

rules to estimate a sufficiently large number of samples, which 
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balances this requirement against the desire to complete the 

sampling procedure in a practically useful period of time. ? 
TROUBLESHOOTING

Identify all genetic manipulations leading to targeted overproductions ● TIMING 10 –105 s

56 | A variety of strain design algorithms58 are implemented within the COBRA 

Toolbox, including OptKnock105, OptGene106, Genetic Design Local Search 

(GDLS107), and OptForce108. While OptKnock, OptGene, and GDLS could 

identify gene deletion strategies, the OptForce method can identify not only 

gene deletion but also up- and down-regulation strategies. As the OptForce 

method is new to this version of the COBRA Toolbox, we provide an illustrative 

example of strain design using this method.

Consider the problem of finding a set of interventions of size κ such that when these 

interventions are applied to a wild-type strain, the mutant created will produce a particular 

target of interest at a higher yield than the wild-type strain. The interventions could be 

knock-outs (zero out the flux for a particular reaction), up-regulations (increase the flux for a 

particular reaction), or down-regulations (decrease the flux for a particular reaction). As an 

example, we will use the OptForce method to identify all genetic manipulations leading to 

the overproduction of succinate in E. coli108. The OptForce method consists of the following 

set of steps: define the constraints for both wild-type and mutant strains, perform flux 

variability analyses for both wild-type and mutant strains, find the sets of reactions that must 

alter their flux in order to achieve the desired phenotype in the mutant strain, and, finally, 

find the interventions needed to ensure an increased production of the target of interest 

(Steps 69–73).

First, select a commercial-grade solver and select the local directory to save the generated 

results with: >> changeCobraSolver(‘gurobi’, ‘ALL’);

57 | Load an illustrative model that comprises only 90 reactions, describing the 

central metabolism in E. coli109.

>> readCbModel(‘AntCore.mat’);

58 | Set the objective function to maximise the biomass reaction (R75). Change the 

lower bounds such that E. coli model will be able to consume glucose, oxygen, 

sulfate, ammonium, citrate, and glycerol.

>> model = changeObjective(model, ‘R75’, 1);

>> for rxn = {‘EX_gluc’, ‘EX_o2’, ‘EX_so4’, ‘EX_nh3’, ‘EX_cit’, ‘EX_glyc’}

model = changeRxnBounds(model, rxn, −100, ‘l’);

end

59 | Define the constraints for both wild-type and mutant strains:

>> constrWT = struct(‘rxnList’, {{‘R75’}}, ‘rxnValues’, 14, ‘rxnBoundType’, ‘b’);
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>> constrMT = struct(‘rxnList’, {{‘R75’, ‘EX_suc’}}, ‘rxnValues’, [0, 155.55], … 

‘rxnBoundType’, ‘bb’);

▲ CRITICAL STEP In this example, we provide the constraints for both wild-type and 

mutant strains, but in a typical scenario the definition of differential constraints on wild-type 

and mutant strains requires additional research. This step could take a few days or weeks, 

depending on the information available for the species of interest. Flux bounds (i.e., uptake 

rate and minimum biomass yield target) are required inputs. New experiments might be 

required to be performed in addition to the literature curation task in order to obtain such 

data. Assumptions may also be made when describing the phenotypes of both strains, which 

will reduce the dependency on literature curation. It is important that the two strains are 

sufficiently different in order to be able to anticipate differences in reaction ranges.

60 | Performing flux variability analysis for both wild-type and mutant strains with:

>> [minFluxesW, maxFluxesW, minFluxesM, maxFluxesM] = FVAoptForce(model, 

constrWT, constrMT);

>> disp([minFluxesW, maxFluxesW, minFluxesM, maxFluxesM]);

61 | The MUST sets are the sets of reactions that must increase or decrease their flux 

in order to achieve the desired phenotype in the mutant strain. As shown in 

Figure 5, the first order MUST sets are MustU and MustL while second order 

MUST sets are denoted as MustUU, MustLL, and MustUL. After parameters 

and constraints are defined, the functions findMustL and findMustU are run to 

determine the mustU and mustL sets, respectively. Define an ID of the run with:

>> runID = ‘TestoptForceM’;

Each time the MUST sets are determined, folders are generated to read inputs and store 

outputs, i.e., reports. These folders are located in the directory defined by the uniquely 

defined runID.

62 | In order to find the first order MUST sets, constraints should be defined:

>> constrOpt = struct(‘rxnList’, {{‘EX_gluc’, ‘R75’, ‘EX_suc’}}, ‘values’, [−100; 0; 

155.5]);

63 | The first order MUST set MustL is determined by running:

>> [mustLSet, pos_mustL] = findMustL(model, minFluxesW, maxFluxesW, …

‘ constrOpt’, constrOpt, ‘runID’, runID);

If runID is set to ‘TestoptForceL’, a folder TestoptForceL is created, in which two additional 

folders InputsMustL and OutputsMustL are created. The InputsMustL folder contains all the 

inputs required to run the function findMustL, while the OutputsMustL folder contains the 

mustL set found and a report that summarises all the inputs and outputs. In order to maintain 

a chronological order of computational experiments, the report is timestamped.

64 | Display the reactions that belong to the mustL set using:
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>> disp(mustLSet)

65 | The first order MUST set Mustu is determined by running:

>> [mustUSet, pos_mustU] = findMustU(model, minFluxesW, maxFluxesW, …

‘ constrOpt’, constrOpt, ‘runID’, runID);

The results are stored and available in a format analogous to the mustL set. The reactions 

that belong to the mustU may be displayed in the same way as mustL.

66 | Define the reactions that will be excluded from the analysis. The reactions found 

in the previous step as well as exchange reactions shall be included.

>> constrOpt = struct(‘rxnList’, {{‘EX_gluc’, ‘R75’, ‘EX_suc’}}, ‘values’, [−100, 0, 

155.5]’);

>> exchangeRxns = model.rxns(cellfun(@isempty, strfind(model.rxns, ‘EX_’)) == 0);

>> excludedRxns = unique([mustuSet; mustLSet; exchangeRxns]);

67 | The second order MUST set Mustuu can be determined by running:

>> [mustUU, pos_mustUU, mustUU_linear, pos_mustUU_linear] = findMustUU(model, 

minFluxesW, … maxFluxesW, ‘constrOpt’, constrOpt, ...

‘excludedRxns’, excludedRxns,’runID’, runID);

The results are stored and available in a format analogous to the mustL set. The reactions of 

the mustUU can be displayed using the disp function.

68 | Repeat the above steps to determine the second order MUST sets MustLL and 

MustUL by using the functions findMustLL and findMustUL respectively. The 

results are stored and available in a format analogous to the mustL set. In the 

present example, mustLL and mustuL are empty sets. ? 
TROUBLESHOOTING

69 | In order to find the interventions needed to ensure an increased production of the 

target of interest, define the mustu set as the union of the reactions that must be 

up-regulated in the first and second order MUST sets. Similarly, mustL may be 

defined.

>> mustU = unique(union(mustUSet, mustUU));

>> mustL = unique(union(mustLSet, mustLL));

70 | Define the number of interventions κ allowed, the maximum number of sets to 

find nSets, the reaction producing the metabolite of interest targetRxn (in this 

case, succinate), and the constraints on the mutant strain constrOpt.

>> k = 1; nSets = 1; targetRxn = ‘EX_suc’;

>> constrOpt = struct(‘rxnList’, {{‘EX_gluc’,’R75’}}, ‘values’, [−100, 0]);
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71 | Run the OptForce algorithm and display the reactions identified by optForce 

with:

>> [optForceSets, posoptForceSets, typeRegoptForceSets, flux_optForceSets] = …

optForce(model, targetRxn, mustU, mustL, minFluxesW, maxFluxesW, minFluxesM, ...

maxFluxesM, ‘k’, k, ‘nSets’, nSets, ‘constrOpt’, constrOpt, ‘runID’, runID);

72 | In order to find non-intuitive solutions, increase the number of interventions κ 
and exclude the SUCt reaction from up-regulations. Increase nSets to find the 20 

best sets. Change the runID to save this second result in a separate folder from 

the previous result, then run optForce again as in Step 71.

>> k = 2; nSets = 20; runID = ‘TestoptForceM2’;

>> excludedRxns = struct(‘rxnList’, {{‘SUCt’}}, ‘typeReg’,’U’);

73 | The reactions determined by optForce can be displayed using 

disp(optForceSets). The complete set of predicted interventions can be found in 

the folders created inside the runID folder in which inputs and outputs of 

optForce and associated findMust* functions are stored. The input folders 

InputsFindMust* contain .mat files for running the functions to solve each one 

of the bilevel optimisation problems. The output folders OutputsFindMust* 
contain results of the algorithms (saved as .xls and .txt files) as well as a report 

(a .txt file) that summarises the outcome of the steps performed during the 

execution of each function. The optForce algorithm will find sets of reactions 

that should increase the production of a specified target. The first sets found 

should be the best ones because the production rate will be the highest. The last 

ones will be the worst, as the production rate is the lowest. ! CAUTION Be 

aware that some sets may not guarantee a minimum production rate for a target, 

so check the minimum production rate, e.g., using the function testoptForceSol.

Atomically resolve a metabolic reconstruction ● TIMING 10 – 105 s

74 | In most genome-scale metabolic models, it is not explicit that the stoichiometric 

matrix represents a network of biochemical reactions. It is implicit that each row 

of the stoichiometric matrix corresponds to some molecular species, but when 

computing properties of the model, the atomic structure of each molecular 

species is not represented. It is also implicit that each column of the 

stoichiometric matrix corresponds to some biochemical reaction. However, when 

computing properties of the model, the mechanisms of the underlying 

biochemical reaction, in terms of the structures of the metabolites and the 

atomically resolved chemical transformations that take place, are not 

represented. Recent developments in genome-scale metabolic modelling have 

generated genome-scale metabolic reconstructions where the molecular 

structures are specified110 and the reaction mechanisms are represented by atom 

mappings between substrate and product atoms66, 111.
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An atom mapping is a one-to-one association between a substrate atom and a product atom. 

