
Creation and analysis of biochemical constraint-based models:
the COBRA Toolbox v3.0

A full list of authors and affiliations appears at the end of the article.
These authors contributed equally to this work.

Abstract

COnstraint-Based Reconstruction and Analysis (COBRA) provides a molecular mechanistic

framework for integrative analysis of experimental molecular systems biology data and

quantitative prediction of physicochemically and biochemically feasible phenotypic states. The

COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It

has found widespread applications in biology, biomedicine, and biotechnology because its

functions can be flexibly combined to implement tailored COBRA protocols for any biochemical

network. This protocol is an update to the COBRA Toolbox 1.0 and 2.0. Version 3.0 includes new

methods for quality controlled reconstruction, modelling, topological analysis, strain and

experimental design, network visualisation as well as network integration of chemoin-formatic,

metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code

integration also enables an expansion in COBRA application scope via high-precision, high-

performance, and nonlinear numerical optimisation solvers for multi-scale, multi-cellular and

reaction kinetic modelling, respectively. This protocol overviews all of these new features and can

be adapted to generate and analyse constraint-based models in a wide variety of scenarios. The

COBRA Toolbox 3.0 provides an unparalleled depth of constraint-based reconstruction and

analysis methods.

Keywords

Metabolic models; metabolic reconstruction; metabolic engineering; gap filling; strain
engineering; omics; data integration; metabolomics; transcriptomics; constraint-based modelling;
computational biology; bioinformatics; biochemistry; human metabolism; microbiome analysis

INTRODUCTION

Development of the protocol

Constraint-based reconstruction and analysis (COBRA1) is a mechanistic integrative

analysis framework that is applicable to any biochemical system with prior mechanistic

information, including where mechanistic information is incomplete. The overall approach is

to mechanistically represent the relationship between genotype and phenotype by

mathematically and computationally modelling the constraints that are imposed on the

Correspondence should be addressed to Ronan M.T. Fleming (ronan.mt.fleming@gmail.com).

COMPETING FINANCIAL INTERESTS The authors declare that they have no competing financial interests.

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2020 March 01.

Published in final edited form as:
Nat Protoc. 2019 March ; 14(3): 639–702. doi:10.1038/s41596-018-0098-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

phenotype of a biochemical system by physicochemical laws, genetics, and the

environment2 (see Figure 1). This protocol updates and extends previous protocols on the

COBRA Toolbox versions 1.03 and 2.04. It provides an introduction into the practical

application of many of the novel COBRA methods developed in recent years.

Early in the development of the COBRA framework, the need for ease of reproducibility and

demand for reuse of COBRA methods were recognised. This necessity led to the COBRA

Toolbox version 1.03, an open source software package running in the MATLAB

environment, which facilitated quantitative prediction of metabolic phenotypes using a

selection of the COBRA methods available at the time. With the expansion of the COBRA

community and the growing phylogeny of COBRA methods, the need was recognised for

the amalgamation and transparent dissemination of COBRA methods. This demand led to

the COBRA Toolbox version 2.04, with an enhanced range of methods to simulate, analyse,

and predict a variety of phenotypes using genome-scale metabolic reconstructions. Since

then, the increasing functional scope and size of biochemical network reconstructions, as

well as the increasing breadth of physicochemical and biological constraints that are

represented within constraint-based models, naturally result in the development of a broad

arbour of new COBRA methods5.

The present protocol overviews the main novel developments within version 3.0 of the

COBRA Toolbox (see Table 1), especially the expansion of functionality to cover new

biochemical network reconstruction and modelling methods. In particular, this protocol

includes the input and output of new standards for sharing reconstructions and models, an

extended suite of supported general purpose optimisation solvers, new optimisation solvers

developed especially for constraint-based modelling problems, enhanced functionality in the

areas of computational efficiency and high precision computing, numerical characterisation

of reconstructions, conversion of reconstructions into various forms of constraint-based

models, comprehensive support for flux balance analysis and its variants, integration with

omics data, uniform sampling of high dimensional models, atomic resolution of metabolic

reconstructions via molecular structures, estimation and application of thermodynamic

constraints, visualisation of metabolic networks, and genome-scale kinetic modelling.

This protocol consists of a set of methods that are introduced in sequence but can be

combined in a multitude of ways. The overall purpose is to enable the user to generate a

biologically relevant, high-quality model that enables novel predictions and hypotheses

generation. Therefore, we implement and enforce standards in reconstruction and simulation

that have been developed by the COBRA community over the past two decades. All

explanations of a method are also accompanied by explicit computational commands.

First, we explain how to initialise and verify the installation of the COBRA Toolbox in

MATLAB (Math-works, Inc.). The main options to import and explore the content of a

biochemical network reconstruction are introduced. For completeness, a brief summary of

methods for manual and algorithmic reconstruction refinement are provided, with reference

to the established reconstruction protocol6. We also explain how to characterise the

numerical properties of a reconstruction, especially with respect to detection of a

reconstruction requiring a multi-scale numerical optimisation solver. We explain how to

Heirendt et al. Page 2

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

semi-automatically convert a reconstruction into a constraint-based model suitable for flux

balance analysis. This is followed by an extensive explanation of how to carry out flux

balance analysis and its variants. The procedure to fill gaps in a reconstruction, due to

missing reactions, is also explained.

We provide an overview of the main methods to integrate metabolomic, transcriptomic,

proteomic, and thermochemical data to generate context-specific, constraint-based models.

Various methods are explained for the addition of biological constraints to a constraint-based

model. We then explain how to test the chemical and biochemical fidelity of the model. Now

that a high-quality model is generated, we explain how to interrogate the discrete geometry

of its stoichiometric subspaces, how to efficiently measure the variability associated with the

prediction of steady state reaction rate using flux variability analysis, and how to uniformly

sample steady-state fluxes. We introduce various approaches for prospective uses of a

constraint-based model, such as strain and experimental design.

We explain how to atomically resolve a metabolic reconstruction by connecting it with

molecular species structures and how to use cheminformatic algorithms for atom mapping

and identification of conserved moieties. Using molecular structures for each metabolite,

and established thermochemical data, we estimate the transformed Gibbs energy of each

subcellular compartment specific reaction in a model of human metabolism in order to

thermodynamically constrain reaction directionality and constrain the set of feasible kinetic

parameters. Sampled kinetic parameters are then used for variational kinetic modelling, in an

illustration of the utility of recently published algorithms for genome-scale kinetic

modelling. We also explain how to visualise predicted phenotypic states using a recently

developed approach for metabolic network visualisation. We conclude with an explanation

of how to engage with the community of COBRA developers, as well as contribute code to

the COBRA Toolbox with MATLAB.devTools, a newly developed piece of software for

community contribution of COBRA methods to the COBRA Toolbox.

All documentation and code is released as part of the openCOBRA project (https://

github.com/opencobra/cobratoolbox). Where reading the extensive documentation

associated with the COBRA Toolbox does not suffice, we describe the procedure for

effectively engaging with the community via a dedicated online forum (https://

groups.google.com/forum/#!forum/cobra-toolbox). Taken together, the COBRA Toolbox 3.0

provides an unparalleled depth of interoperable COBRA methods and a proof-of-concept

that knowledge integration and collaboration by large numbers of scientists can lead to

cooperative advances impossible to achieve by a single scientist or research group alone7.

Applications of COBRA methods

Constraint-based modelling of biochemical networks is broadly applicable to a range of

biological, biomedical, and biotechnological research questions8. Fundamentally, this broad

applicability arises from the common phylogenetic tree, shared by all living organisms, that

manifests in a set of shared mathematical properties that are common to biochemical

networks in normal, diseased, wild-type, or mutant biochemical networks. Therefore, a

COBRA method developed primarily for use in one scenario can usually be quickly adapted

for use in a variety of related scenarios. Often, this adaptation retains the mathematical

Heirendt et al. Page 3

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/opencobra/cobratoolbox
https://github.com/opencobra/cobratoolbox
https://groups.google.com/forum/#!forum/cobra-toolbox
https://groups.google.com/forum/#!forum/cobra-toolbox

properties of the optimisation problem underlying the original constraint-based modelling

method. By adapting the input data and interpreting the output results in a different way, the

same method can be used to address a different research question.

Biotechnological applications of constraint-based modelling include the development of

sustainable approaches for chemical9 and biopharmaceutical production10, 11. Among these

applications is the computational design of new microbial strains for production of

bioenergy feedstocks from non-food plants, such as microbes capable of deconstructing

biomass into their sugar subunits and synthesising biofuels, either from cellulosic biomass or

through direct photosynthetic capture of carbon dioxide.

Another prominent biotechnological application is the analysis of interactions between

organisms that form biological communities and their surrounding environments, with a

view toward utilisation of such communities for bioremediation12 or nutritional support of

non-food plants for bioenergy feedstocks. Biomedical applications of constraint-based

modelling include the prediction of the phenotypic consequences of single nucleotide

polymorphisms13, drug targets14, enzyme deficiencies15–18, as well as side and off-target

effects of drugs19–21. COBRA has also been applied to generate and analyse normal and

diseased models of human metabolism17, 22–25, including organ-specific models26–28, multi-

organ-models29, 30, and personalised models31–33. Constraint-based modelling has also been

applied to understanding of the biochemical pathways that interlink diet, gut microbial

composition, and human health34–38.

Key features and comparisons

Besides the COBRA Toolbox, constraint-based reconstruction and analysis can be carried

out with a variety of software tools. In 2012, Lakshmanan et al.39 made a comprehensive,

comparative evaluation of the usability, functionality, graphical representation and inter-

operability of the tools available for flux balance analysis. Each of these evaluation criteria

is still valid when comparing the current version of the COBRA Toolbox with other software

with constraint-based modelling capabilities. The rapid development of novel constraint-

based modelling algorithms requires continuity of software development. Short term

investment in new COBRA modelling software applications has led to a plethora of COBRA

modelling applications39. Each usually provides some unique capability initially, but many

have become antiquated due to lack of maintenance, failure to upgrade, or failure to support

new standards in model exchange formats (http://sbml.org/Documents/Specifications).

Therefore, we also restrict our comparison to software in active development (see Table 2).

Each software tool for constraint-based modelling has varying degrees of dependency on

other software. Web-based applications exist for the implementation of a limited number of

standard constraint-based modelling methods. Their only local dependency is on a web

browser. The COBRA Toolbox depends on MATLAB (Mathworks Inc.), a commercially

distributed, general-purpose computational tool. MATLAB is a multi-paradigm

programming language and numerical computing environment that allows matrix

manipulations, plotting of functions and data, implementation of algorithms, creation of user

interfaces, and interfacing with programs written in other languages, including C, C++, C#,

Java, Fortran, and Python. All software tools for constraint-based modelling also depend on

Heirendt et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sbml.org/Documents/Specifications

at least one numerical optimisation solver. The most robust and efficient numerical

optimisation solvers for standard problems are distributed commercially, but often with free

licences available for academic use, e.g., Gurobi Optimizer (http://www.gurobi.com). Stand-

alone constraint-based modelling software tools also exist and their dependency on a

numerical optimisation solver is typically satisfied by GLPK (https://gnu.org/software/glpk),

an open-source linear optimisation solver.

It is sometimes perceived that there is a commercial advantage to depending only on open-

source software. However, there are also commercial costs associated with dependency on

open-source software. That is, in the form of increased computation times as well as

increased time required to install, maintain and upgrade open-source software dependencies.

This is an important consideration for any research group whose primary focus is on

biological, biomedical, or biotechnological applications, rather than on software

development. The COBRA Toolbox 3.0 strikes a balance by depending on closed-source,

general purpose, commercial computational tools, yet all COBRA code is distributed and

developed in an open-source environment (https://github.com/opencobra/cobratoolbox).

The availability of comprehensive documentation is an important feature in the usability of

any modelling software. Therefore, a dedicated effort has been made to ensure that all

functions in the COBRA Toolbox 3.0 are comprehensively and consistently documented.

Moreover, we also provide a new suite of more than 35 tutorials (https://opencobra.github.io/

cobratoolbox/latest/tutorials) to enable beginners, as well as intermediate and advanced

users to practise a wide variety of COBRA methods. Each tutorial is presented in a variety of

formats, including as a MATLAB live script, which is an interactive document, or narrative,

(https://mathworks.com/help/matlab/matlab_prog/what-is-a-live-script.html) that combines

MATLAB code with embedded output, formatted text, equations, and images in a single

environment viewable with the MATLAB Live Editor (version R2016a or later). MATLAB

live scripts are similar in functionality to Mathematica Notebooks (Wolfram Inc.) and

Jupyter Notebooks (https://jupyter.org). The latter support interactive data science and

scientific computing for more than 40 programming languages. To date, only the COBRA

Toolbox 3.0, COBRApy40, KBase41, and COBRA.jl42 offer access to constraint-based

modelling algorithms via narratives.

KBase is a collaborative, open environment for systems biology of plants, microbes and

their communities41. It also has a suite of analysis tools and data that support the

reconstruction, prediction, and design of metabolic models in microbes and plants. These

tools are tailored toward the optimisation of microbial biofuel production, the identification

of minimal media conditions under which that fuel is generated, and predict soil

amendments that improve the productivity of plant bioenergy feedstocks. In our view, KBase

is currently the tool of choice for the automatic generation of draft microbial metabolic

networks, which can then be imported into the COBRA Toolbox for further semi-automated

refinement, which has recently successfully been completed for a suite of gut microbial

organisms38. However, KBase41 currently offers a modest depth of constraint-based

modelling algorithms.

Heirendt et al. Page 5

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.gurobi.com/
https://gnu.org/software/glpk
https://github.com/opencobra/cobratoolbox
https://opencobra.github.io/cobratoolbox/latest/tutorials
https://opencobra.github.io/cobratoolbox/latest/tutorials
https://mathworks.com/help/matlab/matlab_prog/what-is-a-live-script.html
https://jupyter.org/

MetaFlux43 is a web-based tool for the generation of network reconstructions directly from

pathway and genome databases, proposing network refinements to generate functional flux

balance models from reconstructions, predict steady-state reaction rates with flux balance

analysis and interpret predictions in a graphical network visualisation. MetaFlux is tightly

integrated within the PathwayTools44 environment, which provides a broad selection of

genome, metabolic and regulatory informatics tools. As such, PathwayTools provides

breadth in bioinformatics and computational biology, while the COBRA Toolbox 3.0

provides depth in constraint-based modelling, without providing, for example, any genome

informatics tools. Although an expert can locally install a PathwayTools environment, the

functionality is closed source and only accessible via an application programming interface.

This approach does not permit the level of repurposing possible with open-source software.

As recognised in the computational biology community45, open-source development and

distribution is scientifically important for tractable reproducibility of results as well as reuse

and repurposing of code46.

Lakshmanan et al.39 consider the availability of a graphical user interface to be an important

feature in the usability of modelling software. For example, SurreyFBA47 provides a

command line tool and graphical user interface for constraint-based modelling of genome-

scale metabolic reaction networks. The time lag between the development of a new

modelling method and its availability via a graphical user interface necessarily means that

graphically driven COBRA tools permit a limited depth of novel constraint-based modelling

methods. While MATLAB provides a generic graphical user interface, the COBRA Toolbox

is controlled either by scripts or narratives, rather than graphically. Exceptions include the

input of manually-curated data during network reconstruction48, the assimilation of genome-

scale metabolic reconstructions49, and the visualisation of simulation results in biochemical

network maps50 via specialised network visualisation software51.

Due to the relative simplicity of the MATLAB programming language, new COBRA

Toolbox users, including those without software development experience, can rapidly

become familiar with the basics of constraint-based modelling. This initial learning effort is

worth it for the flexibility it opens up, especially considering the broad array of constraint-

based modelling methods now available within the COBRA Toolbox 3.0. Although it should

be technically possible to generate a computational specification of the point-and-click

analysis steps that are required to generate results using a graphical user interface, to our

knowledge, none of the graphically-driven modelling tools in Table 2 offers this facility.

Such a specification would be required for another scientist to reproduce the same results

using the same tool. This weakness limits the ability to reproduce analytical results, as

verbal specification is not sufficient for reproducibility46.

Each language-specific COBRA implementation has its benefits and drawbacks, which are

mainly associated with the programming language itself. PySCeS-CBM52 and COBRApy40

both provide support for a set of COBRA methods implemented in the Python programming

language. Python is a multi-paradigm, interpreted programming language for general-

purpose programming. It has a broad development community and a wide range of open-

source libraries, especially in bioinformatics. As such, it is well suited for the amalgamation

and management of heterogeneous experimental data. At present, the COBRA software

Heirendt et al. Page 6

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

tools in Python provide access to standard COBRA methods. In COBRApy40, this

functionality can be extended by using Python to invoke MATLAB and use the COBRA

Toolbox. Achieving such interoperability between COBRA software implemented in

different programming languages and developed together by a united open source

community is the primary objective of the openCOBRA project (https://

opencobra.github.io).

Sybil53 is an open-source, object-oriented software library that implements a limited set of

standard constraint-based modelling algorithms in the programming language R, which is a

free, platform independent environment for statistical computing and graphics. Sybil is

available for download from the comprehensive R archive network (CRAN), but does not

follow an open-source development model. The COBRA Toolbox is primarily implemented

in MATLAB, a proprietary, multi-paradigm, programming language which is interpreted for

execution rather than compiled prior to execution. As such, MATLAB code typically runs

slower than compiled code, but the main advantage is the ability to rapidly and flexibly

implement sophisticated numerical computations by leveraging the extensive libraries for

general-purpose numerical computing, supplied commercially within MATLAB (Mathworks

Inc.), and distributed freely by the community (https://mathworks.com/matlabcentral).

For the application of computationally-demanding constraint-based modelling methods to

high-dimensional or high-precision constraint-based models, the COBRA Toolbox 3.0

comes with an array of integrated, pre-compiled extensions and interfaces that employ

complementary programming languages and tools. These include a quadruple precision

Fortran 77 optimisation solver implementation for constraint-based modelling of multi-scale

biochemical networks54, and a high-level, high-performance, open-source implementation of

flux balance analysis in Julia42. The latter is tailored to solve multiple flux balance analyses

on a subset or all the reactions of large- and huge-scale networks, on any number of threads

or nodes. To enumerate elementary modes or minimal cut-sets, we provide an interface to

CellNetAnalyzer55, 56 (https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html), which

excels at computationally-demanding, enumerative, discrete geometry calculations of

relevance to biochemical networks. In addition, we included an updated implementation of

the genetic minimal cut-sets approach57, which extends the concept of minimal cut-sets to

gene knockout interventions.

In summary, the COBRA Toolbox 3.0 provides an unparalleled depth of constraint-based

reconstruction and analysis methods, has a highly active and supportive open-source

development community, is accompanied by extensive documentation and narrative

tutorials, it leverages the most comprehensive library for numerical computing, and it is

distributed with extensive interoperability with a range of complementary programming

languages that exploit their particular strengths to realise specialised constraint-based

modelling methods. A list of the main COBRA methods now available in the COBRA

Toolbox is given in Table 1. Moreover, all of this functionality is provided within one

accessible software environment.

Heirendt et al. Page 7

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://opencobra.github.io/
https://opencobra.github.io/
https://mathworks.com/matlabcentral
https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html

Experimental Design

The COBRA Toolbox 3.0 is designed for flexible adaptation into customised pipelines for

constraint-based reconstruction and analysis in a wide range of biological, biochemical, or

biotechnological scenarios, from single organisms to communities of organisms. To become

proficient in adapting the COBRA Toolbox to generate a protocol specific to one’s situation,

it is wise to first familiarise oneself with the principles of constraint-based modelling. This

can best be achieved by studying the educational material already available. The textbook

Systems Biology: Constraint-based Reconstruction and Analysis1 is an ideal place to start. It

is accompanied by a set of lecture videos that accompany each chapter http://

systemsbiology.ucsd.edu/Publications/Books/SB1–2LectureSlides. The textbook

Optimization Methods in Metabolic Networks58 provides the fundamentals of mathematical

optimisation and its application in the context of metabolic network analysis. A study of this

educational material will accelerate one’s ability to utilise any software application

dedicated to COBRA.

Once one is cognisant of the conceptual basis of COBRA, one can then proceed with this

protocol, which summarises a subset of the key methods that are available within the

COBRA Toolbox. To adapt this protocol to one’s situation, users can combine the COBRA

methods implemented within the COBRA Toolbox in numerous ways. The adaption of this

protocol to one’s situation may require the development of new customised MATLAB

scripts that combine existing methods in a new way. Due to the aforementioned benefits of

narratives, the first choice should be to implement these customised scripts in the form of

MATLAB live scripts. To get started, the existing tutorial narratives, described in Table 1,

can be repurposed as templates for new analysis pipelines. Narrative figures and tables can

then be generated from raw data and used within the main text of scientific articles and

converted into supplementary material to enable full reproducibility of computational

results. The narratives specific to individual scientific articles can also be shared with peers

within https://github.com/opencobra/cobratoolbox/tree/master/papers.