An instance of a chemical reaction may be represented by a set of atom mappings, with one 

atom mapping between each substrate and product atom. A single chemical reaction can 

admit multiple chemically equivalent atom mappings when chemically equivalent atoms are 

present in a substrate, a product, or both. Therefore, each chemical reaction may be 

represented by one set, or multiple chemically equivalent sets, of atom mappings. Together, 

a set of atom mappings for a chemical reaction specify key aspects of the reaction 

mechanism, e.g., chemical bond change, breakage, and formation. The Virtual Metabolic 

Human database (VMH, http://vmh.life) provides metabolites chemical structures and atom 

mapped reactions for 9,610 reactions in Recon3D66 and 4,831 metabolites from Recon3D66 

and the human gut microbiota38. Metabolite structures are provided in canonically ordered 

MOL and SMILES formats. Atom mapping data are provided in both RXN and SMILES 

formats. This explicit representation of metabolite and reaction structure offers the 

possibility of a broader range of biological, biomedical and biotechnological applications 

than with stoichiometry alone.

In order to obtain chemical structures for each metabolite, there are three main ways:

(A) Use chemoinformatics software tools

(i) Suitable cheminformatics software tools110 may be used to 

automatically obtain metabolite identifiers in metabolic network 

reconstructions and download the corresponding structure from a 

database.

(B) Manually interrogate metabolic databases

(i) Databases such as VMH (http://vmh.life), PubChem112, KEGG113, 

ChEBI114, LMSD115, BioPath database116, ChemSpider database117, 

HMDB118, etc provide chemical structures for metabolites in a 

network.

(C) Manually draw structures of metabolites

(i) Based on chemical knowledge, one could manually draw structures of 

metabolites using tools such as ChemDraw (PerkinElmer, https://

perkinelmer.com/ChemDraw).

75 | In order to obtain an atom mapping for a metabolic reaction, the reaction 

stoichiometry and the chemical structures of the corresponding metabolites must 

be available. To obtain atom mappings, there are three main options:

(A) Use software tools for prediction of atom mappings

(i) A comparative study has been performed using Recon3D as 

a test case111. Due to its accuracy and availability, Reaction 

Decoder Tool (RDT119) is considered being the most suitable 

algorithm to atom map the reactions from a genome-scale 

metabolic network. Nevertheless, note that the Canonical 

Labelling for Clique Approximation (CLCA120) algorithm 
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can map reactions with explicit hydrogen atoms for fully 

protonated reactions, while RDT can only atom map 

reactions with implicit hydrogen atoms.

(B) Manually interrogate metabolic databases

(i) Databases such as BioPath116 and KEGG RPAIR121 

disseminate manually curated atom mappings. VMH (http://

vmh.life) also contains manually curated atom mappings for 

a subset of human metabolic reactions.

(C) Manually draw atom mappings

(i) Based on chemical knowledge, one could draw atom 

mappings using tools such as ChemDraw (PerkinElmer, 

https://perkinelmer.com/ChemDraw).

76 | Given a model structure and the directory containing the chemical structure files 

(molFileDir) in MDL MOL file format, RDT can be invoked to atom map a 

metabolic model using:

>> balancedRxns = obtainAtomMappingsRDT(model, molFileDir, outputDir, …

maxTime, standardiseRxn);

This function computes atom mapping data for the balanced and unbalanced reactions in the 

metabolic network and saves it in the outputDir directory. The optional maxTime parameter 

sets a runtime limit for atom mapping of a reaction. If standardiseRxn == 1, then atom 

mappings are also canonicalised, which is necessary in order to obtain a consistent 

interoperable set of atom mappings for certain applications, e.g., computation of conserved 

moieties in Step 77. The output balancedRxns contains the balanced atom mapped metabolic 

reactions. ? TROUBLESHOOTING

77 | With a set of canonicalised atom mappings for a metabolic network, the set of 

linearly independent conserved moieties for a metabolic network can be 

identified122. Each of these conserved moieties corresponds to a molecular 

substructure (set of atoms in a subset of a molecule) whose structure remains 

invariant despite all the chemical transformations in a given network. A 

conserved moiety is a group of atoms that follow identical paths through 

metabolites in a metabolic network. Similarly to a vector in the (right) nullspace 

of a stoichiometric matrix that corresponds to a pathway (see Step 52), a 

conserved moiety corresponds to a vector in the left nullspace of a 

stoichiometric matrix. Metabolic networks are hypergraphs123, while most 

moiety subnetwork are graphs. Therefore conserved moieties have both 

biochemical and mathematical significance and once computed, can be used for 

a wide variety of applications. Given a metabolic network of exclusively mass 

balanced reactions, one can identify conserved moieties by a graph theory 

analysis of its atom transition network122.

First compute an atom transition network for a metabolic network using:
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>> ATN = buildAtomTransitionNetwork(model, rxnfileDir);

where rxnfileDir is a directory containing only atom mapped files from balanced reactions, 

which can be obtained as explained in Step 76. The output atn is a structure with several 

fields: .A is a p × q sparse incidence matrix for the atom transition network, where p is the 

number of atoms and q is the number of atom transitions, .mets is a p × 1 cell array of 

metabolite identifiers to link each atoms to its corresponding metabolites, .rxns is a q × 1 

cell array of reaction identifiers to link atom transitions to their corresponding reactions, 

and .elements is a p x 1 cell array of element symbols for atoms in .A.

▲ CRITICAL STEP All the RXN files needed to compute the atom transition network 

must be in a canonical format. This can be achieved by setting standardiseRxn = 1.

78 | In order to identify the conserved moieties in the metabolic network, invoke:

>> [L, M, moietyFormulas] = identifyConservedMoieties(model, ATN);

where L represents the conserved moieties in the metabolic network. That is, Lis an m × r 
matrix of r moiety vectors in the left null space of the stoichiometric matrix, M is the u × v 
incidence matrix of the moiety supergraph in which each connected component is a moiety 

graph, and moietyFormulas is an m × r cell array with chemical formulas of the computed 

moieties.

Thermodynamically constrain a metabolic model ● TIMING 1 – 103 s

79 | In flux balance analysis of genome-scale stoichiometric models of metabolism, 

the principal constraints are uptake or secretion rates, the steady state mass 

conservation assumption, and reaction directionality. The COBRA Toolbox 

extension vonBertalanffy124 is a set of methods for integration of 

thermochemical data with constraint-based models125–127 as well as application 

of thermodynamic laws to increase the physicochemical fidelity of constraint-

based modelling predictions128. A full exposition of the method to 

thermodynamically constrain a genome-scale metabolic model is beyond the 

scope of this protocol. Therefore, only several key steps are highlighted.

Given a set of experimentally derived training_data on standard transformed Gibbs energies 

of formation, a state-of-the art quantitative estimation of standard Gibbs energy of formation 

for metabolites with similar chemical substructures can be obtained using an implementation 

of the component contribution method127. We assume that the input model has been 

anatomically resolved as described in Steps 74–78. Access to a compendium of 

stoichiometrically consistent metabolite structures110, 122 is a prerequisite. The component 

contribution method is then invoked as follows:

>> model = componentContribution(model, training_data);

The model.DfG0 field gives the estimated standard Gibbs energy of formation for each 

metabolite in the model with model.DfG0_Uncertainty field expressing the uncertainty in 

these estimates, which is smaller for metabolites structurally related to metabolites in the 

training set. All thermodynamic estimates are given in units of kJ/mol.
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80 | The standard Gibbs energy of formation for each metabolite must be 

transformed according to the environment of each compartment of the model126, 

i.e., the temperature, pH, ionic strength and electrical potential specific to each 

compartment. Then the thermodynamic properties of reactions are estimated, 

given model.concMin and model.concMax where one can supply lower and 

upper bounds on compartment-specific metabolite concentrations (mol/L), 

which may be achieved with:

>> model = setupThermoModel(model, confidenceLevel);

In the output, field .DfGt0 of model gives the estimated standard transformed Gibbs energy 

of formation for each metabolite and .DrGt0 gives the estimated standard transformed Gibbs 

energy for each reaction. Subject to a confidenceLevel specified as an input, the upper and 

lower bounds on standard transformed Gibbs energy for each reaction are provided 

in .DrGtMin and .DrGtMax respectively.

▲ CRITICAL STEP In a multi-compartmental model, this step must be done for an entire 

network at once in order to ensure that thermodynamic potential differences, arising from 

differences in the environment between compartments, are properly taken into account. 

See126 for a theoretical justification for this assertion.

81 | Reaction directionality may be quantitatively assigned based on the 

aforementioned thermodynamic estimates with:

>> [modelThermo, directions]= thermoConstrainFluxBounds(model, confidenceLevel, …

DrGt0_Uncertainty_Cutoff);

If model.DrGtMax(j)< 0, then the jth reaction is assigned to be forward, and if 

model.DrGtMin(j)> 0 then the jth reaction is assigned to be reverse, unless the uncertainty in 

estimation of standard transformed reaction Gibbs energy exceeds a specified cutoff 

(DrGt0_uncertainty_Cutoff). In this case, the qualitatively assigned reaction directionality, 

specified together by model.lb(j) and model.ub(j), takes precedence. The directions output 

provides a set of boolean vector fields that can be used to analyse the effect of qualitatively 

versus quantitatively assigning reaction directionality using thermochemical parameters.

82 | Thermodynamically constrained flux balance analysis may then be invoked by 

disallowing flux around stoichiometrically balanced cycles, also known as loops, 

using the allowLoops parameter to

optimizeCbModel with:

>> allowLoops = 0;

>> solution = optimizeCbModel(model, [], [], allowLoops);

The solution structure is the same as for flux balance analysis (see Problem (1)), except that 

this solution satisfies additional constraints that ensure the predicted steady state flux vector 

is thermodynamically feasible129. The solution satisfies energy conservation and the second 

law of thermodynamics130.
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Convert a flux balance model into a kinetic model ● TIMING 1 – 103 s

83 | In order to analyse biochemical networks at genome scale, systems biologists 

often use a linear optimisation technique called flux balance analysis (FBA). 

Linear approximation to known nonlinear biochemical reaction network 

function is sufficient to get biologically meaningful predictions in some 

situations. However, there are many biochemical processes where a linear 

approximation is insufficient, which motivates the quest for developing 

variational kinetic modelling131–133. Certain conditions are required to be met in 

order to generate a kinetic model that is internally consistent. First we describe 

those conditions, then we demonstrate how to ensure that they are met. Consider 

a biochemical network with m molecular species and n reversible reactions. We 

define forward and reverse stoichiometric matrices, F, R ∈ ℤ+
m × n, respectively, 

where Fij denotes the stoichiometry of the ith molecular species in the jth forward 

reaction and Rij denotes the stoichiometry of the ith molecular species in the jth 

reverse reaction. We assume that the network of reactions is stoichiometrically 

consistent69, that is, there exists at least one positive vector l ∈ ℝ+ +
m  satisfying 

(R – F)Tl = 0. Equivalently, we require that every reaction conserves mass. The 

matrix N := R − F represents net reaction stoichiometry and may be viewed as 

the incidence matrix of a directed hypergraph123. We assume that there are less 

molecular species than there are net reactions, that is m < n. We assume the 

cardinality of each row of F and R is at least one, and the cardinality of each 

column of R − F is at least two. The matrices F and R are sparse and the 

particular sparsity pattern depends on the particular biochemical network being 

modelled. Moreover, we assume that rank([F, R]) = m, which is a requirement 

for kinetic consistency134.

Compute a non-equilibrium kinetic steady state ● TIMING 1 – 103 s

84 | Let c ∈ ℝ+ +
m  denote a variable vector of molecular species concentrations. 

Assuming constant nonnegative elementary kinetic parameters k f , kr ∈ ℝ+
n , we 

assume elementary reaction kinetics for forward and reverse elementary reaction 

rates as s k f , c : = exp ln k f + FTln(c)  and r kr, c : = exp ln kr + RTln(c) , 

respectively, where exp(·) and ln(·) denote the respective component-wise 

functions134, 135. Then, the deterministic dynamical equation for time evolution 

of molecular species concenration is given by

dc
dt ≡ N s k f , c − r kr, c

= N exp ln k f + FTln(c) − exp ln kr + RTln(c) = : − f (c) .

(5)

A vector c* is a steady state if and only if it satisfies f(c*) = 0, leading to the nonlinear 

system
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f x = 0 .

There are many algorithms that can handle this nonlinear system by minimising a nonlinear 

least-squares problem; however, particular features of this mapping, such as sparsity of 

stoichiometric matrices F and R and non-unique local zeros of mapping f, motivates the 

quest for developing several algorithms for efficient dealing with this nonlinear system. A 

particular class of such mappings, called duplomonotone mapping, was studied for 

biochemical networks136 and three derivative-free algorithms for finding zeros of strongly 

duplomonotone mappings were introduced. Further, it is shown that the function ||f (x) ||2 

can be rewritten as a difference of two convex functions that is suitable to be minimised with 

DC programming methods135. Therefore, a DC algorithm and its acceleration with adding a 

line search technique were proposed for finding a stationary point of || f (x) ||2. Since the 

mapping f has locally non-unique solutions, it does not satisfy classical assumptions (e.g., 

nonsingularity of the Jacobian) for convergence theory. As a result, it was proved that the 

mapping satisfies the so-called Hölder metric subregularity assumption137 and an adaptive 

Levenberg-Marquardt method was proposed to find a solution of this nonlinear system if the 

starting point is close enough to a solution. In order to guarantee the convergence of the 

Levenberg-Marquardt method with arbitrary starting point, it is combined with globalisation 

techniques such as line search or trust-region, which leads to computationally efficient 

algorithms. Note that a stationary point of || f (x) |2 may not correspond to a solution x, such 

that f (x)=0, when ∇f (x)f (x)=0 does not imply f (x)=0.

Compute a non-equilibirum kinetic steady state by running the function optimizeVKmodel. 

The mandatory inputs for computing steady states are a model vKModel containing F and R, 

the name of a solver to solve the nonlinear system, an initial point x0, and parameters for the 

considered solvers. For example, for specifying a solver, we write solver = ‘LMTR’;. 

Optional parameters for the selected algorithm may be given to optimizeVKmodel by the 

params struct as follows >> params.MaxNumIter = 1000; params.adaptive = 1; params.kin = 

kin;

Otherwise, the selected algorithm will be run with the default parameters assigned for each 

algorithm. Running the function optimizeVKmodel is done by typing

>> output = optimizeVKmodel(vKModel, solver, x0, params);

The output struct contains information related to the execution of the solver.

Compute a moiety conserved non-equilibrium kinetic steady state ● TIMING 1 – 103 s

85 | Let us note that a vector c* is a steady state of the biochemical system if and 

only if

s k f , c* − r kr, c* ∈ 𝒩(N),
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where 𝒩 N  denotes the null space of N. Therefore, the set of steady states 

Ω = c ∈ ℝ+ +
m | f (c) = 0  is unchanged if the matrix N is replaced by a matrix N

with the same kernel. Suppose that N ∈ ℤr×n is the submatrix of N whose rows 

are linearly independent; then rank(N) = rank(N)=: r. If one replaces N by and 

transforms (5) to logarithmic scale, and by letting 

x: = ln(c) ∈ ℝm, k: = ln k f
T, ln kr

T T
∈ ℝ2n, then the right-hand side of (5) is 

equal to the function

f (x): = [N, − N]exp k + [F, R]Tx , (6)

where [ ·, · ] stands for the horizontal concatenation operator. Let L ∈ ℝm−r,m 

denote a basis for the left nullspace of N, which implies LN = 0. We have 

rank(L) = m − r. We say that the system satisfies moiety conservation if for any 

initial concentration c0 ∈ ℝ+ +
m ,

L c = L exp(x) = l0,

where l0 ∈ ℝ+ +
m . It is possible to compute L such that each corresponds to a 

structurally identifiable conserved moiety in a biochemical network122. The 

problem of finding the moiety conserved steady state of a biochemical reaction 

network is equivalent to solving the nonlinear system of equations

h(x): =
f (x)

Lexp(x) − l0
= 0. (7)

Among algorithms mentioned in the previous section, the local and global 

Levenberg-Marquardt methods137 are designed to compute either a solution of 

the nonlinear system (7) or a stationary point of the merit function 1
2 h(x)

2
. The 

computation of a moiety conserved non-equilibrium kinetic steady state is made 

by running the optimizeVKmodel function in the same way as in previous 

section. A model vKModel containing F and R, L and l0 is then passed to 

optimizeVKmodel together with the name of one of the Levenberg-Marquardt 

solvers.

Human metabolic network visualisation with ReconMap ● TIMING 1 – 102 s

86 | The visualisation of biochemical pathways is an important tool for biologically 

interpreting predictions generated by constraint-based models. It can be an 

invaluable aid for developing an understanding of the biological meaning 

implied by a prediction. Biochemical network maps permit the visual integration 

of model predictions with the underlying biochemical context. Patterns that are 
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very difficult to appreciate in a vector can often be much better appreciated by 

studying a generic map contextualised with model predictions. Genome-scale 

biochemical network visualisation is particularly demanding. No currently 

available software satisfies all of the requirements that might be desired for 

visualisation of predictions from genome-scale models. Automatic layout of 

genome-scale biochemical networks is insufficiently developed to generate an 

aesthetically pleasing map, yet manual layout of such maps is very labour 

intensive and there is no global reference coordinate system for such maps, so 

each human might layout a global map differently. Software applications for 

graph visualisation are often not suited to displaying metabolic hypergraphs138. 

Client-server software models have to trade off between highly interactive 

display of subsystem maps139 and less interactive display of genome-scale 

maps51. An additional challenge with genome-scale models is that there is too 

much detail to visually appreciate if an entire genome-scale map is visualised at 

once, necessitating the application of techniques to dimensionally reduce the 

presentation, e.g., semantic zooming140. With these caveats in mind, we present 

a method for genome-scale visualisation of human metabolic network 

predictions using ReconMap 2.0150, a manual layout of the reactions in the 

human metabolic reconstruction Recon 2.0417, visualised with the Molecular 

Interaction NEtwoRk visualisation (MINERVA51), a stand-alone web service 

built on the Google Maps (Google Inc.) application programming interface, that 

enables low latency web display and navigation of genome-scale molecular 

interaction networks.

Visualisation of context-specific predictions in ReconMap via a web browser depends on 

access to a server running MINERVA, which requests user credentials for remote access. 

Public access to this server is provided free of charge. To request user credentials, navigate 

with a web browser to http://vmh.life/#reconmap, select ADMIN (bottom left), and click on 

Request an account to send an email to the MINERVA team and subsequently receive your 

user credentials.

87 | In order to prepare for remote access from within MATLAB, load the details of 

the MINERVA instance on the remote server, which are provided within the 

COBRA Toolbox during installation, then add your user credentials to it: >> 

load(‘minerva.mat’);

>> minerva.login = ‘username’;

>> minerva.password = ‘password’; minerva.map = ‘ReconMap–2.01’;

88 | Load a human metabolic model into MATLAB with:

>> model = readCbModel(‘Recon2.v04.mat’);

89 | Change the objective function to maximise ATP production through complex V 

(ATP synthase, ‘ATPS4m’) in the electron transport chain with:

>> modelATP = changeObjective(model, ‘ATPS4m’);
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90 | Although the optimal objective value of the flux balance analysis Problem (1) is 

unique, the optimal flux vector itself is most likely not. When visualising a flux 

vector, it is important that a unique solution to some optimisation problem is 

displayed. For example, we can predict a unique network flux by regularising 

the flux balance analysis Problem (1) by redefining ρ(υ): = cTυ − σ
2 υTυ and σ = 

10−6 (see Step 21). In order to obtain a unique optimal flux vector, run:

>> solution = optimizeCbModel(modelATP, ‘max’, 1e–6);

91 | Build the context-specific overlay of a flux vector on ReconMap by instructing 

the COBRA Toolbox to communicate with the remote MINERVA server using:

>> identifier = ‘your_overlay_title’;

>> response = buildFluxDistLayout(minerva, model, solution, identifier);

The only new input variable is the text string in the identifier that enables you to name each 

overlay according to a unique title. The response status will be set to 1 if the overlay was 

successfully received by the MINERVA server. ? TROUBLESHOOTING

92 | Visualise context-specific ReconMaps using a web browser. Navigate to http://

vmh.life/#reconmap, login with your credentials above then select 

‘OVERLAYS’ and the list of USER-PROVIDED OVERLAYS appears. In order 

to see the map from Step 91, check the box adjacent to the unique text string 

provided by identifier.