New tutorials can be shared with the COBRA community: https://git.io/COBRA.tutorials.

Depending on one’s level of experience, or the novelty of an analysis, the adaptation of this

protocol to a particular situation may require the adaption of existing COBRA methods, or

development of new COBRA methods, or both.

Software architecture of the COBRA Toolbox 3.0—The source code of the COBRA

Toolbox (https://github.com/opencobra/cobratoolbox/tree/master/src) is divided into several

top-level folders, which either mimic the main classes of COBRA methods (reconstruction,

dataIntegration, analysis, visualisation, design) or contain the basic functions (base)

available for use within many COBRA methods. For example, the input or output of

reconstructions and models in various formats as well as all the interfaces to optimisation

solvers is contained within the base folder. The reconstruction folder contains all of the

methods associated with the reconstruction and refinement of a biochemical network to

match experimental data, as well as the conversion of a reconstruction into various forms of

constraint-based models (see Table 3 for a description of the main fields of a COBRA

model). The dataIntegration folder contains the methods for integration of metabolomic,

Heirendt et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://systemsbiology.ucsd.edu/Publications/Books/SB1–2LectureSlides
http://systemsbiology.ucsd.edu/Publications/Books/SB1–2LectureSlides
https://github.com/opencobra/cobratoolbox/tree/master/papers
https://git.io/COBRA.tutorials
https://github.com/opencobra/cobratoolbox/tree/master/src

transcriptomic, proteomic, and thermodynamic data with a reconstruction or model. The

analysis folder contains all of the methods for interrogation of the properties of a

reconstruction or model, and combinations thereof, as well as the prediction of biochemical

network states using constraint-based models. The visualisation folder contains all of the

methods for the visualisation of predictions within a biochemical network context, using

various biochemical cartography tools that interoperate with the COBRA Toolbox. The

design folder contains new strain design methods and a new modelling language interface to

GAMS (General Algebraic Modeling System), a high-level modeling system for

mathematical optimisation59.

Open-source software development with the COBRA Toolbox—Understanding

how the COBRA Toolbox is developed is most important for developers, so beginners may

skip this section at first. With an increasing number of contributions from developers around

the world, the code base is evolving at a fast pace. The COBRA Toolbox has evolved from

monolingual MATLAB software to a multilingual software suite via integration with C,

FORTRAN, Julia, Perl and Python code, as well as pre-compiled binaries, for specific

purposes. For example, the integration with quadruple precision numerical optimisation

solvers, implemented in FORTRAN, for robust and efficient modelling of multi-scale

biochemical networks, such as those obtained with integration60 of metabolic61 and

macromolecular synthesis62 reconstructions, which represent a new peak in terms of

biochemical comprehensiveness and predictive capacity63. These developments warranted

an industrial approach to software development of the COBRA Toolbox. Therefore, we

implemented a continuous integration approach with the aim of guaranteeing a consistent,

stable, and high-quality software solution for a broad user community.

The COBRA Toolbox is version controlled using Git (https://git-scm.com), a free and open-

source distributed, version control system, which tracks changes in computer files and is

used for coordinating work on those files by multiple people. The continuous integration

environment facilitates contributions from the fork of COBRA developers to a development

branch, whilst ensuring that robust, high-quality, well-tested code is released to end users on

the master branch. To lower the technological barrier to the use of the aforementioned

software development tools, we have developed MATLAB.devTools (https://github.com/

opencobra/MATLAB.devTools), a new user-friendly software extension that enables

submission of new COBRA software and tutorials. A server-side, semi-automated

continuous integration environment ensures that the code in each new submission is first

verified automatically, via a comprehensive test suite that detects bugs and integration errors,

and second, is reviewed manually by at least one domain expert, before integration with the

development branch. Thirdly, each new contribution to the development branch is evaluated

in practice by active COBRA researchers, before it becomes part of the master branch.

Until recently, the code quality checks of the COBRA Toolbox have been primarily static:

the code has been reviewed by experienced users and developers while occasional code

inspections led to discoveries of bugs. The continuous integration setup defined in Figure 2

aims at dynamic testing with automated builds, code evaluation, and documentation

deployment. Often, a function runs properly independently and yields the desired output(s),

Heirendt et al. Page 9

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://git-scm.com/
https://github.com/opencobra/MATLAB.devTools
https://github.com/opencobra/MATLAB.devTools

but when called within a different part of the code, logical errors are thrown. The unique

advantage of continuous integration is that logical errors are mostly avoided.

Besides automatic testing, manual usability testing is performed regularly by users and is

key to provide a tested and usable code base to the end user. These users provide feedback

on the usability of the code base, as well as the documentation, and report eventual issues

online (https://github.com/opencobra/cobratoolbox/issues). The documentation is

automatically deployed to https://opencobra.github.io/cobratoolbox based on function

headers. Moreover, each of the narrative tutorials is presented in a format suitable for web

browsers (https://opencobra.github.io/cobratoolbox/stable/tutorials).

Controls—COBRA is part of an iterative systems biology cycle1. As such, it can be used

as a framework for integrative analysis of experimental data in the context of prior

information on the biochemical network underlying one or many complementary

experimental datasets. Moreover, it can be used to predict the outcome of new experiments,

or it can be used in both of these scenarios at once. Assuming all of the computational steps

are errorless, the appropriate control for any prediction derived from a computational model

is the comparison with independent experimental data, that is, experimental data that was

not used for the model-generated predictions. It is also important to introduce quality

controls to check that the computational steps are free from certain errors that may arise

during adaptation of existing COBRA protocols or development of new ones.

There are various strategies for the implementation of computational quality controls. Within

the COBRA Toolbox 3.0, significant effort has been devoted to automatically test the

functionality of existing COBRA methods. We have also embedded a large number of sanity
checks, which evaluate whether the input data could possibly be appropriate for use with a

function. These sanity checks have been accumulated over more than a decade of continuous

development of the COBRA Toolbox. Their objective is to rule out certain known classes of

obviously false predictions that might result from an inappropriate use of a COBRA method,

but they do not (and are not intended) to catch every such error, as it is impossible to

imagine all of the eventual erroneous inputs that may be presented to a COBRA Toolbox

function. It is advisable to add own narratives with additional sanity checks, which will

depend heavily on the modelling scenario. Examples of such narratives can be found under

https://opencobra.github.io/cobratoolbox/stable/tutorials.

Required expertise

Most of this protocol can be implemented by anyone with a basic familiarity with the

principles of constraint-based modelling. Some methods are only for advanced users. If one

is a beginner with respect to MATLAB, Supplementary Manual 1 provides pointers to get

started. MATLAB is a relatively simple programming language to learn, but it is also a

powerful language for an expert due to the large number of software libraries for numerical

and symbolic computing that it provides access to. Certain specialised methods within this

protocol, such as thermodynamically constraining reaction directionality, depend on the

installation of other programming languages and software, which may be too challenging for

a beginner with a non-standard operating system.

Heirendt et al. Page 10

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/opencobra/cobratoolbox/issues
https://opencobra.github.io/cobratoolbox
https://opencobra.github.io/cobratoolbox/stable/tutorials
https://opencobra.github.io/cobratoolbox/stable/tutorials

If the documentation and tutorials provided within the COBRA Toolbox are not sufficient,

then Steps 103 and 104 guide the user toward sources of COBRA community support. The

computational demands associated with the implementation of this protocol for one’s

reconstruction or model of choice is dependent on the size of the network concerned. For a

genome-scale model of metabolism, usually a desktop computer is sufficient. However, for

certain models, such as a community of genome-scale metabolic models, a multi-scale

model of metabolism and macromolecular synthesis, or a multi-tissue model, more powerful

processing and extensive memory capacity is required, ranging from a workstation to a

dedicated computational cluster. Embarrassingly parallel, high-performance computing is

feasible for most model analysis methods implemented in the COBRA Toolbox, which will

run in isolation with invocation from a distributed computing engine. It is currently an

ongoing topic of research, beyond the scope of this protocol, to fully exploit high-

performance computing environments with software developed within the wider

openCOBRA environment, though some examples42 are already available for interested

researchers to consult.

Limitations

A protocol for the generation of a high-quality, genome-scale reconstruction, using various

software applications, including the COBRA Toolbox, has previously been disseminated6;

therefore, this protocol focuses more on modelling than reconstruction. The COBRA

Toolbox is not meant to be a general-purpose computational biology tool as it is focussed on

constraint-based reconstruction and analysis. For example, although various forms of

generic data analysis methods are available within MATLAB, the input data for integration

with reconstructions and models within the COBRA Toolbox is envisaged to have already

been preprocessed by other tools. Within its scope, the COBRA Toolbox aims for complete

coverage of COBRA methods. The first comprehensive overview of the COBRA methods

available for microbial metabolic networks5 requires an update to encompass many

additional methods that have been reported to date, in addition to the COBRA methods

targeted toward other biochemical networks. The COBRA Toolbox 3.0 provides the most

extensive coverage of published COBRA methods. However, there are certainly some

methods that have yet to be incorporated directly as MATLAB implementations, or

indirectly via a MATLAB interface to a software dependency. Although in principle any

COBRA method could be implemented entirely within MATLAB, it may be more efficient

to leverage the core strength of another programming language that could provide

intermediate results that can be incorporated into the COBRA Toolbox via various forms of

MATLAB interfaces. Such a setup would enable one to overcome any current limitation in

coverage of existing methods.

MATERIALS

Equipment setup

Required hardware

• A computer with any 64-bit Intel or AMD processor and at least 8 GB of RAM.

Heirendt et al. Page 11

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

▲ CRITICAL STEP Depending on the size of the reconstruction or

model, more processing power and more memory may be needed, especially

if it is also desired to store the results of analysis procedures within the

MATLAB workspace.

• A hard drive with free storage of at least 10 GB.

• ! CAUTION A working and stable internet connection is required during

installation and while contributing to the COBRA Toolbox.

Required software

• A Linux, macOS or Windows operating system that is MATLAB qualified

(https://mathworks.com/support/sysreq.html). ! CAUTION Make sure that the

operating system is compatible with the MATLAB version by checking the

requirements on https://mathworks.com/support/sysreq/previous_releases.html.

Follow the upgrade and installation procedures on the supplier’s website or ask

your system administrator for help if required.

• MATLAB (MathWorks Inc. - https://mathworks.com/products/matlab.html),

version R2014b or above is required. Version R2016a or above is required for

running MATLAB live scripts (tutorials .mlx files). Note that the tutorials can be

run on R2014b using the provided .m files. Install MATLAB and its licence by

following the official installation instructions (https://mathworks.com/help/

install/ug/install-mathworks-software.html) or ask your system administrator. !
CAUTION No support is provided for versions older than R2014b. MATLAB is

released on a twice-yearly schedule. After the latest release (version b), it may be

a couple of months before certain methods with dependencies on other software

become compatible. For example, the latest releases of MATLAB may not be

compatible with the existing solver interfaces, necessitating an update of the

MATLAB interface provided by the solver developers, or an update of the

COBRA Toolbox, or both.

• The COBRA Toolbox (https://github.com/opencobra/cobratoolbox) version 3.0

or above. Install the COBRA Toolbox by following the procedures given on

https://github.com/opencobra/cobratoolbox. ! CAUTION Make sure that all

system requirements outlined under https://opencobra.github.io/cobratoolbox/

docs/requirements.html are met. If an installation of the COBRA Toolbox is

already present, there is no need to re-clone the full repository. Instead, you can

update the repository from MATLAB or from the terminal.

(A) Update from within MATLAB by running:

>> updateCobraToolbox

(B) Update from the terminal (or shell) by running from within the

cobratoolbox directory

$ cd cobratoolbox # change to the cobratoolbox directory

$ git checkout master # switch to the master branch

Heirendt et al. Page 12

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://mathworks.com/support/sysreq.html
https://mathworks.com/support/sysreq/previous_releases.html
https://mathworks.com/products/matlab.html
https://mathworks.com/help/install/ug/install-mathworks-software.html
https://mathworks.com/help/install/ug/install-mathworks-software.html
https://github.com/opencobra/cobratoolbox
https://github.com/opencobra/cobratoolbox
https://opencobra.github.io/cobratoolbox/docs/requirements.html
https://opencobra.github.io/cobratoolbox/docs/requirements.html

$ git pull origin master # retrieve changes

▲ CRITICAL STEP The official repository must be cloned as explained in the installation

instructions in Steps 97–102. The COBRA Toolbox can only be updated if no changes have

been made locally in the cloned repository. Steps 97–102 provide explanations on how to

contribute.

In case the update of the COBRA Toolbox fails or cannot be completed, clone the repository

again.

• A working bash terminal (or shell) with UNIX tools. curl version 7.0 or above

must be installed to ensure connectivity between the COBRA Toolbox and the

remote Github server. The version control software git 1.8 or above is required to

be installed and accessible through system commands. On Linux and macOS, a

bash terminal with git and curl is readily available. Supplementary Manual 2

provides a brief guide to the basics of using a terminal. ! CAUTION On

Windows, the shell integration included with git Bash (https://git-for-

windows.github.io) utilities must be installed. The command line tools such as

git or curl will be be installed together with git Bash. Make sure that you select

<Use git Bash and optional Unix tools from the Windows Command prompt
during the installation process> of git Bash. After installing git Bash, restart

MATLAB. On macOS, a working installation of Xcode (https://

developer.apple.com/xcode) version 8.0 or above and command line tools is

mandatory. The Xcode command line tools may be installed by following the

instructions on https://railsapps.github.io/xcode-command-line-tools.html.

Optional software

• Reading and writing models in SBML (Systems Biology Markup Language)

format requires the MATLAB interface from the libSBML application

programming interface, version 5.15.0 or above. The COBRA Toolbox 3.0

supports the latest SBML Level 3 Flux Balance Constraints Version 2 package

(http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/fbc). The

libSBML package, version 5.15.0 or above is already packaged with the COBRA

Toolbox via the COBRA.binary submodule for all common operating systems.

Alternatively, binaries can be downloaded separately and installed by following

the procedure on http://sbml.org/Software/libSBML. The COBRA Toolbox

developers work closely with the SBML Team to ensure that the COBRA

Toolbox supports the latest standards, and moreover that standard development is

also focused on meeting the evolving requirements of the constraint-based

modelling community. After the latest release of MATLAB, there may be a short

time lag before input and output become fully compatible. For example, the input

and output of .xml files in the SBML standard formats relies on platform

dependent binaries that we maintain (https://github.com/opencobra/

COBRA.binary) for each major platform, but the responsibility for maintenance

of the source code64 lies with the SBML team (http://sbml.org), who have a

Heirendt et al. Page 13

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://git-for-windows.github.io/
https://git-for-windows.github.io/
https://developer.apple.com/xcode
https://developer.apple.com/xcode
https://railsapps.github.io/xcode-command-line-tools.html
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/fbc
http://sbml.org/Software/libSBML
https://github.com/opencobra/COBRA.binary
https://github.com/opencobra/COBRA.binary
http://sbml.org

specific forum for raising interoperability issues (https://groups.google.com/

forum/#!forum/sbml-interoperability).

• The MATLAB Image Processing Toolbox, the Parallel Computing Toolbox, the

Statistics and Machine Learning Toolbox, and the Optimization Toolbox and

Bioinformatics Toolbox (https://mathworks.com/products) must be licensed and

installed to ensure certain model analysis functionality, such as topology based

algorithms, flux variability analysis, or sampling algorithms. The individual

MATLAB toolboxes can be installed during the MATLAB installation process. If

MATLAB is already installed, the toolboxes can be managed using the built-in

MATLAB add-on manager as described on https://mathworks.com/help/matlab/

matlab_env/manage-your-add-ons.html.

• The Chemaxon Calculator Plugins (https://chemaxon.com/products/calculator-

plugins - Chem-Axon Ltd), version 16.9.5.0 or above, is a suite offering a range

of cheminformatics tools. Standardizer is ChemAxon’s solution to transform

chemical structures into customised, canonical representations to achieve best

reliability with chemical databases. The Chemaxon Calculator Plugins, version

16.9.5.0 or above can be installed by following the installation procedures

outlined in the user guide on https://chemaxon.com/products/calculator-plugins.

A licence is freely available for academics.

• Java (https://java.com/en/download/help/download_options.xml), version 8 or

above, is a programming language which enables platform independent

applications. Java, version 8 or above, may be installed by following the

procedures given on https://java.com/en/download/help/index_installing.xml.

• Python (https://python.org/downloads), version 2.7, is a high-level programming

language for general-purpose programming and is required to run NumPy or

generate the documentation locally (relevant when contributing). Python, version

2.7 is already installed on Linux and macOS. On Windows, the instructions on

https://wiki.python.org/moin/BeginnersGuide/Download will guide you to install

Python.

• NumPy (https://scipy.org/install.html), version 1.11.1 or above, is the

fundamental package for scientific computing with Python. NumPy may be

installed by following the procedures on https://docs.scipy.org/doc/

numpy-1.10.1/user/install.html.

• OpenBabel (https://openbabel.org), version 2.3 or above, is a chemical toolbox

designed to speak the many languages of chemical data. OpenBabel may be

installed by following the installation instructions on http://openbabel.org/wiki/

Category:Installation.

• Reaction Decoder Tool (RDT - https://github.com/asad/ReactionDecoder/

releases), version 1.5.0 or above, is a Java-based, open-source atom mapping

software tool. The latest version of the Reaction Decoder Tool (RDT) can be

installed by following the procedures on https://github.com/asad/

ReactionDecoder#installation.

Heirendt et al. Page 14

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://groups.google.com/forum/#!forum/sbml-interoperability
https://groups.google.com/forum/#!forum/sbml-interoperability
https://mathworks.com/products
https://mathworks.com/help/matlab/matlab_env/manage-your-add-ons.html
https://mathworks.com/help/matlab/matlab_env/manage-your-add-ons.html
https://chemaxon.com/products/calculator-plugins
https://chemaxon.com/products/calculator-plugins
https://chemaxon.com/products/calculator-plugins
https://java.com/en/download/help/download_options.xml
https://java.com/en/download/help/index_installing.xml
https://python.org/downloads
https://wiki.python.org/moin/BeginnersGuide/Download
https://scipy.org/install.html
https://docs.scipy.org/doc/numpy-1.10.1/user/install.html
https://docs.scipy.org/doc/numpy-1.10.1/user/install.html
https://openbabel.org/
http://openbabel.org/wiki/Category:Installation
http://openbabel.org/wiki/Category:Installation
https://github.com/asad/ReactionDecoder/releases
https://github.com/asad/ReactionDecoder/releases
https://github.com/asad/ReactionDecoder#installation
https://github.com/asad/ReactionDecoder#installation

Solvers

• Table 4 provides an overview of supported optimisation solvers. At least one

linear programming (LP) solver is required for basic constraint-based modelling

methods. Therefore, by default, the COBRA Toolbox installs certain open source

solvers, including the LP and MILP solver GLPK (https://gnu.org/software/

glpk). However, for more efficient and robust linear optimisation, we recommend

to also install an industrial numerical optimisation solver. On Windows, the

OPTI solver suite (https://inverseproblem.co.nz/OPTI) must be installed

separately in order to use the OPTI interface. ! CAUTION Depending on the

type of optimisation problem underlying a COBRA method, an additional

numerical optimisation solver may be required.

• Most steps of the solver installation require superuser or administrator rights

(sudo) and eventually setting environment variables. Detailed instructions and

links to the official installation guidelines for installing Gurobi, Mosek, Tomlab

and IBM Cplex can be found on https://opencobra.github.io/cobratoolbox/docs/

solvers.html. ! CAUTION Make sure that environment variables are properly set

in order for the solvers to be properly recognised by the COBRA Toolbox.

Application specific software

• Certain solvers have additional software requirements, and some binaries

provided in the COBRA.binary (https://github.com/opencobra/COBRA.binary)

repository might not be compatible with your system.

• The dqqMinos and Minos solvers may only be used on Unix. The C-shell csh
(http://bxr.su/NetBSD/bin/csh) is required. On Linux or macOS, the C-shell csh
can be installed by following the instructions on https://en.wikibooks.org/wiki/

C_Shell_Scripting/Setup.

• The GNU C-compiler gcc 7.0 or above (https://gcc.gnu.org). The library of the

gcc compiler is required for generating new binaries of fastFVA with a different

version of the CPLEX solver than officially supplied. The GNU Fortran compiler

gfortran 4.1 or above (https://gcc.gnu.org/fortran). The library of the gfortran
compiler is required for running dqqMinos. The gcc and gfortran compilers can

be installed by following the links given on https://opencobra.github.io/

cobratoolbox/docs/compilers.html.