93 | In order to export context-specific ReconMaps as publishable graphics, two 

options are possible: portable document format (.pdf) or portable network 

format (.png). The former is useful for external editing whereas the latter 

essentially produces a snapshot of the visual part of the map.

(A) PDF export

(i) Zoom out until the entire map is visible. Right click on the 

map –> Export as image –> PDF. A file named model.pdf 
will be downloaded to the default directory of the browser. 

This PDF is a scalable network graphic, so optionally one 

can use a PDF editor to zoom in or crop the PDF as desired.

(B) PNG export

(i) Navigate and zoom until the desired region of the map is 

visible. Right click on the map –> Export as image –> PNG 

and a file named model.png will be downloaded to the 

default directory of the browser.

Variable scope visualisation of a network with Paint4Net ● TIMING 1 – 103 s

94 | During model validation or optimisation, visualisation of a small-scale fragment 

of the network area of interest is often sufficient and is especially convenient 

during network reconstruction when a manual layout may not yet be available. 
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Automatic generation of a hypergraph layout for a chosen subset of network can 

be achieved with the COBRA Toolbox extension Paint4Net141. A subset of a 

network may be visualised, and the directionality and the fluxes for selected 

reactions may be shown. Details on each reaction (ID, name and synonyms, and 

formula) and metabolite (ID, name and synonyms, and charged formula) pop-up 

when a cursor is placed over the corresponding item.

First compute a flux vector, e.g., with flux balance analysis, using:

>> FBAsolution = optimizeCbModel(model);

95 | Visualise a selected network fragment around a list of reactions in a model, 

contextualised using a flux vector flux, by running:

>> flux = FBAsolution.v;

>> involvedMets = draw_by_rxn(model, rxns, drawMap, direction, initialMet, excludeMets, 

flux);

The rxns input provides a selection of reactions of interest. The remaining inputs are 

optional and control the appearance of the automatic layout. For example, excludeMets 

provides a list of metabolites that may be excluded from the network visualisation, e.g., 

cofactors such as NAD and NADP.

96 | In order to visualise a model fragment with a specified radius around a specified 

metabolite of interest, such as ‘etoh[c] ‘, run:

>> metAbbr = {‘etoh[c]’};

>> [involvedRxns, involvedMets] = draw_by_met(model, metAbbr, ‘true’, 1, ‘struc’, {‘‘}, 

flux);

Contributing to the COBRA Toolbox with MATLAB.devTools ● TIMING 1 – 30 s

97 | A comprehensive code base such as the COBRA Toolbox evolves constantly. 

The open-source community is very active, and collaborators submit their 

contributions frequently. The more a new feature or bug fix is interlinked with 

existing functions, the higher the risk of a new addition breaking instantly code 

that is heavily used on a daily basis. In order to decrease this risk, a continuous 

integration setup interlinked with the version control system git has been set up. 

A git-tracked repository is essentially a folder with code or other documents of 

which all incremental changes are tracked by date and user.

Any incremental changes to the code are called commits. The main advantage of git over 

other version control systems is the availability of branches. In simple terms, a branch 

contains a sequence of incremental changes to the code. A branch is also commonly referred 

to as a feature. Consequently, a contribution generally consists of several commits on a 

branch.

Contributing to the COBRA Toolbox is straightforward. As a contributor to the COBRA 

Toolbox is likely more familiar with MATLAB than with the internal mechanics of git, the 
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MATLAB.devTools (https://github.com/opencobra/MATLAB.devTools) have been 

developed specifically to contribute to a git-tracked repository located on the Github server. 

In Figure 6, an overview of the two online repositories as well as their local copies is given.

There are two ways of using the COBRA Toolbox, which depends on the type of user.

(A) A user of the COBRA Toolbox

(i) The openCOBRA repository (https://github.com/opencobra/

cobratoolbox) is a public repository that is read-only. Once the 

openCOBRA repository has been installed (as explained in Steps 1–3) 

in the folder cobratoolbox, all branches (including master and develop) 

are available locally. In the local folder cobratoolbox, the user has read 

and write access, but cannot push eventual changes back to the 

openCOBRA repository. It is the default and stable master branch only 

that should be used. The local copy located in the cobratoolbox 
directory can be updated (both branches).

(B) A contributor or a developer of the COBRA Toolbox

(i) In order to make changes to the openCOBRA repository, or, in other 

words, contribute, you must obtain your own personal copy first. You 

must register on the Github website (https://github.com) in order to 

obtain a username. First, click on the button FORK at the top right 

corner of the official openCOBRA repository website (https://

github.com/opencobra/cobratoolbox) in order to create a personal copy 

(or fork) with write and read access of the openCOBRA repository. 

This copy is accessible under https://github.com/<username>/

cobratoolbox. These branches can be accessed by following the 

procedure [2] (see Step 99).

After initialisation of the MATLAB.devTools, the user and developer may have two folders: 

a cobratoolbox folder with the stable master branch checked out, and a fork-cobratoolbox 
folder with the develop branch checked out. Detailed instructions for troubleshooting and/or 

contributing to the COBRA Toolbox using the terminal (or shell) are provided in 

Supplementary Manual 3.

After the official openCOBRA version of the COBRA Toolbox has been installed, it is 

possible to install the MATLAB.devTools from within MATLAB:

>> installDevTools

With this command, the directory MATLAB.devTools is created next to the cobratoolbox 
installation directory. The MATLAB.devTools can also be installed from the terminal (or 

shell):

$ git clone git@github . com: opencobra/MATLAB.devTools
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▲ CRITICAL STEP A working internet connection is required and git and curl must be 

installed. Installation instructions are provided on the main repository page of the 

MATLAB.devTools. A valid passphrase-less SSH key must be set in the Github account 

settings in order to contribute without entering a password while securely communicating 

with the Github server. ? TROUBLESHOOTING

98 | The MATLAB.devTools are configured on the fly or whenever the configuration 

details are not present. The first time a user runs contribute, the personal 

repository (fork) is downloaded (cloned) into a new folder named fork-
cobratoolbox at the location specified by the user. In this local folder, both 

master and develop branches exist, but it is the develop branch that is 

automatically selected (checked out). Any new contributions are derived from 

the develop branch.

Initialising a contribution using the MATLAB.devTools is straightforward. In MATLAB, 

type:

>> contribute % then select procedure [1]

If the MATLAB.devTools are already configured, procedure [1] updates the fork (if 

necessary) and initialises a new branch with a name requested during the process. Once the 

contribution is initialised, files can be added, modified or deleted in the folder fork-
cobratoolbox. A contribution is successfully initialised when the user is presented with a 

brief summary of configuration details. Instructions on how to proceed are also provided.

▲ CRITICAL STEP The location of the fork must be specified as the root directory. There 

will be a warning issued if the path already contains another git-tracked repository. ? 
TROUBLESHOOTING

99 | An existing contribution can be continued after a while. This step is particularly 

important in order to retrieve all changes that have been made to the 

openCOBRA repository in the meantime.

>> contribute % then select procedure [2]

Procedure [2] pulls all changes from the openCOBRA repository, and rebases the existing 

contribution. In other words, existing commits are shifted forward and placed after all 

commits made on the develop branch of the openCOBRA repository.

▲ CRITICAL STEP Before attempting to continue working on an existing feature, make 

sure that you published your commits as explained in Step 100. ? TROUBLESHOOTING

100 | Publishing a contribution means uploading the incremental code changes to the 

fork. The changes are available in public, but not yet available in the 

openCOBRA repository. A contribution may only be accepted in the official 

repository once a pull request has been submitted. It is not necessary to open a 

pull request if you want to simply upload your contribution to your fork.

>> contribute % then select procedure [3]
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When running procedure [3], you have two options:

(A) Simple contribution without opening a pull request

(i) All changes to the code are individually listed and the user is asked 

explicitly which changes shall be added to the commit. Once all 

changes have been added, a commit message must be entered. Upon 

confirmation, the changes are pushed to the online fork automatically.

(B) Publishing and opening a pull request

(i) The procedure for submitting a pull request is the same as Option (A) 

with the difference that when selecting to open a pull request, a link is 

provided that leads to a pre-configured website according to the 

contributing guidelines. The pull request is then one click away.

▲ CRITICAL STEP After following procedures [1] and [2], all changes should be 

published using procedure [3] before stopping to work on that contribution. When following 

procedure [3], the incremental changes are uploaded to the remote server. It is advised to 

publish often, and make small incremental changes to the code. There is no need for opening 

a pull request immediately (Option A) if there are more changes to be made. A pull request 

may be opened at any time, even manually and directly from the Github website. ? 
TROUBLESHOOTING

101 | If a contribution has been merged into the develop branch of the openCOBRA 

repository (accepted pull request), the contribution (feature or branch) can be 

safely deleted both locally and remotely on the fork by running contribute and 

selecting procedure [4].

Note that deleting a contribution deletes all the changes that have been made on that feature 

(branch). It is not possible to selectively delete a commit using the MATLAB.devTools. 

Instead, create a new branch by following procedure [1] (see Step 98), and follow the 

instructions to cherry-pick in the Supplementary Manual 3.

▲ CRITICAL STEP Make sure that your changes are either merged or saved locally if you 

need them. Once procedure [4] is concluded, all changes on the deleted branch are removed, 

both locally and remotely. No commits can be recovered. ? TROUBLESHOOTING

102 | It is sometimes useful to simply update the fork without starting a new 

contribution. The local fork can be updated using procedure [5] of the contribute 

menu.

>> contribute % then select procedure [5]

▲ CRITICAL STEP Before updating your fork, make sure that no changes are present in 

the local directory fork-cobratoolbox. You can do so by typing:

>> checkStatus

If there are changes listed, publish them by selecting procedure [3] of the contribute menu as 

explained in Step 100. ? TROUBLESHOOTING
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Engaging with the COBRA Toolbox forum ● TIMING 1 – 102 s

103 | The Frequently Asked Questions (FAQ) section of the documentation (https://

opencobra.github.io/cobratoolbox/docs/FAQ.html) is a good starting point to 

find answers to questions or issues one may face.

The public forum associated with the COBRA Toolbox, available at https://

groups.google.com/forum/#!forum/cobra-toolbox, is a great way to search for solutions to 

previously recognised problems that are similar to problems novel to the user. This is 

especially so with respect to recent installation and configuration issues that have arisen due 

to asynchronous development of the many software packages integrated with the COBRA 

Toolbox.

104 | Suggest new solutions to problems

(A) Post your question to the online COBRA Toolbox forum

Questions posted in the forum are welcome provided that some simple 

guidelines are followed:

(i) Before a question can be posted, an application for 

membership at https://groups.google.com/forum/#!forum/

cobra-toolbox is required to eliminate spam.

(ii) Make the question as detailed as possible to increase the 

probability of a rapid and helpful reply.

(iii) Append your message with the result of running 

generateSystemConfigReport so that repository maintainers 

are aware of the system configuration. That is often the first 

question that comes to mind when considering to respond.

(B) Reply to a question online COBRA Toolbox forum

(i) Community contributions are welcomed to help users 

overcome any issues they face and are noticed by existing 

COBRA community members.

Generally, responses to questions can be expected within 1–2 days of posting, provided that 

posting guidelines are followed.

?TROUBLESHOOTING

Step Problem Possible reason Solution

1 | The initCobraToolbox 
function displays warnings 
or error messages.

Incompatible third-
party software or 
improperly configured 
system.

First, read the output of the initialisation script in 
the command window. Any warning or error 
messages, though often brief, may point toward 
the source of the problem during initialisation if 
read literally. Second, verify that all software 
versions are supported and have been correctly 
installed, as described in the MATERIALS 
section. Third, ensure that you are using the latest 
version of the COBRA Toolbox, cf. Steps 97–
102. Fourth, verify and test the COBRA Toolbox, 
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Step Problem Possible reason Solution

as described in Step 3. Finally, if nothing else 
works, consult the COBRA Toolbox forum, as 
described in Steps 103–104.

3 | Some tests are listed as 
failed when running testAll.

Some third party 
dependencies are not 
properly installed or the 
system is improperly 
configured.

Verify that all required software has been 
correctly installed as described in the 
MATERIALS section. The specific test can then 
be run individually to determine the exact cause 
of the error. If the error can be fixed, try to use the 
MATLAB.devTools and contribute a fix. Further 
details on how to approach submitting a 
contribution are given in Steps 97–102. If the 
error cannot be determined, reach out to the 
community as explained in Steps 103–104.

4 | The readCbModelfunction 
fails to import a model.

The input file is not 
correctly formatted or 
the SBML file format is 
not supported.

Specifications for Excel sheets accepted by the 
COBRA Toolbox can be found on Github 
(opencobra.github.io/cobratoolbox/docs/
COBRAModelFields.html). Files with legacy 
SBML formats can be imported, but some 
information from the SBML file might be lost. In 
addition to constraint-based information encoded 
by fields of the fbc package, the COBRA-style 
annotations introduced in the COBRA Toolbox 
2.04 are supported for backward compatibility. 
Some information is still stored in this type of 
annotations. The data specified with the latest 
version of the fbc package is used in preference to 
other fields, e.g., legacy COBRA-style notes 
which may contain similar data.

4 | The readCbModel function 
fails to import a model 
saved as a .mat file

The model may contain 
deprecated fields or 
fields which have 
invalid values.

Old MATLAB models saved as .mat files 
sometimes contain deprecated fields or fields 
which have invalid values. Some of these 
instances are checked and corrected during 
readCbModel but there might be instances, where 
readCbModel fails. If this happens, it is advisable, 
to load the mat file, run the verifyModel function 
on the loaded model, and manually adjust all 
indicated inconsistent fields. After this procedure, 
we suggest to save the model again and use 
readCbModel to load the model.

4 | The readCbModel function 
fails to import a SBML file

The model might be 
invalid

If an SBML file produces an error during IO, 
check that the file is valid SBML using the 
SBMLValidator (http://sbml.org/Facilities/
Validator).

5 | The writeCbModel function 
fails to export a model.

Some of the required 
fields of the model 
structure are missing or 
the model contains 
invalid data.

Before a reconstruction or model is exported, a 
summary of invalid data in the model can be 
obtained by running verifyModel(model). A list 
of required fields for the model structure is 
presented in Table 3.

15 | The dqqMinos or 
quadMinos interfaces are 
not working as intended.

The binaries might not 
be compatible with 
your operating system.

Make sure that all relevant system requirements 
described in the MATERIALS section are 
satisfied. If you are still unable to use the 
respective interfaces, reach out to the community 
as explained in Steps 103–104.

16 | A) The findSExRxnInd 
function fails to identify 
some exchange, demand 
and sink reactions.

Some exchange, 
demand and sink 
reactions do not start 
with any of anticipated 
prefixes.

Try an alternative approach.

16 | B) The function 
checkMassChargeBalai 
returns wrong results.

Some formulae are 
icmissing or a formula 
is incorrectly specified, 
leading to one or more 
reactions to be 
incorrectly identified as 
being elementally 
balanced.

Try an alternative approach.
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Step Problem Possible reason Solution

16 | C) Erroneous predictions. Inadvertent violation of 
the steady-state mass 
conservation constraint.

Manually inspect the reaction formulae for each 
reaction to identify any obviously mass 
imbalanced reactions, omit them from the 
reconstruction and run 
findStoichConsistentSubset again.

22 | The solution status given by 
FBAsolution.stat is −1.

A too short runtime 
limit has been set or 
numerical issues 
happened during the 
optimisation procedure.

Check the value of FBAsolution. origStat and 
compare it with the documentation provided by 
the solver in use for further information. If one is 
solving with a double precision solver a model 
that could be multi-scale but is not yet recognised 
as such, then FBAsolution.stat == −1 can be 
symptomatic of this situation. In that case, refer to 
Steps 14–15 to learn how to numerically 
characterise a reconstruction model.

55 | The sampling distribution is 
not uniform (revealed by a 
non-uniform marginal flux 
distribution).

The sampling 
parameters 
options.nSkip and 
options.nSamples are 
set too low.

Increase the values of the options.nSkip and 
options.nSamples parameters until smooth and 
unimodal marginal flux distributions are obtained.

68 | No reaction is found in the 
MUST sets.

The wild-type or 
mutant strain may not 
be enough constrained.

A solution is to add more constraints to the strains 
until differences in the reaction ranges are shown. 
If no differences are found, another algorithm 
might be better suited. If there is an error when 
running the findMust* functions, a possible 
reason is that the inputs are not well defined or a 
solver may not be set. Verify the inputs, use 
changeCobraSolver to change to a commercial-
grade optimisation solver (see Table 4 for a list of 
supported solvers).

76 | Some reactions could not 
be mapped.

Too short runtime limit 
or a reaction that the 
algorithm could not 
atom map.

Increase the runtime limit of the algorithm.

91 | The remote MINERVA 
server refuses to build a 
new overlay.

The text string in the 
identifier input variable 
is not uniquely defined 
in your account.

Change the identifier text string of your overlay.

98 | An error occurs when run 
running contribute claiming 
that the fork cannot be 
reached or that the local 
fork cannot be found.

The local forked folder 
cannot be found, has 
been moved, or the 
remote fork cannot be 
reached.

It may occur that the configuration of the 
MATLAB.devTools is faulty or has been 
mistyped. In that case, try to reset the 
configuration by typing: >> resetDevTools

97 | An error might be thrown 
claiming permission 
denied.

The SSH key of the 
computer is not 
configured properly.

The installation of the MATLAB.devTools is 
dependent on a correctly configured Github 
account. The SSH key of the computer must be 
set in the Github account settings or otherwise 
errors will be thrown. If the git clone command 
works, the SSH key is properly set. In that case, 
delete the SSH key locally (generally located in 
the folder .ssh in the home directory) and 
remotely on Github, and generate a new SSH key.

98 | Procedure [1] when running 
contribute might not be 
successful.

The local fork-
cobratoolbox folder is 
too old or has not been 
updated for a while.

In that case and if no local changes are present, 
backup and remove the local fork-cobratoolbox 
folder and run the contribute command again. 
Alternatively, try to delete the forked repository 
online and re-fork the openCOBRA repository. 
When one is sure that everything is fine, the 
backup can be safely deleted, but it is wise to 
store it for some time, in case later one realises 
that some updates to code have gone missing.

98 | Procedure [1] when running 
contribute might not be 
successful.

There are changes in 
the local fork-
cobratoolbox folder.

Contribute the changes manually as described in 
the Supplementary Manual 3.
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Step Problem Possible reason Solution

98 | Procedure [1] when running 
contribute might not be 
successful.

The forked repository 
cannot be reached 
online or the SSH key 
is not configured 
properly.

Set the SSH key in your Github account and make 
sure that the forked repository can be reached. 
This can easily be checked by re-cloning the 
MATLAB.devTools in the terminal as explained 
in Steps 97 and by browsing to the forked 
repository online.

99 | Procedure [2] when running 
contribute might fail.

Your contribution has 
been deleted online, or 
is no longer available 
locally.