Contributing software

• MATLAB.devTools (https://github.com/opencobra/MATLAB.devTools) is highly

recommended for contributing code to the COBRA Toolbox in a user-friendly

and convenient way, even for those without basic knowledge of git. The

MATLAB.devTools can be installed by following the instructions given on

https://github.com/opencobra/MATLAB.devTools#installation. Alternatively, if

the COBRA Toolbox is already installed, then the MATLAB.devTools can be

installed directly from within MATLAB by typing:

>> installDevTools()

Heirendt et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gnu.org/software/glpk
https://gnu.org/software/glpk
https://inverseproblem.co.nz/OPTI
https://opencobra.github.io/cobratoolbox/docs/solvers.html
https://opencobra.github.io/cobratoolbox/docs/solvers.html
https://github.com/opencobra/COBRA.binary
http://bxr.su/NetBSD/bin/csh
https://en.wikibooks.org/wiki/C_Shell_Scripting/Setup
https://en.wikibooks.org/wiki/C_Shell_Scripting/Setup
https://gcc.gnu.org/
https://gcc.gnu.org/fortran
https://opencobra.github.io/cobratoolbox/docs/compilers.html
https://opencobra.github.io/cobratoolbox/docs/compilers.html
https://github.com/opencobra/MATLAB.devTools
https://github.com/opencobra/MATLAB.devTools#installation

PROCEDURE

Initialisation of the COBRA Toolbox ● TIMING 5 – 30 s

1 | At the start of each MATLAB session, the COBRA Toolbox must be initialised.

The initialisation can be done either automatically (option A) or

manually(option B). For a regular user who primarily uses the official

openCOBRA repository, automatic initialisation of the COBRA Toolbox is

recommended. It is highly recommended to manually initialise when

contributing (see Steps 97–102), especially when the official version and a clone

of the fork are present locally.

(A) Automatically initialising the COBRA Toolbox

(i) Edit the MATLAB startup.m file and add a line with

initCobraToolbox so that the COBRA Toolbox is initialised

each time that MATLAB is started.

>> edit startup.m

(A) Manually initialising the COBRA Toolbox

(i) Navigate to the directory where you installed the COBRA

Toolbox and initialise by running:

>> initCobraToolbox;

▲ CRITICAL STEP During initialisation, a check for software dependencies is made and

reported to the command window. It is not necessary that all possible dependencies are

satisfied before beginning to use the toolbox, e.g., satisfaction of a dependency on a multi-

scale linear optimisation solver is not necessary for modelling with a mono-scale metabolic

model. However, other software dependencies are essential to be satisfied, e.g., dependency

on a linear optimisation solver must be satisfied for any method that uses flux balance

analysis. ? TROUBLESHOOTING

2 | At initialisation, one from a set of available optimisation solvers will be selected

as the default solver. If Gurobi is installed, it is used as the default solver for LP,

QP, and MILP problems. Otherwise, the GLPK solver is selected for LP and

MILP problems. It is important to check if the solvers installed are satisfactory.

A table stating the solver compatibility and availability is printed to the user

during initialisation. Check the currently selected solvers with

>> changeCobraSolver;

▲ CRITICAL STEP A dependency on at least one linear optimisation solver must be

satisfied for flux balance analysis.

Verify and test the COBRA Toolbox ● TIMING ~ 103 s

3 | (optional) Test the functionality of the COBRA Toolbox locally. This is

recommended if one encounters an error running a function. The test suite runs

Heirendt et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

tailored tests that verify the output and proper execution of core functions on the

locally configured system. The full test suite can be invoked by typing:

>> testAll

? TROUBLESHOOTING

Importing a reconstruction or a model ● TIMING 10 – 102 s

4 | The COBRA Toolbox offers support for several commonly used data formats for

describing models, including models in Systems Biology Markup Language

(SBML), Excel Sheets (.xls) and different Simpheny(c) formats. The COBRA

Toolbox fully supports the standard format documented in the SBML Level 3

Version 1 with the Flux Balance Constraints (fbc) package version 2

specifications (www.sbml.org/specifications/sbml-level-3/version-1/fbc/sbml-

fbc-version-2-release-1.pdf). In order to load a model with a fileName into the

MATLAB workspace as a COBRAv3 model structure, run:

>> model = readCbModel(fileName);

When filename is left blank, a file selection dialogue window is opened. If no file extension

is provided, the code will automatically determine the appropriate format from the given

filename. The readCbModel function also supports reading normal MATLAB files for

convenience, and checks whether those files contain valid COBRA models. Legacy model

structures saved in a .mat file are loaded and converted. The fields are also checked for

consistency with the current definitions.

▲ CRITICAL STEP It is advisable that readCbModel() is used to load new models. This

is also valid for models provided in .mat files, as readCbModel checks the model for

consistency with the COBRA Toolbox 3.0 field definitions and automatically performs

necessary conversions for models with legacy field definitions or field names. In order to

develop future-proof code, it is good practice to use readCbModel() instead of the built-in

function load. ? TROUBLESHOOTING

Exporting a reconstruction or a model ● TIMING 10 – 102 s

5 | The COBRA Toolbox offers a set of different output methods. The most

commonly used formats are SBML .xml and MATLAB .mat files. SBML is the

preferred output format, as it can be read by most applications in the field of

computational systems biology. However, some information cannot be encoded

in standard SBML, so a .mat file might contain information not present in the

corresponding SBML output. In order to output a COBRA model structure in

either format, use:

>> writeCbModel(model, fileName);

The extension of the fileName provided is used to identify the type of output requested. The

model will consequently be converted and saved in the respective format. When exporting a

reconstruction or model, it is necessary that the model adheres to the model structure in

Heirendt et al. Page 17

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sbml.org/specifications/sbml-level-3/version-1/fbc/sbml-fbc-version-2-release-1.pdf
http://www.sbml.org/specifications/sbml-level-3/version-1/fbc/sbml-fbc-version-2-release-1.pdf

Table 3, and that fields contain valid data. For example, all cells of the the rxnNames field

should only contain data of type char and not data of type double. ?
TROUBLESHOOTING

Use of rBioNet to add reactions to a reconstruction ● TIMING 1 – 103 s

6 | We highly recommend using rBioNet48 (a graphical user interface-based

reconstruction tool) for the addition or removal of reactions and of gene-reaction

associations.

A stoichiometric representation of a reconstructed biochemical network is contained within

the model.S matrix. This is a stoichiometric matrix with m rows and n columns. The entry

model.S(i,j) corresponds to the stoichiometric coefficient of the ith molecular species in the

jth reaction. The coefficient is negative when the molecular species is consumed in the

reaction and positive if it is produced in the reaction. If model.S(i,j)== 0, then the molecular

species does not participate in the reaction. In order to manipulate an existing reconstruction

in the COBRA Toolbox, one can use rBioNet, use a spreadsheet, or generate scripts with

reconstruction functions. Each approach has its advantages and disadvantages. When adding

a new reaction or gene-protein-reaction association rBioNet ensures that reconstruction

standards are satisfied, but it may make the changes less tractable when many reactions are

added. A spreadsheet-based approach is tractable, but only allows for the addition, and not

the removal, of reactions. In contrast, using reconstruction functions provides an exact

specification for all of the refinements made to a reconstruction. One can also combine these

approaches by first formulating the reactions and gene-protein-reaction associations with

rBioNet and then adding sets of reactions using reconstruction functions.

If you do not have existing rBioNet metabolite, reaction, and compartment databases, the

first step is to create these files. Please refer to the rBioNet tutorial provided in the COBRA

Toolbox for instructions on how to add new metabolites and reactions to an rBioNet
database. Make sure that all the relevant metabolites and reactions that you wish to add to

your reconstruction are present in your rBioNet databases.

There are two options for using rBioNet functionality to add reactions to a reconstruction:

using the rBioNet graphical interface (option A) or without using the interface (option B). If

you wish to add the reactions only to the rBioNet database, hence benefiting from the

included quality control and assurance measures, but then afterwards use the COBRA

Toolbox commands to add reactions to the reconstruction, use option B.

(A) Adding reactions from an rBioNet database to a reconstruction using the

rBioNet graphical user interface.

(i) Verify your rBioNet settings

First, make sure the paths to your rBioNet reaction, metabolite,

and compartment databases are set correctly

>> rBioNetSettings;

(ii) Load the .mat files that hold your reaction, metabolite, and

compartment databases.

Heirendt et al. Page 18

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(iii) To add reactions from an rBioNet database to a reconstruction, invoke

the rBioNet graphical user interface with:

>> ReconstructionTool;

Select File > Open Model Creator.

(iv) Load your reconstruction by selecting File > Open Model > Complete

Reconstruction.

(v) Add reactions from the rBioNet database by selecting ‘Add Reaction’

and selecting a reaction. Repeat for all reactions that should be added

to the reconstruction.

(vi) Save your updated reconstruction by selecting File > Save > As

Reconstruction Model. As rBioNet was created using the old COBRA

model structure, use the following command to convert your model to

the new model structure:

>> model = convertOldStyleModel(model);

(B) Adding reactions from the rBioNet database without using the rBioNet interface.

(i) Load (or create) a list of reaction abbreviations ReactionList to be

added from the rBioNet reaction database:

>> load(‘Reactions.mat’);

(ii) Load the rBioNet reaction database ‘rxnDB’:

>> load(‘rxnDB.mat’);

(iii) Then, add new reactions:

>> for i = 1:length(ReactionList) model = addReaction(model,

ReactionList{i}, ‘reactionFormula’, …

rxnDB(find(ismember(rxn(:, 1), ReactionList{i})), 3)); end

Use of a spreadsheet to add reactions to a reconstruction ● TIMING 1 – 103 s

7 | Load reactions from a spreadsheet with a pre-specified format17 into a new

model structure modelNewR:

>> modelNewR = xls2model(‘NewReactions.xlsx’);

8 | Merge the existing reconstruction model with the new model structure

modelNewR to obtain a reconstruction with expanded content modelNew:

>> modelNew = mergeTwoModels(model, modelNewR, 1);

Use of scripts with reconstruction functions ● TIMING 1 – 102s

9 | In order to ensure traceability of all manipulations to a reconstruction, generate,

execute and save a script that calls reconstruction functions rather than using the

command line. The function addReaction can be used to add a reaction to a

reconstruction:

Heirendt et al. Page 19

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

>> model = addReaction(model, ‘GAPDH’, ‘metaboliteList’, {‘g3p[c]’, ‘nad[c]’, ‘pi[c]’, …

‘13bpg[c]’, ‘nadh[c]’, ‘h[c]’}, ‘stoichCoeffList’, [−1; −1; −2; 1; 1; 1]);

The use of metaboliteList provides a cell array of compartment specific molecular species

abbreviations, while stoichCoeffList is used to provide a numeric array of stoichiometric

coefficients. If particular metabolites do not exist in model.mets, then this function will add

them to the list of metabolites. In the function addReaction(), duplicate reactions are

recognized even when the order of metabolites or the abbreviation of the reaction are

different. Certain types of reactions, such as exchange, sink, and demand reactions65, may

also be added by using the functions addExchangeRxn, addsinkReactions, or

addDemandReaction, respectively.

After adding one or multiple reactions to a reconstruction, it is important to verify that these

reactions can carry flux; that is, that they are functionally connected to the remainder of the

network.

10 | Check whether the added reaction(s) have a nonzero flux value (in other words,

can carry flux). To do this for each newly added reaction NewRxn, change it to

be the objective function using:

>> model = changeObjective(model, ‘NewRxn’) ;

then maximise ‘max’ and minimise ‘min’ the flux through this reaction.

>> FBA = optimizeCbModel(model, ‘max’) ;

>> FBA = optimizeCbModel(model, ‘min’);

If the reaction should have a negative flux value (e.g., a reversible metabolic reaction or an

uptake exchange reaction), then the minimisation should result in a negative objective value

FBA.f < 0. If both maximisation and minimisation return an optimal flux value of zero (i.e.,

FBA.f == 0), then this newly added reaction cannot carry a non-zero flux value under the

given simulation condition and the cause for this must be identified.

If the reaction(s) can carry non-zero fluxes, please repeat Steps 20 and 47 to ensure

stoichiometric consistency, as well as the chemical and biochemical fidelity.

11 | Remove reactions. In order to remove reactions from a reconstruction, use:

>> modelOut = removeRxns(model, rxnRemoveList);

For example, if manual curation of the literature reveals that a reaction in the generic human

metabolic reconstruction, Recon366, is not active in a specific cell type being modelled, then

one should remove the corresponding reaction from the reconstruction.

12 | Remove metabolites. In order to remove metabolites only, run:

>> model = removeMetabolites(model, metaboliteList, removeRxnFlag);

Note that the removal of one or more metabolites makes sense only if they do not appear in

any reactions or if one wishes to remove all reactions associated with one or more

Heirendt et al. Page 20

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

metabolites. For example if a network contains reactions A + B ⇔ C and A ⇔ B, removing

metabolite C will remove the former reaction also.

13 | Remove trivial stoichiometry. If metabolites with zero rows, or reactions with

zero columns are present in a stoichiometric matrix, they can be removed with:

>> modelOut = removeTrivialStoichiometry(model);

After removing one or more reactions (or metabolites) from the reconstruction, please repeat

Steps 9 to 13 in order to check that these modifications did not alter existing metabolic

functions of the reconstruction-derived models.

Check the scaling of a reconstruction ● TIMING 1 – 102 s

14 | Most optimisation solvers are designed to work with data (e.g., stoichiometric

coefficients, bounds, and objective coefficients in linear optimisation problems)

that is well scaled. Standard solvers are based on 16-digit double-precision

floating-point arithmetics, so the input data should not require a solution with

more than 8 significant digits in order to ensure that solutions are accurate to the

remaining 8 digits of precision. Such a solution approach is sufficient for most

metabolic models, except, for instance, if micro and macronutrients are

simultaneously being considered. Multi-scale models of metabolism and

macromolecular synthesis require higher precision solvers, but they only need to

be used when necessary, so it is useful to check the scaling of a new

reconstruction or model.

Check the scaling of a stoichiometric matrix with:

>> [precisionEstimate, solverRecommendation, scalingProperties] = checkScaling(model);

Select a double- or quad-precision optimisation solver ● TIMING 1 – 5 s

15 | The COBRA Toolbox is integrated with a wide variety of different optimisation

solvers (cf. Table 4). Quad MINOS54, 67 is a quadruple-precision version of the

general-purpose, industrial-strength linear and nonlinear optimisation solver

MINOS. This solver operates with 34 digits of precision, and was developed

with multi-scale constraint-based modelling problems in mind. Higher precision

solvers are more precise but less computationally efficient than standard solvers.

They must be used when necessary, i.e., with multi-scale reconstructions and

models. To solve multi-scale linear optimisation problems, the COBRA Toolbox

offers a Double-Quad-Quad MINOS method (DQQ) that combines the use of

Double and Quad solvers in order to improve efficiency while maintaining high

accuracy in the solution. One can set the optimisation solver used by the

COBRA Toolbox as solverStatus = changeCobraSolver(solverName,

solverType) where solverName specifies the solver to be used, while solverType

specifies the type of problems to solve with the solver specified by solverName

(‘LP’ for linear optimisation problem, ‘MILP1 for mixed integer linear

problems, ‘QP’ for quadratic problems, ‘MIQP’ for mixed integer quadratic

problems, ‘NLP’ for non-linear problems, or ‘ALL’ to change the solver for all

Heirendt et al. Page 21

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the previously mentioned problem types. Depending on the precisionEstimate,

there are two options: choose a double precision solver (option A) or a quad

precision solver (option B).

(A) The solverRecommendation is double

(i) If the recommendation shows that a double precision solver

is probably sufficient, then, for example, set the Gurobi

solver to solve linear programming problems with:

>> solverStatus = changeCobraSolver(‘gurobi’, ‘LP’);

A positive solverStatus also indicates that the COBRA

Toolbox will use Gurobi as the default linear

optimisation solver.

(B) The solverRecommendation is quad

(i) If the recommendation shows that a higher precision solver is

required, then, for example, select the quad-precision

optimisation solver dqqMinos for solving linear optimisation

problems with:

>> solverStatus = changeCobraSolver(‘dqqMinos’,

‘LP’);

▲ CRITICAL STEP A dependency on at least one linear optimisation solver must be

satisfied for flux balance analysis. If any numerical issues arise while using a double

precision solver, then a higher precision solver should be tested. For instance, a double

precision solver may incorrectly report that an ill-scaled optimisation problem is infeasible

although it actually might be feasible for a higher precision solver. The checkScaling

function may be used on all operating systems, but the dqqMinos or quadMinos interfaces

are only available on UNIX operating systems. ? TROUBLESHOOTING

Identify stoichiometrically consistent and inconsistent reactions ● TIMING 1 – 105s

16 | All biochemical reactions conserve mass; therefore, it is essential that each

biochemical reaction in a model does actually conserve mass. Reactions that do

not conserve mass68 are, however, often added to a reconstruction in order to

represent the flow of mass into and out of a system, e.g., during flux balance

analysis. Every reaction that does not conserve mass, but is added to a model in

order to represent the exchange of mass across the boundary of a biochemical

system, is henceforth referred to as an external reaction, e.g., D ⇌ Ø, where Ø

represents null. Every reaction that is supposed to conserve mass is referred to as

an internal reaction. Besides exchange reactions, a reconstruction may contain

mass imbalanced internal reactions due to incorrect or incompletely specified

stoichiometry. This situation results in one or more sets of stoichiometrically
inconsistent reactions69. For instance, the reactions A + B ⇌ C and C ⇌ A are

stoichiometrically inconsistent because it is impossible to assign a positive

molecular mass to all species whilst ensuring that each reaction conserves mass.

Heirendt et al. Page 22

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

By combining flux through both of the former reactions in the forward direction,

the net effect is B → Ø, that is, inadvertent exchange of B across the boundary

of the model.

In order to distinguish between the reactions in a model that are stoichiometrically consistent

and stoichiometrically inconsistent, there are three options: identify reactions with only one

stoichiometric coefficient based on the stoichiometric matrix (option A), checking the

reactions that are elementally imbalanced based on the chemical formulae of molecular

species (option B), or identify the largest set of reactions in a reconstruction that are

stoichiometrically consistent (option C).

(A) Use stoichiometric matrix or reaction names

(i) Pinpoint external reactions by identifying reactions with only one

stoichiometric coefficient, or reactions with the model.rxns

abbreviation prefixes EX_, DM_ and sink_, for exchange, demand and

sink reactions, respectively:

>> model = findSExRxnlnd(model);

In the result, model.sIntRxnBool gives a boolean vector of

reactions that are heuristically thought to be internal. ?
TROUBLESHOOTING

(B) Use the checkMassChargeBaiance function

(i) When model.metFormulas is populated with the chemical formulae of

molecular species, it is possible to check which reactions are

elementally imbalanced with:

>> [massImbalance] = checkMassChargeBalance(model);

The output massImbalance is a n × t matrix with a non-zero entry

for any elemental imbalance in a reaction. The other outputs from

this function can also be used to analyse imbalanced reactions to

suggest modifications to the stoichiometric specification that can

resolve the imbalance. A resolution of mass imbalance should

ensure that the reaction stoichiometry is consistent with the

known biochemical mechanism of the reaction. ?
TROUBLESHOOTING

(C) Use the findStoichConsistentSubset function

(i) Given stoichiometry alone, a non-convex optimisation problem can be

used to approximately identify the largest set of reactions in a

reconstruction that are stoichiometrically consistent.

>>[~, SConsistentRxnBool, SInConsistentRxnBool,

unknownSConsistencyRxnBool, … model] =

findStoichConsistentSubset(model, massBalanceCheck);

Heirendt et al. Page 23

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

When checking for stoichiometric inconsistency, external

reactions identified via Option B can be used to warm start the

algorithm for Option C if massBalanceCheck == 1. The non-zero

entries of unknownSConsistencyRxnBool and

unknownSConsistencyMetBool denote reactions and uniquely

involved molecular species where consistency could not be

established.

▲ CRITICAL STEP Any supposedly internal reaction that is actually stoichiometrically

inconsistent with the remainder of a reconstruction should be omitted from a model that is

intended to be subjected to flux balance analysis, otherwise erroneous predictions may result

due to inadvertent violation of the steady-state mass conservation constraint. ?
TROUBLESHOOTING

Identify stoichiometrically consistent and inconsistent molecular species ● TIMING 1 –
103 s

17 | Identify the molecular species that only participate in reactions that are

stoichiometrically inconsistent using:

>>[SConsistentMetBool, ~, SInConsistentMetBool, ~, unknownSConsistencyMetBool, ~,

model] = … findStoichConsistentSubset(model, massBalanceCheck);

Set simulation constraints ● TIMING 1 – 103 s

18 | In order to set the constraints on a model, type

>> model = changeRxnBounds(model, rxnNameList, vaiue, boundType);

The list of reactions for which the bounds should be changed is given by rxnNameList,

while the vector vaiue contains the new boundary reaction rate values. This type of bound

can be set to a lower (‘l’) or upper bound (‘u’). Alternatively, both bounds can be changed

simultaneously (‘b’).