When the rebase process fails, the user is asked to 
reset the contribution, which will reset the 
contribution to the online version of the branch in 
the fork. In general, when the rebase fails there 
have been changes made on the openCOBRA 
repository that are in conflict with the local 
changes. You can check the status of the local 
repository by typing: >> checkStatus If there are 
conflicts that you do not know how to resolve, 
check the official repository or ping the 
developers in https://groups.google.com/forum/#!
forum/cobra-toolbox as explained in Steps 103–
104. If you already have published changes, try to 
submit a pull request as explained in Step 100 for 
developers to understand the situation. 
Alternatively, you can try to resolve the conflicts 
manually. More information on how to solve 
conflicts is given as Supplementary Manual 3.

100 | Procedure [3] when running 
contribute might not be 
successful.

The forked repository 
cannot be reached 
online or if the SSH key 
is not configured 
properly.

Check to set the SSH key in your Github account 
and make sure that the forked repository can be 
reached.

100 | When opening a pull 
request, Github cannot 
automatically merge.

There have been 
changes made on the 
openCOBRA 
repository and on your 
local fork.

Submit however the pull request; another 
developer will help you rebase your contribution 
manually.

101 | Procedure [4] when running 
contribute might not be 
successful.

Your local changes are 
not yet published 
(committed).

Follow procedure [3] of the contribute menu in 
order to publish your changes first as explained in 
Step 100.

102 | Procedure [5] when running 
contribute might not be 
successful.

There are some local 
changes that have not 
yet been published 
(committed).

Backup eventual modifications, remove the fork-
cobratoolbox folder, and run the contribute 
command again.

102 | Procedure [5] when running 
contribute might not be 
successful.

Too many changes have 
been made in the 
openCOBRA 
repository.

Backup your modified files to a separate location, 
and reset your branch manually by typing in the 
terminal (be careful - this will delete all your 
changes locally, but not remotely): $ git reset --
hard origin/<yourBranch> Then, copy your file 
back into the fork-cobratoolbox folder and 
contribute normally.

● TIMING

Steps 1–2, Initialisation of the COBRA Toolbox: 5 – 30 s

Step 3, Verify and test the COBRA Toolbox: ~ 103 s

Step 4, Importing a reconstruction or model: 10 – 102 s

Step 5, Exporting a reconstruction or model: 10 – 102 s

Step 6, Use of rBioNet to add reactions to a reconstruction: 1 – 103 s

Steps 7–8, Use of a spreadsheet to add reactions to a reconstruction: 1 – 103 s
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Steps 9–13, Use of scripts with reconstruction functions: 1 – 102 s

Step 14, Check the scaling of a reconstruction : 1 – 102 s

Step 15, Select a double- or quad-precision optimisation solver: 1 – 5 s

Step 16, Identify stoichiometrically consistent and inconsistent reactions: 1 – 105 s

Step 17, Identify stoichiometrically consistent and inconsistent molecular species: 1 – 103 s

Step 18, Set simulation constraints: 1 – 103 s

Step 19, Identify molecular species that leak, or siphon, across the boundary of the model: 1 

– 103 s

Step 20, Identify flux inconsistent reactions: 1 – 103 s

Steps 21–22, Flux balance analysis: 1 – 102 s

Step 23, Relaxed flux balance analysis: 1 – 103 s

Step 24, Sparse flux balance analysis: 1 – 103 s

Steps 25–27, Identify dead-end metabolites and blocked reactions: ~102 s

Steps 28–30, Gap fill a metabolic network: 102 – 105 s

Steps 31–33, Extracellular metabolomic data: 103 – 105 s

Steps 34–39, Intracellular metabolomic data: 102 – 104 s

Step 40, Integration of transcriptomic and proteomic data: 102 – 104 s

Steps 41–46, Adding biological constraints to a flux balance model: ~ 102 s

Steps 47–48, Qualitative chemical and biochemical fidelity testing: 102 – 103 s

Steps 49–51, Quantitative biochemical fidelity testing: 102 – 103 s

Step 52, MinSpan Pathways: a sparse basis of the nullspace of a stoichiometric matrix: 102 – 

104 s

Step 53, Low dimensional flux variability analysis: 1 – 103 s

Step 54, High dimensional flux variability analysis: 1 – 105 s

Step 55, Uniform sampling of steady-state fluxes: 1 – 103 s

Steps 56–73, Identify all genetic manipulations leading to targeted overproductions: 10 – 

105 s

Steps 74–78, Atomically resolve a metabolic reconstruction: 10 – 105 s
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Steps 79–82, Thermodynamically constrain a metabolic model: 1 – 103 s

Step 83, Convert a flux balance model into a kinetic model: 1 – 103 s

Step 84, Compute a non-equilibrium kinetic steady state: 1 – 103 s

Step 85, Compute a moiety conserved non-equilibrium kinetic steady state: 1 – 103 s

Steps 86–93, Human metabolic network visualisation with ReconMap: 1 – 102 s

Steps 94–96, Variable scope visualisation of a network with Paint4Net: 1 – 103 s

Steps 97–102, Contributing to the COBRA Toolbox with MATLAB.devTools: 1 – 30 s

ANTICIPATED RESULTS

Initialisation of the COBRA Toolbox

1 | The initialisation step automatically checks the configuration of all of the 

required and some of the optional software dependencies. During initialisation, 

all git submodules are updated. The solver paths are set when available and 

compatible. A system-dependent table with the solver status is returned, together 

with solver suggestions as shown in Figure 7. The user is also presented with 

options to update the COBRA Toolbox.

2 | A list of solvers assigned to solve each class of optimisation solvers is returned:

Defined solvers are:

CBT_LP_SOLVER: gurobi

CBT_MILP_SOLVER: gurobi

CBT_QP_SOLVER: qpng

CBT_MIQP_SOLVER: gurobi

CBT_NLP_SOLVER: matlab

3 | The test suite starts by initialising the COBRA Toolbox and thereafter, all of the 

tests are run. At the end of the test run, a comprehensive summary table is 

presented in which the respective tests and their test outcome is shown. On a 

fully configured system that is compatible with the most recent version of the 

COBRA Toolbox, all tests should pass. It may not be necessary to have a fully 

configured system to use one’s particular subset of methods.

Importing a reconstruction or model

4 | The reconstruction or model is loaded into the MATLAB workspace within a 

structure named model, irrespective of whether the fileName specified a 

reconstruction or model. The model structure should contain all of the 

information in different fields. Table 3 provides an overview of the individual 
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model fields and their content. Very large SBML models may take some time to 

load.

5 | An exported file containing the information from the model in the location and 

format specified by the fileName.

Check the scaling of a reconstruction

14 | The checkScaling function returns a precisionEstimate string that is either 

‘double’ or ‘quad’. The scaling estimate is based on the order of magnitude of 

the ratio of the maximum and minimum row and column scaling coefficients, 

which are determined such that the scaled stoichiometric matrix has entries close 

to unity. In addition, a summary of scaling properties included in 

scalingProperties may be returned.

Select a double- or quad-precision optimisation solver

15 | If the selected solver is installed, solverStatus == 1 will be returned, the solver 

interface to MATLAB is configured correctly, and the solver is compatible with 

the system environment. If the dqqMinos solver has been selected and 

solverStatus == 1, then LP problem solutions are computed somewhat slower 

than with a double precision solver, but with the advantage that solutions are 

computed with a feasibility and optimality tolerance of 10−15, which becomes an 

advantage for a multi-scale model, where the typical tolerance of 10−6 for a 

double precision solver may be insufficient.

Identify stoichiometrically consistent and inconsistent molecular species

17 | Any molecular species corresponding to a non-zero entry within 

SConsistentMetBool is always involved in mass imbalanced reactions indicating 

that the stoichiometry is misspecified. Double check the chemical formulae 

involved in the corresponding reactions to ensure that, e.g., the stoichiometry for 

protons, cofactors, etc., leads to balanced reactions.

20 | Any non-zero entry in fluxinConsistentRxnBool indicates a flux inconsistent 

reaction, i.e., a reaction that does not admit a non-zero flux. Blocked reactions can be 

resolved by manual reconstruction6, algorithmic reconstruction82, or a combination 

of both.

Sparse flux balance analysis

24 | There should be no such cycle in a network with bounds that are sufficiently 

constrained. Figure 8 illustrates the cycle obtained from Recon3D with all 

internal reaction bounds set to zero.

Integration of transcriptomic and proteomic data

40 | createTissuespecificModel returns a COBRA model which is constrained with 

the context of the data provided to it. Usually, this means enrichment of 

reactions with high expression and omission of reactions with low expression 
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profiles. Each method returns a flux consistent model, hence it is likely that 

certain reactions, without experimental evidence, are added to the context-

specific model in order to enable non-zero net flux through reactions for which 

supporting experimental evidence for activity exists.

Quantitative biochemical fidelity testing

51 | For the Recon3Dmodel, the anticipated yield is 32 ATP per unit of glucose, 

which compares favourably to the ATP yield of 31 ATP obtained from the 

biochemical literature.

Uniform sampling of steady-state fluxes

55 | The marginal flux distributions for each reaction should be smooth and uni-

modal for any biochemical network with feasible set Ω: = υ |Sυ = 0; l ≤ υ ≤ u .

Identify all genetic manipulations leading to targeted overproductions

71 | The identified reaction is suet, i.e., a transporter for succinate (an intuitive 

solution). However, changing the parameters will enable optForce to find non-

intuitive solutions.

Identify all genetic manipulations leading to targeted overproductions

73 | Figure 9 illustrates the interventions predicted by the OptForce method for 

succinate overproduction in the AntCore E. coli model under aerobic conditions.

Thermodynamically constrain a metabolic model

82 | Thermodynamically constrained flux predictions can differ markedly from those 

obtained with flux balance analysis. An open challenge is acquisition of 

sufficient thermochemical training data as well as sufficient quantitative 

metabolomic data, such that estimates of transformed reaction Gibbs energies 

can be made with sufficiently low uncertainty to constrain reaction directionality 

with high confidence. The degree of confidence typically differs markedly 

between reactions. Therefore, a pragmatic approach to rank order reaction 

directionality assignments by the probability that the thermodynamically 

assigned reaction directionality is forward, reversible or reverse (see Figure 10 

for an application to Recon3D).

Human metabolic network visualisation with ReconMap

93 | Figure 11 illustrates the overlay of an optimal regularised flux balance analysis 

solution overlain within ReconMap within a web browser window.

Variable scope visualisation of a network with Paint4Net

96 | Figure 12 illustrates a fragment of a Paint4Net visualisation contextualised using 

a flux vector to control the thickness and colour of edges representing reactions. 

In the visualisation, one can discover the isolated parts of network without any 

flux, as well as cycles running without any substrate.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Almut Heinken Multispecies modelling code contribution, tutorial review, testing.

Hulda S. Haraldsdóttir Thermodynamics, conserved moiety and sampling methods.

Jacek Wachowiak Documentation.

Sarah M. Keating SBML input-output support.
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Stefania Magnusdóttir Multispecies modelling, tutorial review, testing.

Chiam Yu Ng Strain design code review, tutorial review, manuscript (OptForce/biotech introduction).

German Preciat Tutorials and chemoinformatics for metabolite structures and atom mapping data.

Alise Žagare Metabolic cartography.

Siu H.J. Chan Solution navigation, multispecies modelling code, tutorial review.
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Andrejs Kostromins Paint4Net code and tutorial.

Nicolas Sompairac Development of metabolomic cartography tool and tutorial.

Hoai M. Le Cardinality optimisation solver.

Ding Ma Quad precision solvers.

Yuekai Sun Multiscale flux balance analysis reformulation.
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Figure 1: 
Overview of key constraint-based reconstruction and analysis concepts. a. A genome-scale 

metabolic reconstruction is a structured knowledge-base that abstracts pertinent information 

on the biochemical transformations taking place within a chosen biochemical system, e.g., 

the human gut microbiome38. Genome-scale metabolic reconstructions are built in two steps. 

First, several platforms exist for the generation of a draft metabolic reconstruction based on 

genome annotations. Second, the draft reconstructions need to be refined based on known 

experimental and biochemical data from literature6. Novel experiments can be performed on 

the organism and the reconstruction refined accordingly. b. A phenotypically feasible 

solution space is defined by specifying certain assumptions, e.g., a steady-state assumption, 

then converting the reconstruction into computational model that eliminates 

physicochemically or biochemically infeasible network states. Various methods are used to 

interrogate the solution space. For example, optimisation for a biologically motivated 

objective function (e.g. biomass production) identifies a single optimal flux vector, whereas 

uniform sampling provides an unbiased characterisation via flux vectors uniformly 

distributed in the solution space. c Flux balance analysis is an optimization method that 

maximizes a linear objective function, ψ(υ) = cTυ, formed by multiplying every reaction flux 
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υj with a predetermined coefficient, cj, subject to a steady state assumption, Sυ = 0, as well 

as lower and upper bounds on each reaction flux (lbj and ubj, respectively).
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Figure 2: 
Continuous integration of new code (submitted by developers) is performed on a dedicated 

server running Jenkins (https://jenkins.io). The main code is located in the src folder and 

tests functions in the test folder. A test not only runs a function (first degree testing), but 

tests the output of that function (second degree testing). The continuous integration setup 

relies on end-of-year releases of MATLAB only. Soon after the latest stable version of 

MATLAB is released, full support will be provided for the COBRA Toolbox. After a 

successful run of tests on the three latest end-of-year releases of MATLAB using various 

solver packages, the documentation based on the headers of the functions (docstrings) is 

extracted, generated, and automatically deployed. Immediate feedback through code 

coverage reports (https://codecov.io/gh/opencobra/cobratoolbox) and build statuses are 

reported on GitHub. With this setup, the impact of local changes in the code base is 

promptly revealed.
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Figure 3: 
Conceptual overview of the main steps involved in the unsteady-state flux balance analysis 

(uFBA) method.
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Figure 4: 
Solution spaces from steady state fluxes are anisotropic, that is, long in some directions and 

short in others. This impedes the ability of any sampling algorithm taking a random 

direction to evenly explore the full feasible set (artificial centering hit-and-run (ACHR) 

algorithm). The CHRR (coordinate hit-and-run with rounding) algorithm first rounds the 

solution space based on the maximum volume ellipsoid. Then, the rounded solution space is 

uniformly sampled using a provably efficient coordinate hit-and-run random walk. Finally, 

the samples are projected back onto the anisotropic feasible set. This leads to a more 
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distributed uniform sampling, so that the converged sampling distributions for the selected 

reactions become smoother. As an example, for both sampling distributions, the parameters 

were defined as: nSkip = 8 × (dim(fluxSpace))2, nSarnples = 1000.
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Figure 5: 
In the OptForce procedure, the MUST sets are determined by contrasting the flux ranges 

obtained using flux variability analysis (FVA) of a wild-type (blue bars) and an 

overproducing strain (red bars). The first order MUST sets (top panel) are denoted MUSTL 

and MUSTU. For instance, a reaction belongs to the MUSTU set if the upper bound of the 

flux range in the wild-type is less than the lower bound of the flux range of the 

overproducing strain. The center and bottom panels show all possible second order MUST 

sets.
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Figure 6: 
The openCOBRA repository and the fork of a contributor located on the Github server can 

be cloned to the local computer as cobratoolbox and fork-cobratoolbox folders, respectively. 

Each repository might contain different branches, but each repository contains the master 
and develop branches. Note that contributors only have read on the openCOBRA repository. 

The stable branch is the master branch (black branch), while the development of code is 

made on the develop branch (green branch). The master branch shall be checked out when 

using the cobratoolbox repository, whereas contributors shall create new branches 

originating from the develop branch (local fork-cobratoolbox directory and online 

<username>/cobratoolbox repository). In the present example, myBranch1 (blue branch) has 

already been pushed to the forked repository on the Github server, while myBranch2 (pink 

branch) is only present locally. The branch myBranch1 may be merged into the develop 
branch of the openCOBRA repository through opening a pull request. In order to submit the 

contributions (commits) on myBranch2, the contributor must first push the commits to the 

forked repository (https://github.com/<username>/cobratoolbox) before opening a pull 

request. Any commit made on the develop branch (red square) will be merged to the master 
branch if the develop branch is stable overall (orange square).
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Figure 7: 
Output of initialisation of the COBRA Toolbox with initCobraToolbox.
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Figure 8: An energy generating stoichiometrically balanced cycle.
The smallest stoichiometrically balanced cycle that produces ATP at a maximal rate using 

the ATP synthase reaction, in Recon3D, with all internal reactions. All metabolite and 

reaction abbreviations are primary keys in the Virtual Metabolic Human database (https://

vmh.uni.lu): reaction abbreviation, reaction name: ADK1m, adenylate kinase, 

mitochondrial; G5SDym, glutamate-5-semialdehyde dehydrogenase, mitochondrial; 

GLU5Km, glutamate 5-kinase, mitochondrial; P45027A15m, 5-beta-cytochrome P450, 

family 27, subfamily A, polypeptide 1; PPAm, inorganic diphosphatase; r0074, L-glutamate 

5-semialdehyde:NAD+ oxidoreductase; HMR_3966, nucleoside-triphosphate giphosphatase; 

ATPS4mi, ATP synthase (four protons for one ATP); CYOR_u10mi, ubiquinol-6 

cytochrome c reductase, Complex III; NADH2_u10mi, NADH dehydrogenase, 

mitochondrial; CYOOm2i, cytochrome c oxidase, mitochondrial complex IV.
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Figure 9: 
The interventions predicted by the OptForce method for succinate overproduction in E. coli 
(AntCore model) under aerobic conditions. Reactions that need to be up-regulated (green 

arrows and labels) and knocked out (red arrows and labels) are shown in this simplified 

metabolic map. The strategies include up-regulation of reactions generating succinate such 

as isocitrate dehydrogenase (R2), α-ketoglutarate dehydrogenase or succinyl-CoA 

synthetase, along with knockout of reactions draining succinate such as succinate 
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dehydrogenase or fumarate hydratase. Note that each of these reactions may associate with 

one or more genes in E. coli.
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Figure 10: Qualitatively forward, quantitatively reverse reactions in a multi-compartmental, 
genome-scale model.
In Recon3D, the transformed reaction Gibbs energy could be estimated for 7, 215 reactions. 

Of these reactions, 2, 868 reactions were qualitatively assigned to be forward in the 

reconstruction, but were quantitatively assigned to be reversible using subcellular 

compartment specific thermodynamic parameters, the component contribution method, and 

broad bounds on metabolite concentrations (10−5 – 0.02 mol/L), except for certain cofactors. 

The geometric mean (green) and feasible range (between maximum and minimum) of 

estimated millimolar standard transformed reaction Gibbs energy (Ar G’m, blue) and 
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transformed reaction Gibbs energy (ΔrG′m, red) are illustrated. The relative uncertainty in 

metabolite concentrations versus uncertainty in thermochemical estimates is reflected by the 

relative breadth of the red and blue bars for each reaction, respectively. The reactions are 

rank ordered by the cumulative probability that millimolar standard transformed reaction 

Gibbs energy is less than zero, P(ΔrG′m < 0), (black descending line from left to right). This 

assumes that all metabolites are at a millimolar concentration (1mM) and a Gaussian error is 

assumed in component contribution estimates. In this ordering, forward transport reactions 

have P(ΔrG′m < 0) = 1 (far left) and reverse transport reactions have P(ΔrG′m < 0) = 0 (far 

right). In between, from left to right are biochemical reactions with decreasing cumulative 

probability of being forward in direction, subject to the stated assumptions. Alternative 

rankings are possible. The key point is to observe that the COBRA Toolbox is primed for 

quantitative integration of metabolomic data as the uncertainty in transformed reaction 

Gibbs energy associated with thermochemical estimates using the component contribution 

method is now significantly lower than the uncertainty associated with the assumption of 

broad concentration range.
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Figure 11: 
Overlay of the flux vector for maximum ATP synthase flux, using flux balance analysis with 

regularisation of the flux vector. Active fluxes are highlighted (purple).
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Figure 12: 
Selective scope visualisation of the E. coli core model model by Paint4Net. Rectangles 

represent reactions with rates of fluxes in brackets; the red rectangles represent reactions 

with only one metabolite; ellipses represent metabolites; the red ellipses represent dead end 

metabolites; grey edges represent zero-rate fluxes; green edges represent positive-rate 

(forward) fluxes; and blue edges represent negative-rate (backward) fluxes. Network 

visualisation also enables zoom to specific regions.
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Table 1:

Each method available in the COBRA Toolbox 3.0 is made accessible with a narrative tutorial that illustrates 

how the corresponding function(s) are combined to implement each COBRA method in the respective src/ 

directories (https://github.com/opencobra/cobratoolbox/tree/master/src): base (B), reconstruction (R), 

datalntegration (I), analysis (A), design (D), visualisation (V).

src/ Narrative Novelty in the COBRA Toolbox 3.0 compared to 2.0

B Initialise and verify the installation Software dependency audit, e.g., solvers, binaries, git.