▲ CRITICAL STEP The more biochemically realistic the applied constraints are with

respect to a particular context, the more likely network states that are specific to that context

are to be predicted, as opposed to those predicted from a generic model. All else being

equal, a model derived from a comprehensive yet generic reconstruction will be less

constrained than a model derived from a less comprehensive yet generic reconstruction. That

is, in general, the more comprehensive a reconstruction is, the greater attention must be paid

to setting simulation constraints.

Identify molecular species that leak, or siphon, across the boundary of the model ●
TIMING 1 – 103 s

19 | Identification of internal and external reactions using findSExRxnInd in Step

16A is the fastest option, but may not always be accurate. It is therefore wise to

check whether there exist molecular species that can be produced from nothing

(leak) or consumed giving nothing (siphon) in a reconstruction, with all external

reactions blocked. If modelBoundsFlag == 1, then the leak testing uses the

Heirendt et al. Page 24

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model bounds on internal reactions, and if modelBoundsFlag == 0, then all

internal reactions are assumed reversible.

>> modelBoundsFlag = 1;

>> [leakMetBool, leakRxnBool, siphonMetBool, siphonRxnBool] = ...

findMassLeaksAndSiphons(model, model.SIntMetBool, model.SIntRxnBool,

modelBoundsFlag);

▲ CRITICAL STEP Non-zero entries in leakMetBool, or siphonMetBool, indicate that the

corresponding molecular species can be produced from nothing, or consumed giving

nothing, and may invalidate any flux balance analysis prediction.

Identify flux inconsistent reactions ● TIMING 1 – 103 s

20 | In flux balance analysis, the objective is to predict reaction fluxes subject to a

steady state assumption on internal molecular species and a mass balance

assumption for molecular species exchanged across the boundary of the model.

It is therefore useful to know, before making any flux balance analysis

prediction, which reactions do not admit a non-zero steady state flux, i.e., the

reactions that are flux inconsistent, also known as blocked reactions. In order to

identify these reactions that do not admit a non-zero flux, use:

>>[fluxConsistentMetBool, fluxConsistentRxnBool, fluxInConsistentMetBool, …

fluxInConsistentRxnBool] = findFluxConsistentSubset(model);

Flux balance analysis ● TIMING 1 – 102 s

21 | In standard notation, flux balance analysis70 is the linear optimisation problem

max
v ∈ ℝn

ρ(υ): = cTυ

s.t. Sυ = 0,

l ≤ υ ≤ u,

(1)

where c ∈ ℝn is a parameter vector that linearly combines one or more reaction

fluxes to form the objective function, denoted ρ(υ). In the COBRA Toolbox,

model.c contains the objective coefficients. S ∈ ℝm × n is the stoichiometric

matrix stored in model.S, and the lower and upper bounds on reaction rates, l, u

∈ ℝn are stored in model.lb and model.ub, respectively. The equality constraint

represents a steady state constraint (production = consumption) on internal

metabolites and a mass balance constraint on external metabolites (production +

input = consumption + output). The solution to Problem (1) can be obtained

using a variety of linear programming (LP) solvers that have been interfaced

with the COBRA Toolbox. Table 4 gives the various options. A typical

application of flux balance analysis is to predict an optimal steady-state flux

Heirendt et al. Page 25

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

vector that optimises a microbial biomass production rate71, subject to literature

derived bounds on certain reaction rates. Deciphering the most appropriate

objective function for a particular context is an important open research

question. The objective function in Problem (1) can be modified by changing

model.c directly, or using the convenient function:

>> model = changeObjective(model, rxnNameList, objectiveCoeff);

A cell array rxnNameList and numeric array objectiveCoeff are used to give the reaction

abbreviation and corresponding linear objective coefficient for one or more reactions to be

optimised. By default, objectiveCoeff(p)> 0 and objectiveCoeff(q)< 0 correspond to

maximisation and minimisation of the pth and qth reaction abbreviation in rxnNameList.

22 | Flux balance analysis, and many of its variants, can be computed using the

versatile function optimizeCbModel. That is, the default method implemented

by optimizeCbModel is flux balance analysis, as defined in Problem (1), but

depending on the optional arguments provided to optimizeCbModel, many

methods that are variations on flux balance analysis are also implemented and

accessible with slight changes to the input arguments.

(A) Computing a flux balance analysis solution

(i) A solution to the flux balance analysis Problem (1) can be

computed using:

>> FBAsolution = optimizeCbModel(model);

▲ CRITICAL STEP Assuming the constraints are

feasible, the optimal objective value FBAsolution.f is

unique; however, the optimal flux vector FBAsolution.v

is most likely not unique. It is unwise to base any

biological interpretation on a single optimal flux vector

if it is one of many alternative optima, because the

optimal vector returned can vary depending on the

solver chosen to solve the problem. Therefore, when a

flux vector is interpreted, it should be a unique solution

to some optimisation problem.

(B) Computing the unique flux balance analysis solution

(i) In order to predict a unique optimal flux vector, it is

necessary to regularise the objective by subtracting a strictly

concave function from it. That is ρ(υ) = cTυ – θ(υ), where

θ(υ) is a strictly convex function. This can be achieved with:

>> osenseStr = ‘max’;

>> minNorm = 1e–6;

>> solution = optimizeCbModel(model, osenseStr,

minNorm);

Heirendt et al. Page 26

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Assuming the constraints are feasible, the optimal

objective value solution.f and the optimal flux vector

solution.v are unique. Setting minNorm to 10−6 is

equivalent to maximising the functio ρ(υ): = cTυ − σ
2 υTυ

with σ = 10−6 and θ(υ) = σ
2 υTυ is a regularisation

function. With high-dimensional models, it is wise to

ensure that the optimal value of the regularisation

function is smaller than the optimal value of the original

linear objective in Problem (1), that is ρ υ⋆ ≫ θ υ⋆ . A

pragmatic approach is to select minNorm = 1e–6;, then

reduce it if necessary.

The solution structure FBAsolution from optimizeCbModel always has the same form, even

if the meaning of the fields changes depending on the optional input arguments to the

function. The field .stat contains a standardised solver status. If FBAsolution.stat == 1, then

an optimal solution has been found and will be returned. The field .v is a flux vector such

that the optimal value of the objective function is attained, .y yields the vector of dual

variables for the equality constraints, and .w contains the vector of optimal dual variables for

the inequality constraints. The field .stat is translated from the solver specific

status .origStat. The latter is idiosyncratic to each numerical optimisation solver, and this is

translated to the standardised solver status in order to enable other functions within the

COBRA Toolbox to operate in a manner invariant with respect to the underlying solver, to

the maximum extent possible. If FBAsolution.stat == 2, then the lower and upper bounds are

insufficient to limit the value of the objective function and the problem is unbounded, so no

optimal solution is returned. If FBAsolution.stat == 0, then the constraints in Problem (1) do

not admit any feasible steady state flux vector and therefore no optimal solution exists. If

FBAsolution.stat == −1, then no solution is reported, due to a time limit or numerical

issues. ? TROUBLESHOOTING

Relaxed flux balance analysis ● TIMING 1 – 103 s

23 | Every solution to Problem (1) must satisfy Sυ = 0 and l ≤ υ ≤ u, independent of

any objective chosen to optimise over the set of constraints. It may occur that

these constraints are not all simultaneously feasible, i.e., the system of

inequalities is infeasible. This situation might be caused by an incorrectly

specified reaction bound. In order to resolve the infeasibility, one can use

relaxed flux balance analysis, which is an optimisation problem that minimises

the number of bounds to relax in order to render a flux balance analysis problem

feasible. The optimisation problem is

Heirendt et al. Page 27

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

min
υ, p, q

α p
0

+ α q
0

s.t. Sυ = 0

l − p ≤ υ ≤ u + q

p, q ≥ 0,

(2)

where p, q ∈ ℝn denote the relaxations on the lower and upper bounds of the

reaction rates vector υ, and where r ∈ ℝm denotes the relaxations of the mass

balance constraint. A non-negative vector parameter α ∈ ℝ+
n may be used to

prioritise relaxation of bounds on some reactions rather than others, e.g.,

relaxation of bounds on exchange reactions rather than internal reactions. The

optimal choice of parameters depends heavily on the biochemical context. A

relaxation of the minimum number of constraints is desirable because, ideally,

one should be able to justify the relaxation of each bound with reference to the

literature. The scale of this task is proportional to the number of bounds

proposed to be relaxed, motivating the sparse optimisation problem to minimise

the number of relaxed bounds. Relaxed flux balance analysis can be

implemented with:

>> solution = relaxFBA(model, relaxOption);

The structure relaxOption can be used to prioritise the relaxation of one type of bound over

another. For example, in order to disallow relaxation of bounds on all internal reactions, set

the field .internalRelax to 0 and to allow the relaxation of bounds on all exchange reactions

set the field .exchangeRelax to 2. If there are certain reaction bounds that should not be

relaxed, then this can be specified using the boolean vector field .excludedReactions. The

first application of relaxFBA to a model may predict bounds to relax that are not supported

by literature or other experimental evidence. In this case the field .excludedReactions can be

used to disallow the relaxation of bounds on certain reactions.

Sparse flux balance analysis ● TIMING 1 – 103 s

24 | The prediction of the minimal number of active reactions required to carry out a

particular set of biochemical transformations72, consistent with an optimal

objective derived from flux balance analysis, is based on a cardinality

minimisation problem termed sparse flux balance analysis

Heirendt et al. Page 28

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

min
υ

υ
0

s.t. Sυ = b

l ≤ υ ≤ u

cTυ = ρ⋆,

(3)

where the last constraint is optional and represents the requirement to satisfy an

optimal objective value ρ⋆ derived from any solution to Problem (1). The

optimal flux vector can be considered as a steady-state biochemical pathway

with minimal support, subject to the bounds on reaction rates and satisfaction of

the optimal objective of Problem (1). There are many possible applications of

such an approach; here, we consider one example.

Sparse flux balance analysis is used to find the smallest active stoichiometrically balanced

cycle that can produce ATP at a maximal rate using the ATP synthase reaction (https://

vmh.uni.lu/#reaction/ATPS4m). We use the Recon3Dmodel.mat66(naming subject to

change), which does not have such a cycle active due to bound constraints, but does contain

such an active cycle with all internal reactions set to be irreversible. First the model is

loaded, then the internal reactions are identified and blocked and finally the objective is set

to maximise the ATP synthase reaction rate. Thereafter, the sparse flux balance analysis

solution is computed.

>> model = readCbModel(‘Recon3Dmodel.mat’);

>> model = findSExRxnInd(model);

>> modelClosed = model;

>> modelClosed.lb(model.SIntRxnBool) = 0;

>> modelClosed.ub(model.SIntRxnBool) = 0;

>> modelClosed_ATPS4mi = changeObjective(modelClosed, ‘ATPS4mi’, 1);

>> osenseStr = ‘max’;

>> minNorm = ‘zero’;

>> sparseFBAsolution = optimizeCbModel(modelClosed_ATPS4mi, osenseStr, minNorm);

Identify dead-end metabolites and blocked reactions ● TIMING ~102 s

25 | Manually curated as well as automatically created genome-scale metabolic

reconstructions contain dead-end metabolites, which can either only be produced

or only be consumed in the metabolic network (including transport to/from the

Heirendt et al. Page 29

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://vmh.uni.lu/#reaction/ATPS4m
https://vmh.uni.lu/#reaction/ATPS4m

system boundary). Given a model, the function detectDeadEnds identifies all

dead-end metabolites in a model:

>> deadEndMetabolites = detectDeadEnds(model);

26 | The deadEndMetabolites may be split into downstreamGaps and rootGaps.

Metabolites that cannot be produced or consumed by any of the reactions in the

network are referred to as rootGaps.

>> [deadEndMetabolites, rootGaps, downstreamGaps] = gapFind(model, ‘true’);

Dead-end metabolites listed in deadEndMetabolites are metabolites that are both produced

and consumed based on network topology alone but are still dead-end metabolites because

there are not any two reactions that can actively produce and consume the metabolite in any

steady state.

27 | Both the root and the downstream metabolites are part of reactions that cannot

carry any flux (i.e., blocked reactions) given the network topology subject to the

current bounds on reaction rates. In order to identify blocked reactions, use:

>> blockedReactions = findBlockedReaction(model);

Gap fill a metabolic network ● TIMING 102 – 105 s

28 | Dead-end metabolites show that there are missing reactions in the network that

must enable their consumption/production. Thus, they define the boundaries of

network gaps that must be filled with one or more reactions to complete our

representation of the full metabolic network. These gaps are due to

incompleteness of our current knowledge, even in well-studied model

organisms73. This is partially due to orphan enzymes, whose biochemical

functions have been described but no corresponding gene sequences have yet

been found in any organism74. Such biochemical functions cannot be added to

reconstructions by automatic (sequence-based) inference, but must be added

manually or by some non-sequence related computational approach. Moreover,

gene annotations have been experimentally validated in only a limited number of

organisms, which may lead to annotation errors when annotations are

propagated across a large number of genes using sequence based methods

only75. Genome-scale metabolic reconstructions can assist in identifying

missing knowledge by detecting and filling network gaps, as has been

demonstrated for various organisms, including E. coli76, 77, Chlamydomonas
reinhardtii78, and Homo sapiens79, 80.

The COBRA Toolbox facilitates the identification and filling of gaps using gapFind81 and

fastGapFill82. fastGapFill uses a reference database (U, e.g. KEGG REACTION) and a

transport and exchange reaction database X that consists of transport and exchange reactions

for each metabolite in both the reference database and the reconstruction. Reactions and

pathways are proposed for addition to the metabolic reconstruction during gap filling from

the combined UX database. fastGapFill works for both compartmentalised and

decompartmentalised reconstructions. It relies on fastcc.m, which was developed within

Heirendt et al. Page 30

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

fastCORE in order to approximate the most compact (i.e., least) number of reactions to be

added to fill the highest possible number of gaps.

Prioritise reaction types in the reference database to use for filling gaps using a weights

parameter structure. The parameters weights.MetabolicRxns, weights.ExchangeRxns, and

weights.TransportRxns allow different priorities to be set for internal metabolic reactions,

exchange reactions, and transport reactions, respectively. Transport reactions include

intracellular and extracellular transport reactions. The lower the weight for a reaction type,

the higher is its priority. Generally, a metabolic reaction should be prioritised in a solution

over transport and exchange reactions, with for example:

>> weights.MetabolicRxns = 0.1;

>> weights.ExchangeRxns = 0.5;

>> weights.TransportRxns = 10;

29 | Use the function prepareFastGapFill to prepare a gap filling problem. A

reconstruction is given as a model structure along with the optional inputs: list of

compartments (listCompartments), a parameter epsilon that is needed for the

fastCORE algorithm, the fileName for the universal database (e.g., KEGG;

default: ‘reaction.lst’), dictionaryFile, which lists the universal database IDs and

their counterpart in the reconstruction as defined in model.mets (default:

‘KEGG_dictionary.xls’), and blackList, which permits the exclusion of certain

reactions from the universal database (default: no blacklist).

>> [consistModel, consistMatricesSUX, blockedRxns] = …

prepareFastGapFill(model, listCompartments, epsilon, fileName, dictionaryFile, blackList);

The first output variable is consistModel, which contains a flux consistent subnetwork of the

input model.

consistMatricesSUX represents the flux consistent SUX matrix, which contains the flux

consistent S matrix (model), the universal database placed in all cellular compartments along

with transport reactions for each metabolite from cytosol to compartment and exchange

reactions for all extracellular metabolites. Finally, blockedRxns lists again the blocked

reactions in the input model.

30 | The main aim of the fastGapFill function is to find a compact set of reactions

from the UX matrix to be added to the input model to close the gaps in the

model. Gap filling may be carried out using one of two options, depending on

the amount of metadata required to aid the interpretation of proposed reactions

to be added to the model to fill gaps. The two options are:

(A) Without returning additional metadata

(i) In order to fill gaps without returning additional metadata,

run:

Heirendt et al. Page 31

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

>> epsilon = 1e–4;

>> addedRxns = fastGapFill(consistMatricesSUX,

epsilon, weights);

The parameter epsilon defines the minimum non-zero

flux requested in a blocked reaction when filling gaps.

In a multi-scale model, the value of epsilon may need to

be decreased, when using a quadruple precision solver

(see Step 15). The output addedRxns contains the

reactions from the UX matrix added to fill the gap(s).

(B) With returning additional metadata

(i) In order to return additional metadata for assistance with the

manual evaluation of proposed reactions, use:

>> addedRxnsExtended =

postProcessGapFillSolutions(addedRxns, model,

blockedRxns);

The output structure addedRxnsExtended contains the

information present in addedRxns as well as the

statistics and whether desired pathways contain the flux

vectors.

The main result is a list of candidate reactions to be added to the metabolic reconstructions.

These reactions need to be evaluated for their biological and physiological plausibility in the

organism, or cell-type, under consideration.

▲ CRITICAL STEP Algorithmic approaches help to identify new candidate reactions, but

these candidates must be manually curated before being added to a reconstruction. This step

is critical for obtaining a high-quality metabolic reconstruction. Adding the least number of

reactions to fill gaps may not be the most appropriate assumption from a biological

viewpoint. Consequently, the reactions proposed to be added to reconstruction require

further manual assessment. Proposed gap filling solutions must be rejected if they are

biologically incorrect.

The mapping between the metabolite abbreviations in the universal database (e.g., KEGG)

and the reconstruction metabolite abbreviations in model.mets, will ultimately limit how

many blocked reactions might be resolved with fastGapFill. The larger the number of

metabolites that map between these different namespaces, the larger the pool of metabolic

reactions from the universal database that can be proposed to fill gaps. The mapping

between the reconstruction and universal metabolite database can be customised using the

dictionaryFile, which lists the universal database identifiers and their counterparts in the

reconstruction.

Heirendt et al. Page 32

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Extracellular metabolomic data ● TIMING 103 – 105 s

31 | Metabolomics is an indispensable analytical method in many biological

disciplines including microbiology, plant sciences, biotechnology, and

biomedicine. In particular, extracellular metabolomic data are often generated

from cell lines in order to characterise and phenotype them under different

experimental conditions (e.g., drug treatment or hypoxia). However, the analysis

and interpretation of metabolomic data is still in its infancy, limiting the

interpretation to potential metabolic pathways rather than providing a

comprehensive understanding of the underlying mechanistic basis of the

observed data.

MetaboTools is a COBRA Toolbox extension65, that integrates semi-quantitative and

quantitative extracellular metabolomic data with metabolic models. The resulting models

allow for the interpretation and generation of experimentally testable mechanistic

hypotheses. With MetaboTools, extracellular metabolomic data are integrated with a

COBRA model structure, e.g., the generic human metabolic model66, in a way that ensures

the integration of a maximal number of measured metabolites, while adding a minimal

number of additional uptake and secretion metabolites such that the specified constraints on

the metabolic network can be sustained.

It is assumed that the extracellular metabolomic experiments are carried out with a defined

fresh medium and that the corresponding model can only take up the components of the

medium (plus dissolved gases). To apply constraints that are representative of the chemical

composition of the fresh medium used in an experiment, use the setMediumConstraints

function:

>> modelMedium = setMediumConstraints(starting_model, set_inf, current_inf, …

medium_composition, met_Conc_mM, cellConc, t, cellWeight, mediumCompounds, …

mediumCompounds_lb);

The starting_model is the model before addition of fresh medium constraints. The

current_inf input argument allows one to specify a value for the large magnitude finite

number that is currently used to represent an effectively infinite reaction rate bound, then

harmonise them to a new value specified by set_inf. When no information on the bounds of

a reaction is known, the ideal way to set reaction bounds is model.lb(j)= −inf; and

model.ub(j)= inf;. However, depending on the optimisation solver, an infinite lower or upper

bound may or may not be accepted. Therefore, when no information on the bounds of a

reaction are known, except perhaps the directionality of the reaction, then the upper or lower

bound may be a large magnitude finite number, e.g., model.ub(j)= 1000;.