R Input and output of reconstructions and models Support for latest standards, e.g., SBML flux balance constraints64.

R Reconstruction: rBioNet New software for quality controlled reconstruction48.

R Reconstruction: create a functional generic subnetwork New methods for selecting different types of subnetworks.

R Reconstruction exploration New methods, e.g., find adjacent reactions.

R Reconstruction refinement Maintenance of internal model consistency, e.g., upon subnetwork 
generation29.

R Numerical reconstruction properties Flag a reconstruction requiring a multi-scale solver54.

R Convert a reconstruction into a flux balance analysis 
model

Identification of a maximal flux and stoichiometrically consistent subset69.

I Atomically resolve a metabolic reconstruction New algorithms and methods for working with molecular structures, atom 
mapping, identification of conserved moieties110, 122.

I Integration of metabolomic data New methods for analysis of metabolomic data in a network context65, 142.

I Integration of transcriptomic and proteomic data New algorithms for generation of context-specific models89.

A Flux balance analysis and its variants New flux balance methods, multi-scale model rescaling and multi-scale 
solvers, additional solver interfaces, thermodynamically feasible methods42, 
60, 128, 132, 143, 144.

A Variation on reaction rate bounds in flux balance 
analysis

Increased computational efficiency.

A Parsimonious flux balance analysis New method for parsimonious flux balance analysis145.

A Sparse flux balance analysis New method for sparse flux balance analysis.

A Gap filling Increased computational efficiency82.

A Adding biological constraints to a flux balance model New methods for coupling reaction rates38, 146.

A Testing biochemical fidelity Human metabolic function test suite17.

A Testing basic properties of a metabolic model (sanity 
checks)

New methods to minimise occurrence of modelling artefacts66.

A Minimal spanning pathway vectors New method for determining minimal spanning pathway vectors100.

A Elementary modes and pathway vectors Extended functionality by integration with CellNetAnalyzer55.

A Minimal cut sets Extended functionality by integration with CellNetAnalyzer147, 148, and new 
algorithms for genetic MCSs57.

A Flux variability analysis Increased computational efficiency101.

A Uniform sampling of steady-state fluxes New algorithm, guaranteed convergence to uniform distribution102.

A Thermodynamically constrain reaction directionality New algorithms and methods for estimation of thermochemical parameter 
estimation in multi-compartmental, genome-scale metabolic models126, 127.

A Variational kinetic modelling New algorithms and methods for genome-scale kinetic modelling68, 135–137.

D Metabolic engineering and strain design New methods, e.g., OptForce, interpretation of new strain designs. New 
modelling language interface to GAMS59.

V Human metabolic network visualisation: ReconMap New method for genome-scale metabolic network visualisation50, 51, 149.

V Variable scope visualisation with automatic layout 
generation

New method for automatic visualisation of network parts141.
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src/ Narrative Novelty in the COBRA Toolbox 3.0 compared to 2.0

Contributing to the COBRA Toolbox with 
MATLAB.devTools

New software application enabling contributions by those unfamiliar with 
version control software.

Engaging with the COBRA Toolbox Forum More than 800 posted questions with supportive replies connecting problems 
and solutions.

Nat Protoc. Author manuscript; available in PMC 2020 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heirendt et al. Page 101

Table 2:

A selection of actively developed software applications with constraint-based modelling (COBRA) 

capabilities. GUI, graphical user interface. The COBRA Toolbox: https://opencobra.github.io/cobratoolbox, 

RAVEN: https://github.com/SysBioChalmers/RAVEN, CellNetAnalyzer: https://www2.mpi-

magdeburg.mpg.de/projects/cna/cna.html, FBA-SimVis: https://immersive-analytics.infotech.monash.edu/

fbasimvis, OptFlux: http://www.optflux.org, COBRA.jl: https://opencobra.github.io/COBRA.jl, Sybil: https://

rdrr.io/cran/sybil, COBRApy: http://opencobra.github.io/cobrapy, CBMPy: http://cbmpy.sourceforge.net, 

SurreyFBA: http://sysbio.sbs.surrey.ac.uk/sfba, FASIMU: http://www.bioinformatics.org/fasimu, FAME: 

http://f-a-m-e.org, Pathway Tools: http://bioinformatics.ai.sri.com/ptools, KBase: https://kbase.us. The symbol 
† in the development column refers to an inactive project and the * to an active project. The column “Distrib.” 

refers to the distribution channel. The label ‘all’ in the OS column means that the applications is compatible 

with Windows, Linux and macOS operating systems.

Name Implementation Interface Development Distrib. OS

COBRA Toolbox MATLAB (etc) Script/Narrative open source* git all

RAVEN150 MATLAB Script open source* git all

CellNetAnalyzer55 MATLAB (etc) Script/GUI closed source* zip all

FBA-SimVis151 Java + MATLAB GUI closed source† zip Windows

OptFlux152 Java Script open source* svn all

COBRA.jl42 Julia Script/Narrative open source* git all

Sybil53 R package Script open source* zip all

COBRApy40 Python Script/Narrative open source* git all

CBMPy52 Python Script open source* zip all

Scrumpy153 Python Script open source* tar all

SurreyFBA47 C++ Script/GUI open source* zip all

FASIMU154 C Script open source† zip Linux

FAME155 Web-based GUI open source† zip all

PathwayTools43 Web-based GUI/Script closed source* N/A all

KBase41 Web-based Script/Narrative open source* git all
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Table 3:

A description of the main fields of a standard model structure.

Field name Size Data Type Field description

.b m × 1 double The coefficients of the constraints of the metabolites (Sυ = b).

.csense m × 1 char The sense of the constraints represented by b, each row is either ‘E’ (equality), ‘L’ 
(less than) or ‘G’ (greater than).

.metCharges m × 1 numeric The charge of the respective metabolite (NaN if unknown).

.metFormulas m × 1 cell of char Elemental formula for each metabolite.

.metInChIString m × 1 cell of char Formula for each metabolite in the InCHI strings format.

.metNames m × 1 cell of char Full name of each corresponding metabolite.

.mets m × 1 cell of char Identifiers of the metabolites.

.metSmiles m × 1 cell of char Formula for each metabolite in SMILES Format.

.c n × 1 double The objective coefficient of the reactions.

.grRules n × 1 cell of char A string representation of the GPR rules defined in a readable format.

.lb n × 1 double Lower bounds for fluxes through the reactions.

.rxnConfidenceScores n × 1 numeric Confidence scores for reaction presence (0–5, with 5 being the highest confidence).

.rxnECNumbers n × 1 cell of char E.C. number for each reaction.

.rxnNames n × 1 cell of char Full name of each corresponding reaction.

.rxnNotes n × 1 cell of char Description of each corresponding reaction.

.rxnReferences n × 1 cell of char Description of references for each corresponding reaction.

.rxns n × 1 cell Identifiers of the reactions.

.subSystems n × 1 cell of cell of char subSystem assignments for each reaction.

.ub n × 1 double Upper bounds for fluxes through the reactions.

.S m × n numeric The stoichiometric matrix containing the model structure (for large models a sparse 
format is suggested).

.geneNames g × 1 cell of char Full name of each corresponding gene.

.genes g × 1 cell of char Identifiers of the genes in the model.

.proteinNames g × 1 cell of char Full name for each protein.

.proteins g × 1 cell of char Proteins associated with each gene (one protein per gene).

.rxnGeneMat n × g numeric or logical Matrix with rows corresponding to reactions and columns corresponding to genes.

.compNames c × 1 cell of char Descriptions of the Compartments (compNames(m) is associated with comps(m) ).

.comps c × 1 cell of char Symbols for compartments.

.osenseStr 1 × 3 char The objective sense: either ‘max’ (maximisation) or ‘min’ (minimisation).
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Table 4:

An overview of the types of optimisation problems solved by each optimisation solver. The interface to certain 

standard optimisation solvers is actively supported, whereas the interface to other non-standard solvers 

requires testing by the end user to ensure compatibility, while a legacy solver interface might require 

refinement before it becomes compatible with newer solver or MATLAB releases.

Name Version Interface LP MILP QP MIQP NLP

Active Support

DQQ - dqqMinos ⋆

GLPK 2.7+ glpk ⋆ ⋆

GUROBI 7.0+ gurobi ⋆ ⋆ ⋆ ⋆

ILOG CPLEX 12.7.1 + ibm cplex ⋆ ⋆ ⋆

MATLAB R2014b+ matlab ⋆ ⋆

MINOS - quadMinos ⋆ ⋆

MOSEK 8.0+ mosek ⋆ ⋆ ⋆

PDCO - pdco ⋆ ⋆ ⋆ ⋆

Tomlab CPLEX 8.0+ cplex_direct
tomlab_cplex

⋆
⋆

⋆
⋆

⋆
⋆

⋆

Passive

OPTI 2.27+ opti ⋆ ⋆ ⋆ ⋆ ⋆

QPNG - qpng ⋆

Tomlab SNOPT 8.0+ tomlab_snopt ⋆

Legacy

GUROBI 7.0+ Gurobi_mex ⋆ ⋆ ⋆ ⋆

LINDO
MATLAB

2.0+
R2014b+

lindo_old
lindo_legacy
lp_solve

⋆
⋆
⋆
⋆
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