The fresh medium composition must be specified with a vector of exchange reaction

abbreviations for metabolites in the cell medium medium_composition and the

corresponding millimolar concentration of each medium component met_Conc_mM. The

density of the culture (cellConc, cells per mL), the time between the beginning and the end

of the experiment (t, hours), and the measured cellular dry weight (cellWeight, gDW) must

also be specified. Basic medium components (mediumCompound), such as protons, water

Heirendt et al. Page 33

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and bicarbonate, and the corresponding lower bounds on exchange reactions

(mediumCompounds_lb), must also be specified. Even though they are present, they are not

usually listed in the specification of a commercially defined medium, but they are needed for

cells and the generic human metabolic model in order to support the synthesis of biomass.

The modelMedium is a new model with external reaction bounds set according to the

defined fresh medium.

32 | Next, prepare the quantitative exometabolomic data using the

prepIntegrationQuant function:

>> prepIntegrationQuant(modelMedium, metData, exchanges, sampleNames, test_max,

test_min, … outputPath);

The fluxes for each metabolite are given as uptake (negative) and secretion (positive) flux

values in a metabolomic data matrix metData, in which each column represents a sample in

sampleNames and each row in exchanges represents an exchanged metabolite. The units

used for fluxes must be consistent within a model. For the input model in modelMedium, the

prepintegrationQuant function tests whether the qualitative uptake (test_max, e.g., +/−500)

and secretion (test_min, e.g., 10−5) of the metabolites is possible for each sample defined in

the metabolomic data matrix metData. If a metabolite cannot be secreted or taken up, it will

be removed from the data matrix for that particular sample. Possible reasons for this could

be missing production or degradation pathways, or blocked reactions. For each sample, the

uptake and secretion profile compatible with the input model in modelMedium is saved to

the location specified in outputPath using the unique sample name.

33 | The model constrained by the defined fresh medium composition modelMedium

and the output of the prepintegrationQuant function can now be used to generate

a set of functional, contextualised, condition-specific models using:

>> [ResultsAllCellLines, OverViewResults] = setQuantConstraints(modelMedium, samples,

tol, … minGrowth, obj, no_secretion, no_uptake, {}, {}, 0, outputPath);

A subset of samples can be specified with samples. All fluxes smaller than tol will be treated

as zero. A lower bound (minGrowth, e.g., 0.008 per hour) on a specified objective function,

e.g., obj = biomass_reaction2; needs to be defined, along with metabolites that should not be

secreted, e.g., no_secretion = ‘EX_o2[e]’, or taken up (no_uptake = ‘EX_o2s’). The function

returns a ResultsAllCellLines structure containing the context-specific models as well as an

overview of model statistics in OverViewResults. For each sample, a condition-specific

model is created, in which the constraints have been set in accordance with the medium

specification and the measured extracellular metabolomic data. This set of condition-specific

models can then be phenotypically analysed using the various additional functions present in

the COBRA Toolbox as detailed in the MetaboTools protocol65.

Intracellular metabolomic data ● TIMING 102 – 104 s

34 | COBRA methods have also been developed for integration with intracellular

metabolomic measurements83–85, further improving the ability of the COBRA

Toolbox to be used for the integration and interpretation of metabolomic data. In

particular, unsteady-state flux balance analysis (uFBA85) enables the integration

Heirendt et al. Page 34

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of absolutely quantified time-course metabolomic data into a metabolic model,

generating constraints on intracellular fluxes even when intracellular metabolite

levels are not at steady-state. The main steps in the ufba method are illustrated in

Figure 3.

The first step is to experimentally quantify the absolute concentrations of a set of

extracellular and intracellular metabolites at regular time intervals85.

35 | Plot the time-course metabolomic data. If the data is non-linear, use principal

component analysis to define a sequence of temporal stages during which the

time-course metabolomic data can be considered piecewise linear.

36 | Use linear regression to estimate the rate of change of concentration with respect

to time for each measured metabolite and for each temporal stage.

37 | Load a standard COBRA model structure containing the

fields .s, .b, .lb, .ub, .mets, and .rxns.

38 | Integrate the rate of change in concentration for each measured metabolite with

a COBRA model with:

>> uFBAoutput = buildUFBAmodel(model, uFBAvariables);

The uFBAvariables structure must contain the following fields: .metNames is a list of

measured metabolites, .changeslopes provides the rate of change of concentration with

respect to time for each measured metabolite, .changeintervals yields the difference between

the mean rate of change of concentration with respect to time and the lower bound of 95%

percent confidence interval. The list ignoreSlopes contains metabolites whose measurements

should be ignored due to insignificant rate of change.

The output is a uFBAoutput structure that contains the following fields: .model, a COBRA

model structure with constraints on the rate of change of metabolite

concentrations, .metsToUse with a list of metabolites with metabolomic data integrated into

the model, and .relaxedNodes with a list of metabolites that deviate from steady-state along

with the direction (i.e., accumulation or depletion) and magnitude (i.e., reaction bound) of

deviation. The uFBA algorithm automatically determines sink or demand reactions needed

to return a model with at least one feasible flux balance solution, by automatically

reconciling potentially incomplete or inaccurate metabolomic data with the model structure.

The added sink or demand reactions allow the corresponding metabolites, defined

by .relaxedNodes, to deviate from a steady state to ensure model feasibility. The default

approach is to minimise the number of metabolites that deviate from steady state.

The buildUFBAmodel function integrates quantitative time course metabolomic data with a

model by setting rates of change with respect to time for a set of measured intracellular and

extracellular metabolites. A set of sink reactions, demand reactions, or both, may have been

added to certain nodes in the network to ensure that the model admits at least one feasible

mass balanced flux.

39 | The obtained model can then be minimized using optimizeCbModel:

Heirendt et al. Page 35

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

>> model_ufba = optimizeCbModel(uFBAoutput.model);

Integration of transcriptomic and proteomic data ● TIMING 102 – 104 s

40 | Given a generic reconstruction of a biochemical network for a particular

organism, some reactions may only be active in a specific tissue, cell-type, or

under specific environmental conditions. It is necessary to extract a context-

specific model from a generic model in order to create a model that is

representative of the part of the biochemical network that is active within a

particular context. Each context-specific model is therefore a subset of a generic

model. A variety of experimental data can be used to determine the set of

reactions that must be part of a context-specific model, including transcriptomic,

proteomic, and metabolomic data, as well as complementary experimental data

from the literature.

Several model extraction methods have been developed, with different underlying

assumptions, and each has been the subject of multiple comparative evaluations86–88. The

selection of a model extraction method and its parametrisation, as well as the methods

chosen to preprocess and integrate the aforementioned omics data, significantly influences

the size, functionality, and accuracy of the resulting context-specific model. Currently, there

is insufficient evidence to assert that one model extraction method universally gives the most

physiologically accurate models. Therefore, a pragmatic approach is to test the biochemical

fidelity of context-specific models generated using a variety of model extraction methods.

The COBRA Toolbox offers six different model extraction methods, accessible via a

common interface:

>> tissueModel = createTissueSpecificModel(model, options);

The different methods and associated parameters are selected via the options structure.

The .solver field indicates which method shall be used. The other fields of the options

structure vary depending on the method and often depend on bioinformatic preprocessing of

input omics data. There are additional optional parameters for all algorithms, with the

default being the values indicated in the respective papers. Please refer to the original papers

reporting each algorithm for details on the requirements for preprocessing of input data.

Each of the six different model extraction methods can be invoked using:

(A) The FASTCORE89 algorithm

(i) One set of core reactions that is guaranteed to be active in the extracted

model is identified by FASTCORE. Then, the algorithm finds the

minimum number of reactions possible to support the core; .core field

provides the core reactions which have to be able to carry flux in the

resulting model.

(B) The GIMME90 algorithm

(i) With this algorithm, the usage of low-expression reactions is

minimised while keeping the objective (e.g., biomass) above a certain

value; .expressionRxns field provides the reaction expression, with −1

Heirendt et al. Page 36

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for unknown reactions or reactions not linked to genes; .threshold field

sets the threshold above which a reaction is assumed to be active.

(C) The iMAT91 algorithm

(i) iMAT finds the optimal trade-off between including high-expression

reactions and removing low-expression reactions; .expressionRxns

field is defined as above; .threshold_lb field is the threshold below

which reactions are assumed to be inactive; .threshold_ub field is the

threshold above which reactions are assumed to be active.

(D) The INIT92 algorithm

(i) The optimal trade-off between including and removing reactions based

on their given weights is determined by this algorithm; .weights field

provides the weights w for each reaction in the objective of

INIT max ∑i ∈ Rwiyi + ∑ j ∈ M x j . Commonly a high expression leads

to higher positive values and low or no detection leads to negative

values.

(E) The MBA93 algorithm

(i) MBA defines high-confidence reactions to ensure activity in the

extracted model. Medium confidence reactions are only kept when a

certain parsimony trade-off is met. .medium_set field provides the set

of reactions that have a medium incidence, while .high_set field

provides the set of reactions that have to be in the final model. Any

reaction not in the medium or high set is assumed to be inactive and

preferably not present in the final model.

(F) The mCADRE94 algorithm

(i) A set of core reactions is first found and all other reactions are then

pruned based on their expression, connectivity to core, and confidence

score. Reactions that are not necessary to support the core or defined

functionalities are thus removed. Core reactions are removed if they

are supported by a certain number of zero-expression

reactions. .confidenceScores field provides reliability for each reaction,

generally based on literature, while .ubiquityScore field provides the

ubiquity score of each reaction in multiple replicates, i.e., the number

of times the reaction was detected as active in experimental data under

the investigated condition.

▲ CRITICAL STEP When integrating omics data, parameter selection is critical,

especially the threshold for binary classification, e.g., the threshold for genes into active or

inactive sets. Algorithmic performance often strongly depends on parameter choices and on

the choice of data preprocessing method87. However, createTissueSpecificModel does not

offer data preprocessing tools, because the selection of the discretisation method and

parameters depend on the origin of the data. However, the COBRA Toolbox offers

Heirendt et al. Page 37

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

functionality to map preprocessed expression data to reactions via the function

mapExpressionToReactions(model, expression).

Adding biological constraints to a flux balance model ● TIMING ~ 102 s

41 | A cell-type or organ-specific model can be converted into a condition-specific

model, based on the imposition of experimentally derived constraints. There are

several types of constraints that can be imposed on a metabolic network, such as

biomass maintenance requirements, environmental constraints, or maximal

enzyme activities. In general, biomass constraints71 are added as part of a

biomass reaction. In some instances, however, a cell-type (e.g., neuron) does not

divide, but is only required to turn over its biomass components. Turnover rates

are commonly expressed as half-lives and represent the time required for half of

the biomass precursor to be replaced95. A model can be constrained with

inequality constraints so as to require a minimal rate of turnover for a

metabolite. If that metabolite possesses only one degradation pathway, then it is

sufficient to adjust the bounds on a reaction in that pathway. However, if there

are multiple possible degradation pathways, then it is necessary to impose a

lower bound on the total rates of a set of irreversible degradation reactions, one

for each possible degradation pathway of the metabolite in question.

The implementation of such a constraint is illustrated in the following example. In the brain,

phosphatidylcholine (PC) can be degraded by three different metabolic pathways96:

• Phospholipase D acts on the choline/phosphate bond of PC to form choline and

phosphatidic acid (PCHOLP_hs, https://vmh.uni.lu/#reaction/PCHOLP_hs).

• Phospholipase A2 acts on the bond between the fatty acid and the hydroxyl

group of PC to form a

• fatty acid (e.g., arachidonic acid or docosahexaenoic acid) and

lysophosphatidylcholine (PLA2_2, https://vmh.uni.lu/#reaction/PLA2_2).

• Ceramide and PC can also be converted to sphingomyelin by sphingomyelin

synthetase (SMS, https://vmh.uni.lu/#reaction/SMS).

Load a COBRA model and define the set of reactions that will represent degradation of the

metabolite in question:

>> multipleRxnList = {‘PCHOLP_hs’, ‘PLA2_2’, ‘SMS’};

▲ CRITICAL STEP Correctly converting the literature data into bound constraints with

the same units used for the model fluxes may be a challenge. Indeed, the curation of

biochemical literature to abstract the information required to quantitatively bound turnover

rates can take between 4–8 weeks, when the target is to retrieve the biomass composition

and the turnover rates of each of the different biomass precursors. Once all the constraints

are available, imposing the corresponding reaction bounds takes less than 5 minutes.

42 | Verify that all the reactions are irreversible (the lower and upper bounds should

be greater or equal to 0).

Heirendt et al. Page 38

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://vmh.uni.lu/#reaction/PCHOLP_hs
https://vmh.uni.lu/#reaction/PLA2_2
https://vmh.uni.lu/#reaction/SMS

>> rxnInd = findRxnIDs(model, multipleRxnList);

>> model.lb(rxnInd);

>> model.ub(rxnInd);

43 | Generate and add the constraint:

>> c = [1, 1, 1];

>> d = 2.674;

>> ineqSense = ‘G’;

>> modelConstrained = constrainRxnListAboveBound(model, multipleRxnList, c, d,

ineqSense);

where c is a vector forming the inequality constraint cTv ≥ d, and d is a scalar. ineqSense

encodes the sense of these inequality (‘L’ for a lower inequality, or ‘G’ for an upper

inequality). In this example, all entries of c are positive as we seek for the sum of the rates of

the three reactions (irreversible in the forward direction) to be greater than d. This extra

constraint is encoded in the model.C field.

44 | Check that the constraints are correctly added to the model:

>> [nMet, nRxn] = size(modelConstrained.S);

45 | Solve the FBA problem with the extra constraint cTv ≥ d:

>> solution = optimizeCbModel(modelConstrained, ‘max’, 1e–6);

46 | Check the values of the added fluxes. The sum of fluxes should be greater than

or equal to the value of d:

>> solution.v(rxnInd);

>> sum(c*FBAsolution.v(rxnInd));

Qualitative chemical and biochemical fidelity testing ● TIMING 102 – 103 s

47 | Once a context-specific model is generated, it is highly advisable to frequently

compare preliminary model predictions with published experimental data6. Such

predictions must be compared directly with an unbiased selection of appropriate

independent biological literature in order to identify possible sources of

misconception or computational misspecification. It is challenging to compare

genome-scale predictions with experimental data that may only be available for

a subset of a biochemical network. In this context, it is important to first turn to

literature relevant to the aspect of the biological network being represented by a

model and then check if the literature result is correctly predicted by the model.

Inevitably, this is an iterative approach with multiple rounds of iterative

refinement of the reconstruction and the model derived from it, before finalising

Heirendt et al. Page 39

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a model version and comparison of final predictions with independent

experimental data.

A draft model should be subjected to a range of quantitative and qualitative chemical and

biochemical fidelity tests. As described in Step 16, chemical fidelity testing includes testing

for stoichiometric consistency. This should not be necessary if one starts with a

stoichiometrically consistent generic model and extracts a context-specific model from it.

However, it is possible that misspecified reactions might have been inadvertently added

during refinement of a reconstruction, therefore retest for stoichiometric consistency.

Beyond chemical fidelity, it is advised to test again for biochemical fidelity. Such tests are

very specific to the particular biological domain that is being modelled. Here we focus on

human metabolism and use modelClosed, the Recon3Dmodel66 with all external reactions

closed, from Steps 21–22.

It is important to encode and conduct qualitative fidelity tests for anticipated true negatives.

The following test is for the production of ATP from water alone in a closed model:

>> modelClosedATP = changeObjective(modelClosed, ‘DM_atp[c]’);

>> modelClosedATP = changeRxnBounds(modelClosedATP, ‘DM[atp_c]’, 0, ‘l’);

>> modelClosedATP = changeRxnBounds(modelClosedATP, ‘EX_h2o[e]’, −1, ‘l’);

>> FBAsol = optimizeCbModel(modelClosedATP);

If FBAsol.stat == 0, then the model is incapable of producing ATP from water, as expected.

If FBAsol.stat == 1, then the supposedly closed model can produce ATP from water. This

indicates that there are stoichiometrically inconsistent reactions in the network, which need

to be identified. See Step 16 for instructions how to approach this analysis.

48 | It is also important to encode and conduct qualitative fidelity tests for anticipated

true positives. The following metabolic function test is for the production of

mitochondrial succinate from 4-Aminobutanoate in a model that is closed to

exchange of mass across the boundary of the system, except for the metabolites

‘gly[c]’, ‘co2[c]’,and ‘nh4[c]’.

>> modelClosed = addSinkReactions(modelClosed, {‘gly[c]’, ‘co2[c]’, ‘nh4[c]’}, …

[−100, −1; 0.1, 100; 0.1, 100]);

>> modelClosed = changeObjective(modelClosed, ‘sink_nh4[c]’);

>> sol = optimizeCbModel(modelClosed, ‘max’, ‘zero’);

If FBAsol.stat == 1, then it is feasible for the model to produce mitochondrial succinate

from 4-Aminobutanoate. If FBAsol.stat == 0, then this metabolic function is infeasible. This

is not anticipated and indicates that further gap filling is required (see Steps 28–30).

Heirendt et al. Page 40

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Quantitative biochemical fidelity testing ● TIMING 102 – 103 s

49 | It is important to check if a model can reproduce or closely approximate known

quantitative features of the biochemical network being represented. Here we

illustrate how to predict the ATP yield from different carbon sources under

aerobic or anaerobic conditions for Recon3D66. These are compared with the

values for the corresponding ATP yields obtained from the biochemical

literature. This approach can be adapted for condition- and cell-type specific

models derived from Recon3D in order to test whether these models are still

able to produce physiologically relevant ATP yields. Add and define the ATP

hydrolysis reaction DM_atp[c] to be the objective reaction in the model with:

>> modelClosed = addReaction(modelClosed, ...

‘DM_atp[c]’, ‘h2o[c] + atp[c] -> adp[c] + h[c] + pi[c]’);

>> modelClosed = changeObjective(modelClosed, ‘DM_atp[c]’);

50 | Allow the model to uptake oxygen and water, then provide 1 mol/gdw/hr of a

carbon source, e.g., glucose (VMH ID: glc_D[e]):

>> modelClosed.lb(find(ismember(modelClosed.rxns, ‘EX_o2[e]’))) = −1000;

>> modelClosed.lb(find(ismember(modelClosed.rxns, ‘EX_h2o[e]’))) = −1000;

>> modelClosed.ub(find(ismember(modelClosed.rxns, ‘EX_h2o[e]’))) = 1000;

>> modelClosed.ub(find(ismember(modelClosed.rxns, ‘EX_co2[e]’))) = 1000;

>> modelClosed.lb(find(ismember(modelClosed.rxns, ‘EX_glc_D[e]’))) = −1;

>> modelClosed.ub(find(ismember(modelClosed.rxns, ‘EX_glc_D[e]’))) = −1;

51 | Compute a flux balance analysis solution with maximum flux through the

DM_atp[c] reaction:

>> FBAsolution = optimizeCbModel(modelClosed, ‘max’, ‘zero’);

MinSpan Pathways: a sparse basis of the nullspace of a stoichiometric matrix ● TIMING
102 − 104 s

52 | COBRA models are often mathematically deconstructed into feasible steady

state flux vectors in biochemical networks that can be biologically

conceptualized as pathways. Much development and analysis has been done for

such pathway vectors in terms of elementary flux modes97, extreme pathways98,

and elementary flux vectors99. As the number of elementary or extreme vectors

scales exponentially with the size of a typical metabolic network, increasingly

efficient algorithms become essential for enumerating elementary or extreme

vectors at genome-scale. An alternate approach100 is to approximately compute

a set of n – rank(S) sparse linearly independent flux vectors that together form a

basis of the right nullspace of a stoichiometric matrix and also satisfy specified

Heirendt et al. Page 41

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

constraints on reaction directionality. This approach requires the solution of a

greedy sequence of mixed-integer linear optimisation problems, each of which

computes a sparse flux mode that is linearly independent from the rest of the

vectors within a nullspace basis. The end result is a sparse set of linearly

independent flux modes denoted MinSpan pathways.

Given a model with a stoichiometric matrix, reaction bounds and reaction identifiers, the

MinSpan algorithm may be invoked with:

>> Z = detMinSpan(model, params);

The params structure provides the user ability to change key parameters. Among others, the

main parameters include the amount of time .timeLimit for each iterative solve in seconds

and the number of threads for the MILP solver to use. The output Z ∈ Rn×(n-rank(S)) is a

sparse set of n – rank(S) linearly independent flux modes, each corresponding to a MinSpan
pathway.

Low dimensional flux variability analysis ● TIMING 1 – 103 s

53 | Flux balance analysis does not, in general, return a unique optimal flux vector.

That is, Problem (1) returns an optimal flux vector, υ⋆ ∈ ℝn with one flux value

for each reaction, but typically an infinite set of steady state flux vectors exist

that can satisfy the same requirement for an optimal objective, cTυ⋆ = cTυ, as

well as the other equalities and inequalities in Problem (1). Flux variability

analysis is a widely used method for evaluating the minimum and maximum

range of each reaction flux that can still satisfy the aforementioned constraints

using two optimisation problems for each reaction of interest

max\min
υ

υ j

s.t. Sυ = 0,

l ≤ υ ≤ u,

cTυ = cTυ⋆ .

(4)

Just as there are many possible variations on flux balance analysis, there are many possible

variations on flux variability analysis. The COBRA Toolbox offers a straightforward

interface to implement standard flux variability analysis and a wide variety of options to

implement variations on flux balance analysis.

(A) Standard flux variability analysis

(i) The following command can be invoked to compute standard flux

variability analysis:

>> [minFlux, maxFlux] = fluxVariability(model);

Heirendt et al. Page 42

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The result is a pair of n dimensional column vectors, minFlux and

maxFlux, with the minimum and maximum flux values satisfying

Problem (4).

(B) Advanced flux variability analysis

(i) The full spectrum of flux variability analysis options can be accessed

using the command:

>> [minFlux, maxFlux, Vmin, Vmax] = fluxVariability(model,

optPercentage, osenseStr, … rxnNameList, verbFlag, allowLoops,

method);

The optPercentage parameter allows one to choose whether to consider solutions that give at

least a certain percentage of the optimal solution. For instance optPercentage = 0 would just

find the flux range of each reaction, without of any requirement to satisfy any optimality

with respect to flux balance analysis. Setting the parameters osenseStr = ‘min’ or osenseStr

= ‘max’ determines whether the flux balance analysis problem is first solved as a

minimisation or maximisation. The rxnNameList accepts a cell array list of reactions to

selectively perform flux variability upon. This is useful for high dimensional models, for

which the computation of a flux variability for all reactions is more time consuming. The

additional n × k output matrices Vmin and Vmax return the flux vector for each of the k ≤ n
fluxes selected for flux variability. The verbFlag input determines how much output shall be

printed. The parameter allowLoops == 0 invokes a mixed integer linear programming

implementation of thermodynamically constrained flux variability analysis for each

minimisation or maximisation of a reaction rate. The method input argument determines

whether the output flux vectors also minimise the 0–norm, 1–norm or 2–norm while

maximising or minimising the flux through one reaction.

The default result is a pair of maximum and minimum flux values for every reaction.

Optional parameters may be set. For instance, parameters can be set to control which subset

of k ≤ n reactions of interest that shall be be obtained, or to determine the characteristics of

each of the 2 × k flux vectors.

High dimensional flux variability analysis ● TIMING 1 – 105 s

54 | Besides flux balance analysis, flux variability analysis is the most widely used

constraint-based modelling method for high-dimensional models. However, its

use in this setting requires a more sophisticated computational approach, with a

multi-core processor101, or computational cluster42, and a commercial-grade

linear optimisation solver. In this setting, advanced users have two options:

(A) Use fastFVA with MATLAB

(i) Solve the 2 × k linear optimisation problems using multiple

threads running on parallel processors with fastFVA, which

depends on the CPLEX solver (IBM Inc.), using the

command :

Heirendt et al. Page 43

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

>> [minFlux, maxFlux, optsol] = fastFVA(model,

optPercentage, osenseStr);

The output argument optsol returns the optimal solution

of the initial FBA.

(B) Use distributedFBA.jl with Julia

(i) An alternative is to solve the 2 × k linear optimisation

problems using multiple threads running on parallel

processors or a cluster using distributedFBA.jl, an

openCOBRA extension that permits the solution of flux

balance analysis, a distributed set of flux balance problems,

or a flux variability analysis using a common of solver

(GLPK, CPLEX, Clp, Gurobi, Mosek). Assuming that

distributedFBA.jl has been correctly installed and

configured, the commands to go back and forth between a

model or results in MATLAB and the computations in Julia

are:

>> save(‘high_dimensional_model.mat’, unimodel);

-- switch to Julia --

julia> model =

loadModel(“high_dimensional_model.mat”);

julia> workersPool, nWorkers = createPool(128);

julia> minFlux, maxFlux, optSol, fbaSol, fvamin,

fvamax = distributedFBA(model, … solver, nWorkers =

nWorkers, optPercentage = optPercentage, preFBA =

true); julia>

saveDistributedFBA(“high_dimensional_FVA_results.m

at”);

-- switch to MATLAB --

>> load(‘high_dimensional_FVA_results.mat’);

Here, nWorkers = 128 will distribute the flux variability

analysis problem amongst 128 Julia processes on one or

more computing nodes in a computational cluster.

Uniform sampling of steady-state fluxes ● TIMING 1 – 103 s

55 | An unbiased characterisation of the set of flux vectors consistent with steady

state, mass balance, and reaction bound constraints can be obtained by

uniformly sampling the feasible set Ω: = v |Sv = 0; l ≤ v ≤ u . The feasible set

for sampling should be defined based on biochemically justifiable constraints.

These are the same conditions that apply when formulating the flux balance

analysis Problem (1), except that there is no need to formulate a linear objective.

Heirendt et al. Page 44

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To ensure the sample is statistically representative of the entire feasible set, a

sufficiently large number of flux vectors and the flux vectors must be collected

randomly within the feasible set. Recently, we distributed new software to

uniformly sample feasible sets of steady state fluxes102 based on a coordinate
hit-and-run with rounding (CHRR) algorithm103, 104 that is guaranteed to return

a statistically uniform distribution when appropriately utilised. The CHRR

sampling algorithm is therefore used by default. Figure 4 illustrates the basics of

this algorithm.

Sampling of a model is invoked either by using the default setting or by tailoring the

parameters with more arguments to the interface. A pragmatic approach is to first try Option

(A) with the default parameters, then check the quality of the marginal flux distribution for a

subset of reactions (see Figure 4). Especially for higher dimensional models, it may be

necessary to tune the parameters with Option (B).

(A) Sampling of a mono-scale model with ≲ 2000 variables

(i) A Model that contains less than 2000 variables can usually be sampled

using the default settings:

>> [modelSampling, samples] = sampleCbModel(model);

The samples output is an n × p matrix of sampled flux vectors,

where p is the number of samples. In order to accelerate any

future rounds of sampling, use the modelSampling output. This is

a model storing extra variables acquired from preprocessing the

model for sampling (see Figure 4).

(B) Sampling of a model with ≲ 10000 variables

(i) Larger Models containing less than 10000 variables may be sampled

by tuning the optional input parameters:

>> [modelSampling, samples] = sampleCbModel(model,

sampleFile, samplerName, options, … modelSampling);

The variable sampleFile contains the name of a .mat file used to

save the sample vectors to disk. A string passed to samplerName

can be used to sample with non-default solvers. The options

structure contains fields that control the sampling density (.nSkip)

and the number of samples (.nSamples). The total number of

samples returnedis p = nSkip × nSamples. The output

modelSampling may be used in subsequent rounds of sampling.

Although rounding large models is computationally demanding,

the results can be reused when sampling the same model more

than once. The CHRR algorithm provably converges to a uniform

stationary sampling distribution if enough samples are obtained

and has been tested with mono-scale metabolic models with up to

10000 reactions. The default parameters are set using heuristic

rules to estimate a sufficiently large number of samples, which

Heirendt et al. Page 45

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

balances this requirement against the desire to complete the

sampling procedure in a practically useful period of time. ?
TROUBLESHOOTING

Identify all genetic manipulations leading to targeted overproductions ● TIMING 10 –105 s

56 | A variety of strain design algorithms58 are implemented within the COBRA

Toolbox, including OptKnock105, OptGene106, Genetic Design Local Search

(GDLS107), and OptForce108. While OptKnock, OptGene, and GDLS could

identify gene deletion strategies, the OptForce method can identify not only

gene deletion but also up- and down-regulation strategies. As the OptForce

method is new to this version of the COBRA Toolbox, we provide an illustrative

example of strain design using this method.

Consider the problem of finding a set of interventions of size κ such that when these

interventions are applied to a wild-type strain, the mutant created will produce a particular

target of interest at a higher yield than the wild-type strain. The interventions could be

knock-outs (zero out the flux for a particular reaction), up-regulations (increase the flux for a

particular reaction), or down-regulations (decrease the flux for a particular reaction). As an

example, we will use the OptForce method to identify all genetic manipulations leading to

the overproduction of succinate in E. coli108. The OptForce method consists of the following

set of steps: define the constraints for both wild-type and mutant strains, perform flux

variability analyses for both wild-type and mutant strains, find the sets of reactions that must

alter their flux in order to achieve the desired phenotype in the mutant strain, and, finally,

find the interventions needed to ensure an increased production of the target of interest

(Steps 69–73).

First, select a commercial-grade solver and select the local directory to save the generated

results with: >> changeCobraSolver(‘gurobi’, ‘ALL’);

57 | Load an illustrative model that comprises only 90 reactions, describing the

central metabolism in E. coli109.

>> readCbModel(‘AntCore.mat’);

58 | Set the objective function to maximise the biomass reaction (R75). Change the

lower bounds such that E. coli model will be able to consume glucose, oxygen,

sulfate, ammonium, citrate, and glycerol.

>> model = changeObjective(model, ‘R75’, 1);

>> for rxn = {‘EX_gluc’, ‘EX_o2’, ‘EX_so4’, ‘EX_nh3’, ‘EX_cit’, ‘EX_glyc’}

model = changeRxnBounds(model, rxn, −100, ‘l’);

end

59 | Define the constraints for both wild-type and mutant strains:

>> constrWT = struct(‘rxnList’, {{‘R75’}}, ‘rxnValues’, 14, ‘rxnBoundType’, ‘b’);

Heirendt et al. Page 46

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

>> constrMT = struct(‘rxnList’, {{‘R75’, ‘EX_suc’}}, ‘rxnValues’, [0, 155.55], …

‘rxnBoundType’, ‘bb’);

▲ CRITICAL STEP In this example, we provide the constraints for both wild-type and

mutant strains, but in a typical scenario the definition of differential constraints on wild-type

and mutant strains requires additional research. This step could take a few days or weeks,

depending on the information available for the species of interest. Flux bounds (i.e., uptake

rate and minimum biomass yield target) are required inputs. New experiments might be

required to be performed in addition to the literature curation task in order to obtain such

data. Assumptions may also be made when describing the phenotypes of both strains, which

will reduce the dependency on literature curation. It is important that the two strains are

sufficiently different in order to be able to anticipate differences in reaction ranges.

60 | Performing flux variability analysis for both wild-type and mutant strains with:

>> [minFluxesW, maxFluxesW, minFluxesM, maxFluxesM] = FVAoptForce(model,

constrWT, constrMT);

>> disp([minFluxesW, maxFluxesW, minFluxesM, maxFluxesM]);

61 | The MUST sets are the sets of reactions that must increase or decrease their flux

in order to achieve the desired phenotype in the mutant strain. As shown in

Figure 5, the first order MUST sets are MustU and MustL while second order

MUST sets are denoted as MustUU, MustLL, and MustUL. After parameters

and constraints are defined, the functions findMustL and findMustU are run to

determine the mustU and mustL sets, respectively. Define an ID of the run with:

>> runID = ‘TestoptForceM’;

Each time the MUST sets are determined, folders are generated to read inputs and store

outputs, i.e., reports. These folders are located in the directory defined by the uniquely

defined runID.

62 | In order to find the first order MUST sets, constraints should be defined:

>> constrOpt = struct(‘rxnList’, {{‘EX_gluc’, ‘R75’, ‘EX_suc’}}, ‘values’, [−100; 0;

155.5]);

63 | The first order MUST set MustL is determined by running:

>> [mustLSet, pos_mustL] = findMustL(model, minFluxesW, maxFluxesW, …

‘ constrOpt’, constrOpt, ‘runID’, runID);

If runID is set to ‘TestoptForceL’, a folder TestoptForceL is created, in which two additional

folders InputsMustL and OutputsMustL are created. The InputsMustL folder contains all the

inputs required to run the function findMustL, while the OutputsMustL folder contains the

mustL set found and a report that summarises all the inputs and outputs. In order to maintain

a chronological order of computational experiments, the report is timestamped.

64 | Display the reactions that belong to the mustL set using:

Heirendt et al. Page 47

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

>> disp(mustLSet)

65 | The first order MUST set Mustu is determined by running:

>> [mustUSet, pos_mustU] = findMustU(model, minFluxesW, maxFluxesW, …

‘ constrOpt’, constrOpt, ‘runID’, runID);

The results are stored and available in a format analogous to the mustL set. The reactions

that belong to the mustU may be displayed in the same way as mustL.

66 | Define the reactions that will be excluded from the analysis. The reactions found

in the previous step as well as exchange reactions shall be included.

>> constrOpt = struct(‘rxnList’, {{‘EX_gluc’, ‘R75’, ‘EX_suc’}}, ‘values’, [−100, 0,

155.5]’);

>> exchangeRxns = model.rxns(cellfun(@isempty, strfind(model.rxns, ‘EX_’)) == 0);

>> excludedRxns = unique([mustuSet; mustLSet; exchangeRxns]);

67 | The second order MUST set Mustuu can be determined by running:

>> [mustUU, pos_mustUU, mustUU_linear, pos_mustUU_linear] = findMustUU(model,

minFluxesW, … maxFluxesW, ‘constrOpt’, constrOpt, ...

‘excludedRxns’, excludedRxns,’runID’, runID);

The results are stored and available in a format analogous to the mustL set. The reactions of

the mustUU can be displayed using the disp function.

68 | Repeat the above steps to determine the second order MUST sets MustLL and

MustUL by using the functions findMustLL and findMustUL respectively. The

results are stored and available in a format analogous to the mustL set. In the

present example, mustLL and mustuL are empty sets. ?
TROUBLESHOOTING

69 | In order to find the interventions needed to ensure an increased production of the

target of interest, define the mustu set as the union of the reactions that must be

up-regulated in the first and second order MUST sets. Similarly, mustL may be

defined.

>> mustU = unique(union(mustUSet, mustUU));

>> mustL = unique(union(mustLSet, mustLL));

70 | Define the number of interventions κ allowed, the maximum number of sets to

find nSets, the reaction producing the metabolite of interest targetRxn (in this

case, succinate), and the constraints on the mutant strain constrOpt.

>> k = 1; nSets = 1; targetRxn = ‘EX_suc’;

>> constrOpt = struct(‘rxnList’, {{‘EX_gluc’,’R75’}}, ‘values’, [−100, 0]);

Heirendt et al. Page 48

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

71 | Run the OptForce algorithm and display the reactions identified by optForce

with:

>> [optForceSets, posoptForceSets, typeRegoptForceSets, flux_optForceSets] = …

optForce(model, targetRxn, mustU, mustL, minFluxesW, maxFluxesW, minFluxesM, ...

maxFluxesM, ‘k’, k, ‘nSets’, nSets, ‘constrOpt’, constrOpt, ‘runID’, runID);

72 | In order to find non-intuitive solutions, increase the number of interventions κ
and exclude the SUCt reaction from up-regulations. Increase nSets to find the 20

best sets. Change the runID to save this second result in a separate folder from

the previous result, then run optForce again as in Step 71.

>> k = 2; nSets = 20; runID = ‘TestoptForceM2’;

>> excludedRxns = struct(‘rxnList’, {{‘SUCt’}}, ‘typeReg’,’U’);

73 | The reactions determined by optForce can be displayed using

disp(optForceSets). The complete set of predicted interventions can be found in

the folders created inside the runID folder in which inputs and outputs of

optForce and associated findMust* functions are stored. The input folders

InputsFindMust* contain .mat files for running the functions to solve each one

of the bilevel optimisation problems. The output folders OutputsFindMust*
contain results of the algorithms (saved as .xls and .txt files) as well as a report

(a .txt file) that summarises the outcome of the steps performed during the

execution of each function. The optForce algorithm will find sets of reactions

that should increase the production of a specified target. The first sets found

should be the best ones because the production rate will be the highest. The last

ones will be the worst, as the production rate is the lowest. ! CAUTION Be

aware that some sets may not guarantee a minimum production rate for a target,

so check the minimum production rate, e.g., using the function testoptForceSol.

Atomically resolve a metabolic reconstruction ● TIMING 10 – 105 s

74 | In most genome-scale metabolic models, it is not explicit that the stoichiometric

matrix represents a network of biochemical reactions. It is implicit that each row

of the stoichiometric matrix corresponds to some molecular species, but when

computing properties of the model, the atomic structure of each molecular

species is not represented. It is also implicit that each column of the

stoichiometric matrix corresponds to some biochemical reaction. However, when

computing properties of the model, the mechanisms of the underlying

biochemical reaction, in terms of the structures of the metabolites and the

atomically resolved chemical transformations that take place, are not

represented. Recent developments in genome-scale metabolic modelling have

generated genome-scale metabolic reconstructions where the molecular

structures are specified110 and the reaction mechanisms are represented by atom

mappings between substrate and product atoms66, 111.

Heirendt et al. Page 49

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

An atom mapping is a one-to-one association between a substrate atom and a product atom.

An instance of a chemical reaction may be represented by a set of atom mappings, with one

atom mapping between each substrate and product atom. A single chemical reaction can

admit multiple chemically equivalent atom mappings when chemically equivalent atoms are

present in a substrate, a product, or both. Therefore, each chemical reaction may be

represented by one set, or multiple chemically equivalent sets, of atom mappings. Together,

a set of atom mappings for a chemical reaction specify key aspects of the reaction

mechanism, e.g., chemical bond change, breakage, and formation. The Virtual Metabolic

Human database (VMH, http://vmh.life) provides metabolites chemical structures and atom

mapped reactions for 9,610 reactions in Recon3D66 and 4,831 metabolites from Recon3D66

and the human gut microbiota38. Metabolite structures are provided in canonically ordered

MOL and SMILES formats. Atom mapping data are provided in both RXN and SMILES

formats. This explicit representation of metabolite and reaction structure offers the

possibility of a broader range of biological, biomedical and biotechnological applications

than with stoichiometry alone.

In order to obtain chemical structures for each metabolite, there are three main ways:

(A) Use chemoinformatics software tools

(i) Suitable cheminformatics software tools110 may be used to

automatically obtain metabolite identifiers in metabolic network

reconstructions and download the corresponding structure from a

database.

(B) Manually interrogate metabolic databases

(i) Databases such as VMH (http://vmh.life), PubChem112, KEGG113,

ChEBI114, LMSD115, BioPath database116, ChemSpider database117,

HMDB118, etc provide chemical structures for metabolites in a

network.

(C) Manually draw structures of metabolites

(i) Based on chemical knowledge, one could manually draw structures of

metabolites using tools such as ChemDraw (PerkinElmer, https://

perkinelmer.com/ChemDraw).

75 | In order to obtain an atom mapping for a metabolic reaction, the reaction

stoichiometry and the chemical structures of the corresponding metabolites must

be available. To obtain atom mappings, there are three main options:

(A) Use software tools for prediction of atom mappings

(i) A comparative study has been performed using Recon3D as

a test case111. Due to its accuracy and availability, Reaction

Decoder Tool (RDT119) is considered being the most suitable

algorithm to atom map the reactions from a genome-scale

metabolic network. Nevertheless, note that the Canonical

Labelling for Clique Approximation (CLCA120) algorithm

Heirendt et al. Page 50

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://vmh.life/
http://vmh.life/
https://perkinelmer.com/ChemDraw
https://perkinelmer.com/ChemDraw

can map reactions with explicit hydrogen atoms for fully

protonated reactions, while RDT can only atom map

reactions with implicit hydrogen atoms.

(B) Manually interrogate metabolic databases

(i) Databases such as BioPath116 and KEGG RPAIR121

disseminate manually curated atom mappings. VMH (http://

vmh.life) also contains manually curated atom mappings for

a subset of human metabolic reactions.

(C) Manually draw atom mappings

(i) Based on chemical knowledge, one could draw atom

mappings using tools such as ChemDraw (PerkinElmer,

https://perkinelmer.com/ChemDraw).

76 | Given a model structure and the directory containing the chemical structure files

(molFileDir) in MDL MOL file format, RDT can be invoked to atom map a

metabolic model using:

>> balancedRxns = obtainAtomMappingsRDT(model, molFileDir, outputDir, …

maxTime, standardiseRxn);

This function computes atom mapping data for the balanced and unbalanced reactions in the

metabolic network and saves it in the outputDir directory. The optional maxTime parameter

sets a runtime limit for atom mapping of a reaction. If standardiseRxn == 1, then atom

mappings are also canonicalised, which is necessary in order to obtain a consistent

interoperable set of atom mappings for certain applications, e.g., computation of conserved

moieties in Step 77. The output balancedRxns contains the balanced atom mapped metabolic

reactions. ? TROUBLESHOOTING

77 | With a set of canonicalised atom mappings for a metabolic network, the set of

linearly independent conserved moieties for a metabolic network can be

identified122. Each of these conserved moieties corresponds to a molecular

substructure (set of atoms in a subset of a molecule) whose structure remains

invariant despite all the chemical transformations in a given network. A

conserved moiety is a group of atoms that follow identical paths through

metabolites in a metabolic network. Similarly to a vector in the (right) nullspace

of a stoichiometric matrix that corresponds to a pathway (see Step 52), a

conserved moiety corresponds to a vector in the left nullspace of a

stoichiometric matrix. Metabolic networks are hypergraphs123, while most

moiety subnetwork are graphs. Therefore conserved moieties have both

biochemical and mathematical significance and once computed, can be used for

a wide variety of applications. Given a metabolic network of exclusively mass

balanced reactions, one can identify conserved moieties by a graph theory

analysis of its atom transition network122.

First compute an atom transition network for a metabolic network using:

Heirendt et al. Page 51

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://vmh.life/
http://vmh.life/
https://perkinelmer.com/ChemDraw

>> ATN = buildAtomTransitionNetwork(model, rxnfileDir);

where rxnfileDir is a directory containing only atom mapped files from balanced reactions,

which can be obtained as explained in Step 76. The output atn is a structure with several

fields: .A is a p × q sparse incidence matrix for the atom transition network, where p is the

number of atoms and q is the number of atom transitions, .mets is a p × 1 cell array of

metabolite identifiers to link each atoms to its corresponding metabolites, .rxns is a q × 1

cell array of reaction identifiers to link atom transitions to their corresponding reactions,

and .elements is a p x 1 cell array of element symbols for atoms in .A.

▲ CRITICAL STEP All the RXN files needed to compute the atom transition network

must be in a canonical format. This can be achieved by setting standardiseRxn = 1.

78 | In order to identify the conserved moieties in the metabolic network, invoke:

>> [L, M, moietyFormulas] = identifyConservedMoieties(model, ATN);

where L represents the conserved moieties in the metabolic network. That is, Lis an m × r
matrix of r moiety vectors in the left null space of the stoichiometric matrix, M is the u × v
incidence matrix of the moiety supergraph in which each connected component is a moiety

graph, and moietyFormulas is an m × r cell array with chemical formulas of the computed

moieties.

Thermodynamically constrain a metabolic model ● TIMING 1 – 103 s

79 | In flux balance analysis of genome-scale stoichiometric models of metabolism,

the principal constraints are uptake or secretion rates, the steady state mass

conservation assumption, and reaction directionality. The COBRA Toolbox

extension vonBertalanffy124 is a set of methods for integration of

thermochemical data with constraint-based models125–127 as well as application

of thermodynamic laws to increase the physicochemical fidelity of constraint-

based modelling predictions128. A full exposition of the method to

thermodynamically constrain a genome-scale metabolic model is beyond the

scope of this protocol. Therefore, only several key steps are highlighted.

Given a set of experimentally derived training_data on standard transformed Gibbs energies

of formation, a state-of-the art quantitative estimation of standard Gibbs energy of formation

for metabolites with similar chemical substructures can be obtained using an implementation

of the component contribution method127. We assume that the input model has been

anatomically resolved as described in Steps 74–78. Access to a compendium of

stoichiometrically consistent metabolite structures110, 122 is a prerequisite. The component

contribution method is then invoked as follows:

>> model = componentContribution(model, training_data);

The model.DfG0 field gives the estimated standard Gibbs energy of formation for each

metabolite in the model with model.DfG0_Uncertainty field expressing the uncertainty in

these estimates, which is smaller for metabolites structurally related to metabolites in the

training set. All thermodynamic estimates are given in units of kJ/mol.

Heirendt et al. Page 52

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

80 | The standard Gibbs energy of formation for each metabolite must be

transformed according to the environment of each compartment of the model126,

i.e., the temperature, pH, ionic strength and electrical potential specific to each

compartment. Then the thermodynamic properties of reactions are estimated,

given model.concMin and model.concMax where one can supply lower and

upper bounds on compartment-specific metabolite concentrations (mol/L),

which may be achieved with:

>> model = setupThermoModel(model, confidenceLevel);

In the output, field .DfGt0 of model gives the estimated standard transformed Gibbs energy

of formation for each metabolite and .DrGt0 gives the estimated standard transformed Gibbs

energy for each reaction. Subject to a confidenceLevel specified as an input, the upper and

lower bounds on standard transformed Gibbs energy for each reaction are provided

in .DrGtMin and .DrGtMax respectively.

▲ CRITICAL STEP In a multi-compartmental model, this step must be done for an entire

network at once in order to ensure that thermodynamic potential differences, arising from

differences in the environment between compartments, are properly taken into account.

See126 for a theoretical justification for this assertion.

81 | Reaction directionality may be quantitatively assigned based on the

aforementioned thermodynamic estimates with:

>> [modelThermo, directions]= thermoConstrainFluxBounds(model, confidenceLevel, …

DrGt0_Uncertainty_Cutoff);

If model.DrGtMax(j)< 0, then the jth reaction is assigned to be forward, and if

model.DrGtMin(j)> 0 then the jth reaction is assigned to be reverse, unless the uncertainty in

estimation of standard transformed reaction Gibbs energy exceeds a specified cutoff

(DrGt0_uncertainty_Cutoff). In this case, the qualitatively assigned reaction directionality,

specified together by model.lb(j) and model.ub(j), takes precedence. The directions output

provides a set of boolean vector fields that can be used to analyse the effect of qualitatively

versus quantitatively assigning reaction directionality using thermochemical parameters.

82 | Thermodynamically constrained flux balance analysis may then be invoked by

disallowing flux around stoichiometrically balanced cycles, also known as loops,

using the allowLoops parameter to

optimizeCbModel with:

>> allowLoops = 0;

>> solution = optimizeCbModel(model, [], [], allowLoops);

The solution structure is the same as for flux balance analysis (see Problem (1)), except that

this solution satisfies additional constraints that ensure the predicted steady state flux vector

is thermodynamically feasible129. The solution satisfies energy conservation and the second

law of thermodynamics130.

Heirendt et al. Page 53

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Convert a flux balance model into a kinetic model ● TIMING 1 – 103 s

83 | In order to analyse biochemical networks at genome scale, systems biologists

often use a linear optimisation technique called flux balance analysis (FBA).

Linear approximation to known nonlinear biochemical reaction network

function is sufficient to get biologically meaningful predictions in some

situations. However, there are many biochemical processes where a linear

approximation is insufficient, which motivates the quest for developing

variational kinetic modelling131–133. Certain conditions are required to be met in

order to generate a kinetic model that is internally consistent. First we describe

those conditions, then we demonstrate how to ensure that they are met. Consider

a biochemical network with m molecular species and n reversible reactions. We

define forward and reverse stoichiometric matrices, F, R ∈ ℤ+
m × n, respectively,

where Fij denotes the stoichiometry of the ith molecular species in the jth forward

reaction and Rij denotes the stoichiometry of the ith molecular species in the jth

reverse reaction. We assume that the network of reactions is stoichiometrically

consistent69, that is, there exists at least one positive vector l ∈ ℝ+ +
m satisfying

(R – F)Tl = 0. Equivalently, we require that every reaction conserves mass. The

matrix N := R − F represents net reaction stoichiometry and may be viewed as

the incidence matrix of a directed hypergraph123. We assume that there are less

molecular species than there are net reactions, that is m < n. We assume the

cardinality of each row of F and R is at least one, and the cardinality of each

column of R − F is at least two. The matrices F and R are sparse and the

particular sparsity pattern depends on the particular biochemical network being

modelled. Moreover, we assume that rank([F, R]) = m, which is a requirement

for kinetic consistency134.

Compute a non-equilibrium kinetic steady state ● TIMING 1 – 103 s

84 | Let c ∈ ℝ+ +
m denote a variable vector of molecular species concentrations.

Assuming constant nonnegative elementary kinetic parameters k f , kr ∈ ℝ+
n , we

assume elementary reaction kinetics for forward and reverse elementary reaction

rates as s k f , c : = exp ln k f + FTln(c) and r kr, c : = exp ln kr + RTln(c) ,

respectively, where exp(·) and ln(·) denote the respective component-wise

functions134, 135. Then, the deterministic dynamical equation for time evolution

of molecular species concenration is given by

dc
dt ≡ N s k f , c − r kr, c

= N exp ln k f + FTln(c) − exp ln kr + RTln(c) = : − f (c) .

(5)

A vector c* is a steady state if and only if it satisfies f(c*) = 0, leading to the nonlinear

system

Heirendt et al. Page 54

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f x = 0 .

There are many algorithms that can handle this nonlinear system by minimising a nonlinear

least-squares problem; however, particular features of this mapping, such as sparsity of

stoichiometric matrices F and R and non-unique local zeros of mapping f, motivates the

quest for developing several algorithms for efficient dealing with this nonlinear system. A

particular class of such mappings, called duplomonotone mapping, was studied for

biochemical networks136 and three derivative-free algorithms for finding zeros of strongly

duplomonotone mappings were introduced. Further, it is shown that the function ||f (x) ||2

can be rewritten as a difference of two convex functions that is suitable to be minimised with

DC programming methods135. Therefore, a DC algorithm and its acceleration with adding a

line search technique were proposed for finding a stationary point of || f (x) ||2. Since the

mapping f has locally non-unique solutions, it does not satisfy classical assumptions (e.g.,

nonsingularity of the Jacobian) for convergence theory. As a result, it was proved that the

mapping satisfies the so-called Hölder metric subregularity assumption137 and an adaptive

Levenberg-Marquardt method was proposed to find a solution of this nonlinear system if the

starting point is close enough to a solution. In order to guarantee the convergence of the

Levenberg-Marquardt method with arbitrary starting point, it is combined with globalisation

techniques such as line search or trust-region, which leads to computationally efficient

algorithms. Note that a stationary point of || f (x) |2 may not correspond to a solution x, such

that f (x)=0, when ∇f (x)f (x)=0 does not imply f (x)=0.

Compute a non-equilibirum kinetic steady state by running the function optimizeVKmodel.

The mandatory inputs for computing steady states are a model vKModel containing F and R,

the name of a solver to solve the nonlinear system, an initial point x0, and parameters for the

considered solvers. For example, for specifying a solver, we write solver = ‘LMTR’;.

Optional parameters for the selected algorithm may be given to optimizeVKmodel by the

params struct as follows >> params.MaxNumIter = 1000; params.adaptive = 1; params.kin =

kin;

Otherwise, the selected algorithm will be run with the default parameters assigned for each

algorithm. Running the function optimizeVKmodel is done by typing

>> output = optimizeVKmodel(vKModel, solver, x0, params);

The output struct contains information related to the execution of the solver.

Compute a moiety conserved non-equilibrium kinetic steady state ● TIMING 1 – 103 s

85 | Let us note that a vector c* is a steady state of the biochemical system if and

only if

s k f , c* − r kr, c* ∈ 𝒩(N),

Heirendt et al. Page 55

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where 𝒩 N denotes the null space of N. Therefore, the set of steady states

Ω = c ∈ ℝ+ +
m | f (c) = 0 is unchanged if the matrix N is replaced by a matrix N

with the same kernel. Suppose that N ∈ ℤr×n is the submatrix of N whose rows

are linearly independent; then rank(N) = rank(N)=: r. If one replaces N by and

transforms (5) to logarithmic scale, and by letting

x: = ln(c) ∈ ℝm, k: = ln k f
T, ln kr

T T
∈ ℝ2n, then the right-hand side of (5) is

equal to the function

f (x): = [N, − N]exp k + [F, R]Tx , (6)

where [·, ·] stands for the horizontal concatenation operator. Let L ∈ ℝm−r,m

denote a basis for the left nullspace of N, which implies LN = 0. We have

rank(L) = m − r. We say that the system satisfies moiety conservation if for any

initial concentration c0 ∈ ℝ+ +
m ,

L c = L exp(x) = l0,

where l0 ∈ ℝ+ +
m . It is possible to compute L such that each corresponds to a

structurally identifiable conserved moiety in a biochemical network122. The

problem of finding the moiety conserved steady state of a biochemical reaction

network is equivalent to solving the nonlinear system of equations

h(x): =
f (x)

Lexp(x) − l0
= 0. (7)

Among algorithms mentioned in the previous section, the local and global

Levenberg-Marquardt methods137 are designed to compute either a solution of

the nonlinear system (7) or a stationary point of the merit function 1
2 h(x)

2
. The

computation of a moiety conserved non-equilibrium kinetic steady state is made

by running the optimizeVKmodel function in the same way as in previous

section. A model vKModel containing F and R, L and l0 is then passed to

optimizeVKmodel together with the name of one of the Levenberg-Marquardt

solvers.

Human metabolic network visualisation with ReconMap ● TIMING 1 – 102 s

86 | The visualisation of biochemical pathways is an important tool for biologically

interpreting predictions generated by constraint-based models. It can be an

invaluable aid for developing an understanding of the biological meaning

implied by a prediction. Biochemical network maps permit the visual integration

of model predictions with the underlying biochemical context. Patterns that are

Heirendt et al. Page 56

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

very difficult to appreciate in a vector can often be much better appreciated by

studying a generic map contextualised with model predictions. Genome-scale

biochemical network visualisation is particularly demanding. No currently

available software satisfies all of the requirements that might be desired for

visualisation of predictions from genome-scale models. Automatic layout of

genome-scale biochemical networks is insufficiently developed to generate an

aesthetically pleasing map, yet manual layout of such maps is very labour

intensive and there is no global reference coordinate system for such maps, so

each human might layout a global map differently. Software applications for

graph visualisation are often not suited to displaying metabolic hypergraphs138.

Client-server software models have to trade off between highly interactive

display of subsystem maps139 and less interactive display of genome-scale

maps51. An additional challenge with genome-scale models is that there is too

much detail to visually appreciate if an entire genome-scale map is visualised at

once, necessitating the application of techniques to dimensionally reduce the

presentation, e.g., semantic zooming140. With these caveats in mind, we present

a method for genome-scale visualisation of human metabolic network

predictions using ReconMap 2.0150, a manual layout of the reactions in the

human metabolic reconstruction Recon 2.0417, visualised with the Molecular

Interaction NEtwoRk visualisation (MINERVA51), a stand-alone web service

built on the Google Maps (Google Inc.) application programming interface, that

enables low latency web display and navigation of genome-scale molecular

interaction networks.

Visualisation of context-specific predictions in ReconMap via a web browser depends on

access to a server running MINERVA, which requests user credentials for remote access.

Public access to this server is provided free of charge. To request user credentials, navigate

with a web browser to http://vmh.life/#reconmap, select ADMIN (bottom left), and click on

Request an account to send an email to the MINERVA team and subsequently receive your

user credentials.

87 | In order to prepare for remote access from within MATLAB, load the details of

the MINERVA instance on the remote server, which are provided within the

COBRA Toolbox during installation, then add your user credentials to it: >>

load(‘minerva.mat’);

>> minerva.login = ‘username’;

>> minerva.password = ‘password’; minerva.map = ‘ReconMap–2.01’;

88 | Load a human metabolic model into MATLAB with:

>> model = readCbModel(‘Recon2.v04.mat’);

89 | Change the objective function to maximise ATP production through complex V

(ATP synthase, ‘ATPS4m’) in the electron transport chain with:

>> modelATP = changeObjective(model, ‘ATPS4m’);

Heirendt et al. Page 57

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://vmh.life/#reconmap

90 | Although the optimal objective value of the flux balance analysis Problem (1) is

unique, the optimal flux vector itself is most likely not. When visualising a flux

vector, it is important that a unique solution to some optimisation problem is

displayed. For example, we can predict a unique network flux by regularising

the flux balance analysis Problem (1) by redefining ρ(υ): = cTυ − σ
2 υTυ and σ =

10−6 (see Step 21). In order to obtain a unique optimal flux vector, run:

>> solution = optimizeCbModel(modelATP, ‘max’, 1e–6);

91 | Build the context-specific overlay of a flux vector on ReconMap by instructing

the COBRA Toolbox to communicate with the remote MINERVA server using:

>> identifier = ‘your_overlay_title’;

>> response = buildFluxDistLayout(minerva, model, solution, identifier);

The only new input variable is the text string in the identifier that enables you to name each

overlay according to a unique title. The response status will be set to 1 if the overlay was

successfully received by the MINERVA server. ? TROUBLESHOOTING

92 | Visualise context-specific ReconMaps using a web browser. Navigate to http://

vmh.life/#reconmap, login with your credentials above then select

‘OVERLAYS’ and the list of USER-PROVIDED OVERLAYS appears. In order

to see the map from Step 91, check the box adjacent to the unique text string

provided by identifier.

93 | In order to export context-specific ReconMaps as publishable graphics, two

options are possible: portable document format (.pdf) or portable network

format (.png). The former is useful for external editing whereas the latter

essentially produces a snapshot of the visual part of the map.

(A) PDF export

(i) Zoom out until the entire map is visible. Right click on the

map –> Export as image –> PDF. A file named model.pdf
will be downloaded to the default directory of the browser.

This PDF is a scalable network graphic, so optionally one

can use a PDF editor to zoom in or crop the PDF as desired.

(B) PNG export

(i) Navigate and zoom until the desired region of the map is

visible. Right click on the map –> Export as image –> PNG

and a file named model.png will be downloaded to the

default directory of the browser.

Variable scope visualisation of a network with Paint4Net ● TIMING 1 – 103 s

94 | During model validation or optimisation, visualisation of a small-scale fragment

of the network area of interest is often sufficient and is especially convenient

during network reconstruction when a manual layout may not yet be available.

Heirendt et al. Page 58

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://vmh.life/#reconmap
http://vmh.life/#reconmap

Automatic generation of a hypergraph layout for a chosen subset of network can

be achieved with the COBRA Toolbox extension Paint4Net141. A subset of a

network may be visualised, and the directionality and the fluxes for selected

reactions may be shown. Details on each reaction (ID, name and synonyms, and

formula) and metabolite (ID, name and synonyms, and charged formula) pop-up

when a cursor is placed over the corresponding item.

First compute a flux vector, e.g., with flux balance analysis, using:

>> FBAsolution = optimizeCbModel(model);

95 | Visualise a selected network fragment around a list of reactions in a model,

contextualised using a flux vector flux, by running:

>> flux = FBAsolution.v;

>> involvedMets = draw_by_rxn(model, rxns, drawMap, direction, initialMet, excludeMets,

flux);

The rxns input provides a selection of reactions of interest. The remaining inputs are

optional and control the appearance of the automatic layout. For example, excludeMets

provides a list of metabolites that may be excluded from the network visualisation, e.g.,

cofactors such as NAD and NADP.

96 | In order to visualise a model fragment with a specified radius around a specified

metabolite of interest, such as ‘etoh[c] ‘, run:

>> metAbbr = {‘etoh[c]’};

>> [involvedRxns, involvedMets] = draw_by_met(model, metAbbr, ‘true’, 1, ‘struc’, {‘‘},

flux);

Contributing to the COBRA Toolbox with MATLAB.devTools ● TIMING 1 – 30 s

97 | A comprehensive code base such as the COBRA Toolbox evolves constantly.

The open-source community is very active, and collaborators submit their

contributions frequently. The more a new feature or bug fix is interlinked with

existing functions, the higher the risk of a new addition breaking instantly code

that is heavily used on a daily basis. In order to decrease this risk, a continuous

integration setup interlinked with the version control system git has been set up.

A git-tracked repository is essentially a folder with code or other documents of

which all incremental changes are tracked by date and user.

Any incremental changes to the code are called commits. The main advantage of git over

other version control systems is the availability of branches. In simple terms, a branch

contains a sequence of incremental changes to the code. A branch is also commonly referred

to as a feature. Consequently, a contribution generally consists of several commits on a

branch.

Contributing to the COBRA Toolbox is straightforward. As a contributor to the COBRA

Toolbox is likely more familiar with MATLAB than with the internal mechanics of git, the

Heirendt et al. Page 59

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

MATLAB.devTools (https://github.com/opencobra/MATLAB.devTools) have been

developed specifically to contribute to a git-tracked repository located on the Github server.

In Figure 6, an overview of the two online repositories as well as their local copies is given.

There are two ways of using the COBRA Toolbox, which depends on the type of user.

(A) A user of the COBRA Toolbox

(i) The openCOBRA repository (https://github.com/opencobra/

cobratoolbox) is a public repository that is read-only. Once the

openCOBRA repository has been installed (as explained in Steps 1–3)

in the folder cobratoolbox, all branches (including master and develop)

are available locally. In the local folder cobratoolbox, the user has read

and write access, but cannot push eventual changes back to the

openCOBRA repository. It is the default and stable master branch only

that should be used. The local copy located in the cobratoolbox
directory can be updated (both branches).

(B) A contributor or a developer of the COBRA Toolbox

(i) In order to make changes to the openCOBRA repository, or, in other

words, contribute, you must obtain your own personal copy first. You

must register on the Github website (https://github.com) in order to

obtain a username. First, click on the button FORK at the top right

corner of the official openCOBRA repository website (https://

github.com/opencobra/cobratoolbox) in order to create a personal copy

(or fork) with write and read access of the openCOBRA repository.

This copy is accessible under https://github.com/<username>/

cobratoolbox. These branches can be accessed by following the

procedure [2] (see Step 99).

After initialisation of the MATLAB.devTools, the user and developer may have two folders:

a cobratoolbox folder with the stable master branch checked out, and a fork-cobratoolbox
folder with the develop branch checked out. Detailed instructions for troubleshooting and/or

contributing to the COBRA Toolbox using the terminal (or shell) are provided in

Supplementary Manual 3.

After the official openCOBRA version of the COBRA Toolbox has been installed, it is

possible to install the MATLAB.devTools from within MATLAB:

>> installDevTools

With this command, the directory MATLAB.devTools is created next to the cobratoolbox
installation directory. The MATLAB.devTools can also be installed from the terminal (or

shell):

$ git clone git@github . com: opencobra/MATLAB.devTools

Heirendt et al. Page 60

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/opencobra/MATLAB.devTools
https://github.com/opencobra/cobratoolbox
https://github.com/opencobra/cobratoolbox
https://github.com/
https://github.com/opencobra/cobratoolbox
https://github.com/opencobra/cobratoolbox
https://github.com/%3cusername%3e/cobratoolbox
https://github.com/%3cusername%3e/cobratoolbox

▲ CRITICAL STEP A working internet connection is required and git and curl must be

installed. Installation instructions are provided on the main repository page of the

MATLAB.devTools. A valid passphrase-less SSH key must be set in the Github account

settings in order to contribute without entering a password while securely communicating

with the Github server. ? TROUBLESHOOTING

98 | The MATLAB.devTools are configured on the fly or whenever the configuration

details are not present. The first time a user runs contribute, the personal

repository (fork) is downloaded (cloned) into a new folder named fork-
cobratoolbox at the location specified by the user. In this local folder, both

master and develop branches exist, but it is the develop branch that is

automatically selected (checked out). Any new contributions are derived from

the develop branch.

Initialising a contribution using the MATLAB.devTools is straightforward. In MATLAB,

type:

>> contribute % then select procedure [1]

If the MATLAB.devTools are already configured, procedure [1] updates the fork (if

necessary) and initialises a new branch with a name requested during the process. Once the

contribution is initialised, files can be added, modified or deleted in the folder fork-
cobratoolbox. A contribution is successfully initialised when the user is presented with a

brief summary of configuration details. Instructions on how to proceed are also provided.

▲ CRITICAL STEP The location of the fork must be specified as the root directory. There

will be a warning issued if the path already contains another git-tracked repository. ?
TROUBLESHOOTING

99 | An existing contribution can be continued after a while. This step is particularly

important in order to retrieve all changes that have been made to the

openCOBRA repository in the meantime.

>> contribute % then select procedure [2]

Procedure [2] pulls all changes from the openCOBRA repository, and rebases the existing

contribution. In other words, existing commits are shifted forward and placed after all

commits made on the develop branch of the openCOBRA repository.

▲ CRITICAL STEP Before attempting to continue working on an existing feature, make

sure that you published your commits as explained in Step 100. ? TROUBLESHOOTING

100 | Publishing a contribution means uploading the incremental code changes to the

fork. The changes are available in public, but not yet available in the

openCOBRA repository. A contribution may only be accepted in the official

repository once a pull request has been submitted. It is not necessary to open a

pull request if you want to simply upload your contribution to your fork.

>> contribute % then select procedure [3]

Heirendt et al. Page 61

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

When running procedure [3], you have two options:

(A) Simple contribution without opening a pull request

(i) All changes to the code are individually listed and the user is asked

explicitly which changes shall be added to the commit. Once all

changes have been added, a commit message must be entered. Upon

confirmation, the changes are pushed to the online fork automatically.

(B) Publishing and opening a pull request

(i) The procedure for submitting a pull request is the same as Option (A)

with the difference that when selecting to open a pull request, a link is

provided that leads to a pre-configured website according to the

contributing guidelines. The pull request is then one click away.

▲ CRITICAL STEP After following procedures [1] and [2], all changes should be

published using procedure [3] before stopping to work on that contribution. When following

procedure [3], the incremental changes are uploaded to the remote server. It is advised to

publish often, and make small incremental changes to the code. There is no need for opening

a pull request immediately (Option A) if there are more changes to be made. A pull request

may be opened at any time, even manually and directly from the Github website. ?
TROUBLESHOOTING

101 | If a contribution has been merged into the develop branch of the openCOBRA

repository (accepted pull request), the contribution (feature or branch) can be

safely deleted both locally and remotely on the fork by running contribute and

selecting procedure [4].

Note that deleting a contribution deletes all the changes that have been made on that feature

(branch). It is not possible to selectively delete a commit using the MATLAB.devTools.

Instead, create a new branch by following procedure [1] (see Step 98), and follow the

instructions to cherry-pick in the Supplementary Manual 3.

▲ CRITICAL STEP Make sure that your changes are either merged or saved locally if you

need them. Once procedure [4] is concluded, all changes on the deleted branch are removed,

both locally and remotely. No commits can be recovered. ? TROUBLESHOOTING

102 | It is sometimes useful to simply update the fork without starting a new

contribution. The local fork can be updated using procedure [5] of the contribute

menu.

>> contribute % then select procedure [5]

▲ CRITICAL STEP Before updating your fork, make sure that no changes are present in

the local directory fork-cobratoolbox. You can do so by typing:

>> checkStatus

If there are changes listed, publish them by selecting procedure [3] of the contribute menu as

explained in Step 100. ? TROUBLESHOOTING

Heirendt et al. Page 62

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Engaging with the COBRA Toolbox forum ● TIMING 1 – 102 s

103 | The Frequently Asked Questions (FAQ) section of the documentation (https://

opencobra.github.io/cobratoolbox/docs/FAQ.html) is a good starting point to

find answers to questions or issues one may face.

The public forum associated with the COBRA Toolbox, available at https://

groups.google.com/forum/#!forum/cobra-toolbox, is a great way to search for solutions to

previously recognised problems that are similar to problems novel to the user. This is

especially so with respect to recent installation and configuration issues that have arisen due

to asynchronous development of the many software packages integrated with the COBRA

Toolbox.

104 | Suggest new solutions to problems

(A) Post your question to the online COBRA Toolbox forum

Questions posted in the forum are welcome provided that some simple

guidelines are followed:

(i) Before a question can be posted, an application for

membership at https://groups.google.com/forum/#!forum/

cobra-toolbox is required to eliminate spam.

(ii) Make the question as detailed as possible to increase the

probability of a rapid and helpful reply.

(iii) Append your message with the result of running

generateSystemConfigReport so that repository maintainers

are aware of the system configuration. That is often the first

question that comes to mind when considering to respond.

(B) Reply to a question online COBRA Toolbox forum

(i) Community contributions are welcomed to help users

overcome any issues they face and are noticed by existing

COBRA community members.

Generally, responses to questions can be expected within 1–2 days of posting, provided that

posting guidelines are followed.

?TROUBLESHOOTING

Step Problem Possible reason Solution

1 | The initCobraToolbox
function displays warnings
or error messages.

Incompatible third-
party software or
improperly configured
system.

First, read the output of the initialisation script in
the command window. Any warning or error
messages, though often brief, may point toward
the source of the problem during initialisation if
read literally. Second, verify that all software
versions are supported and have been correctly
installed, as described in the MATERIALS
section. Third, ensure that you are using the latest
version of the COBRA Toolbox, cf. Steps 97–
102. Fourth, verify and test the COBRA Toolbox,

Heirendt et al. Page 63

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://opencobra.github.io/cobratoolbox/docs/FAQ.html
https://opencobra.github.io/cobratoolbox/docs/FAQ.html
https://groups.google.com/forum/#!forum/cobra-toolbox
https://groups.google.com/forum/#!forum/cobra-toolbox
https://groups.google.com/forum/#!forum/cobra-toolbox
https://groups.google.com/forum/#!forum/cobra-toolbox

Step Problem Possible reason Solution

as described in Step 3. Finally, if nothing else
works, consult the COBRA Toolbox forum, as
described in Steps 103–104.

3 | Some tests are listed as
failed when running testAll.

Some third party
dependencies are not
properly installed or the
system is improperly
configured.

Verify that all required software has been
correctly installed as described in the
MATERIALS section. The specific test can then
be run individually to determine the exact cause
of the error. If the error can be fixed, try to use the
MATLAB.devTools and contribute a fix. Further
details on how to approach submitting a
contribution are given in Steps 97–102. If the
error cannot be determined, reach out to the
community as explained in Steps 103–104.

4 | The readCbModelfunction
fails to import a model.

The input file is not
correctly formatted or
the SBML file format is
not supported.

Specifications for Excel sheets accepted by the
COBRA Toolbox can be found on Github
(opencobra.github.io/cobratoolbox/docs/
COBRAModelFields.html). Files with legacy
SBML formats can be imported, but some
information from the SBML file might be lost. In
addition to constraint-based information encoded
by fields of the fbc package, the COBRA-style
annotations introduced in the COBRA Toolbox
2.04 are supported for backward compatibility.
Some information is still stored in this type of
annotations. The data specified with the latest
version of the fbc package is used in preference to
other fields, e.g., legacy COBRA-style notes
which may contain similar data.

4 | The readCbModel function
fails to import a model
saved as a .mat file

The model may contain
deprecated fields or
fields which have
invalid values.

Old MATLAB models saved as .mat files
sometimes contain deprecated fields or fields
which have invalid values. Some of these
instances are checked and corrected during
readCbModel but there might be instances, where
readCbModel fails. If this happens, it is advisable,
to load the mat file, run the verifyModel function
on the loaded model, and manually adjust all
indicated inconsistent fields. After this procedure,
we suggest to save the model again and use
readCbModel to load the model.

4 | The readCbModel function
fails to import a SBML file

The model might be
invalid

If an SBML file produces an error during IO,
check that the file is valid SBML using the
SBMLValidator (http://sbml.org/Facilities/
Validator).

5 | The writeCbModel function
fails to export a model.

Some of the required
fields of the model
structure are missing or
the model contains
invalid data.

Before a reconstruction or model is exported, a
summary of invalid data in the model can be
obtained by running verifyModel(model). A list
of required fields for the model structure is
presented in Table 3.

15 | The dqqMinos or
quadMinos interfaces are
not working as intended.

The binaries might not
be compatible with
your operating system.

Make sure that all relevant system requirements
described in the MATERIALS section are
satisfied. If you are still unable to use the
respective interfaces, reach out to the community
as explained in Steps 103–104.

16 | A) The findSExRxnInd
function fails to identify
some exchange, demand
and sink reactions.

Some exchange,
demand and sink
reactions do not start
with any of anticipated
prefixes.

Try an alternative approach.

16 | B) The function
checkMassChargeBalai
returns wrong results.

Some formulae are
icmissing or a formula
is incorrectly specified,
leading to one or more
reactions to be
incorrectly identified as
being elementally
balanced.

Try an alternative approach.

Heirendt et al. Page 64

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sbml.org/Facilities/Validator
http://sbml.org/Facilities/Validator

Step Problem Possible reason Solution

16 | C) Erroneous predictions. Inadvertent violation of
the steady-state mass
conservation constraint.

Manually inspect the reaction formulae for each
reaction to identify any obviously mass
imbalanced reactions, omit them from the
reconstruction and run
findStoichConsistentSubset again.

22 | The solution status given by
FBAsolution.stat is −1.

A too short runtime
limit has been set or
numerical issues
happened during the
optimisation procedure.

Check the value of FBAsolution. origStat and
compare it with the documentation provided by
the solver in use for further information. If one is
solving with a double precision solver a model
that could be multi-scale but is not yet recognised
as such, then FBAsolution.stat == −1 can be
symptomatic of this situation. In that case, refer to
Steps 14–15 to learn how to numerically
characterise a reconstruction model.

55 | The sampling distribution is
not uniform (revealed by a
non-uniform marginal flux
distribution).

The sampling
parameters
options.nSkip and
options.nSamples are
set too low.

Increase the values of the options.nSkip and
options.nSamples parameters until smooth and
unimodal marginal flux distributions are obtained.

68 | No reaction is found in the
MUST sets.

The wild-type or
mutant strain may not
be enough constrained.

A solution is to add more constraints to the strains
until differences in the reaction ranges are shown.
If no differences are found, another algorithm
might be better suited. If there is an error when
running the findMust* functions, a possible
reason is that the inputs are not well defined or a
solver may not be set. Verify the inputs, use
changeCobraSolver to change to a commercial-
grade optimisation solver (see Table 4 for a list of
supported solvers).

76 | Some reactions could not
be mapped.

Too short runtime limit
or a reaction that the
algorithm could not
atom map.

Increase the runtime limit of the algorithm.

91 | The remote MINERVA
server refuses to build a
new overlay.

The text string in the
identifier input variable
is not uniquely defined
in your account.

Change the identifier text string of your overlay.

98 | An error occurs when run
running contribute claiming
that the fork cannot be
reached or that the local
fork cannot be found.

The local forked folder
cannot be found, has
been moved, or the
remote fork cannot be
reached.

It may occur that the configuration of the
MATLAB.devTools is faulty or has been
mistyped. In that case, try to reset the
configuration by typing: >> resetDevTools

97 | An error might be thrown
claiming permission
denied.

The SSH key of the
computer is not
configured properly.

The installation of the MATLAB.devTools is
dependent on a correctly configured Github
account. The SSH key of the computer must be
set in the Github account settings or otherwise
errors will be thrown. If the git clone command
works, the SSH key is properly set. In that case,
delete the SSH key locally (generally located in
the folder .ssh in the home directory) and
remotely on Github, and generate a new SSH key.

98 | Procedure [1] when running
contribute might not be
successful.

The local fork-
cobratoolbox folder is
too old or has not been
updated for a while.

In that case and if no local changes are present,
backup and remove the local fork-cobratoolbox
folder and run the contribute command again.
Alternatively, try to delete the forked repository
online and re-fork the openCOBRA repository.
When one is sure that everything is fine, the
backup can be safely deleted, but it is wise to
store it for some time, in case later one realises
that some updates to code have gone missing.

98 | Procedure [1] when running
contribute might not be
successful.

There are changes in
the local fork-
cobratoolbox folder.

Contribute the changes manually as described in
the Supplementary Manual 3.

Heirendt et al. Page 65

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Step Problem Possible reason Solution

98 | Procedure [1] when running
contribute might not be
successful.

The forked repository
cannot be reached
online or the SSH key
is not configured
properly.

Set the SSH key in your Github account and make
sure that the forked repository can be reached.
This can easily be checked by re-cloning the
MATLAB.devTools in the terminal as explained
in Steps 97 and by browsing to the forked
repository online.

99 | Procedure [2] when running
contribute might fail.

Your contribution has
been deleted online, or
is no longer available
locally.

When the rebase process fails, the user is asked to
reset the contribution, which will reset the
contribution to the online version of the branch in
the fork. In general, when the rebase fails there
have been changes made on the openCOBRA
repository that are in conflict with the local
changes. You can check the status of the local
repository by typing: >> checkStatus If there are
conflicts that you do not know how to resolve,
check the official repository or ping the
developers in https://groups.google.com/forum/#!
forum/cobra-toolbox as explained in Steps 103–
104. If you already have published changes, try to
submit a pull request as explained in Step 100 for
developers to understand the situation.
Alternatively, you can try to resolve the conflicts
manually. More information on how to solve
conflicts is given as Supplementary Manual 3.

100 | Procedure [3] when running
contribute might not be
successful.

The forked repository
cannot be reached
online or if the SSH key
is not configured
properly.

Check to set the SSH key in your Github account
and make sure that the forked repository can be
reached.

100 | When opening a pull
request, Github cannot
automatically merge.

There have been
changes made on the
openCOBRA
repository and on your
local fork.

Submit however the pull request; another
developer will help you rebase your contribution
manually.

101 | Procedure [4] when running
contribute might not be
successful.

Your local changes are
not yet published
(committed).

Follow procedure [3] of the contribute menu in
order to publish your changes first as explained in
Step 100.

102 | Procedure [5] when running
contribute might not be
successful.

There are some local
changes that have not
yet been published
(committed).

Backup eventual modifications, remove the fork-
cobratoolbox folder, and run the contribute
command again.

102 | Procedure [5] when running
contribute might not be
successful.

Too many changes have
been made in the
openCOBRA
repository.

Backup your modified files to a separate location,
and reset your branch manually by typing in the
terminal (be careful - this will delete all your
changes locally, but not remotely): $ git reset --
hard origin/<yourBranch> Then, copy your file
back into the fork-cobratoolbox folder and
contribute normally.

● TIMING

Steps 1–2, Initialisation of the COBRA Toolbox: 5 – 30 s

Step 3, Verify and test the COBRA Toolbox: ~ 103 s

Step 4, Importing a reconstruction or model: 10 – 102 s

Step 5, Exporting a reconstruction or model: 10 – 102 s

Step 6, Use of rBioNet to add reactions to a reconstruction: 1 – 103 s

Steps 7–8, Use of a spreadsheet to add reactions to a reconstruction: 1 – 103 s

Heirendt et al. Page 66

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://groups.google.com/forum/#!forum/cobra-toolbox
https://groups.google.com/forum/#!forum/cobra-toolbox

Steps 9–13, Use of scripts with reconstruction functions: 1 – 102 s

Step 14, Check the scaling of a reconstruction : 1 – 102 s

Step 15, Select a double- or quad-precision optimisation solver: 1 – 5 s

Step 16, Identify stoichiometrically consistent and inconsistent reactions: 1 – 105 s

Step 17, Identify stoichiometrically consistent and inconsistent molecular species: 1 – 103 s

Step 18, Set simulation constraints: 1 – 103 s

Step 19, Identify molecular species that leak, or siphon, across the boundary of the model: 1

– 103 s

Step 20, Identify flux inconsistent reactions: 1 – 103 s

Steps 21–22, Flux balance analysis: 1 – 102 s

Step 23, Relaxed flux balance analysis: 1 – 103 s

Step 24, Sparse flux balance analysis: 1 – 103 s

Steps 25–27, Identify dead-end metabolites and blocked reactions: ~102 s

Steps 28–30, Gap fill a metabolic network: 102 – 105 s

Steps 31–33, Extracellular metabolomic data: 103 – 105 s

Steps 34–39, Intracellular metabolomic data: 102 – 104 s

Step 40, Integration of transcriptomic and proteomic data: 102 – 104 s

Steps 41–46, Adding biological constraints to a flux balance model: ~ 102 s

Steps 47–48, Qualitative chemical and biochemical fidelity testing: 102 – 103 s

Steps 49–51, Quantitative biochemical fidelity testing: 102 – 103 s

Step 52, MinSpan Pathways: a sparse basis of the nullspace of a stoichiometric matrix: 102 –

104 s

Step 53, Low dimensional flux variability analysis: 1 – 103 s

Step 54, High dimensional flux variability analysis: 1 – 105 s

Step 55, Uniform sampling of steady-state fluxes: 1 – 103 s

Steps 56–73, Identify all genetic manipulations leading to targeted overproductions: 10 –

105 s

Steps 74–78, Atomically resolve a metabolic reconstruction: 10 – 105 s

Heirendt et al. Page 67

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Steps 79–82, Thermodynamically constrain a metabolic model: 1 – 103 s

Step 83, Convert a flux balance model into a kinetic model: 1 – 103 s

Step 84, Compute a non-equilibrium kinetic steady state: 1 – 103 s

Step 85, Compute a moiety conserved non-equilibrium kinetic steady state: 1 – 103 s

Steps 86–93, Human metabolic network visualisation with ReconMap: 1 – 102 s

Steps 94–96, Variable scope visualisation of a network with Paint4Net: 1 – 103 s

Steps 97–102, Contributing to the COBRA Toolbox with MATLAB.devTools: 1 – 30 s

ANTICIPATED RESULTS

Initialisation of the COBRA Toolbox

1 | The initialisation step automatically checks the configuration of all of the

required and some of the optional software dependencies. During initialisation,

all git submodules are updated. The solver paths are set when available and

compatible. A system-dependent table with the solver status is returned, together

with solver suggestions as shown in Figure 7. The user is also presented with

options to update the COBRA Toolbox.

2 | A list of solvers assigned to solve each class of optimisation solvers is returned:

Defined solvers are:

CBT_LP_SOLVER: gurobi

CBT_MILP_SOLVER: gurobi

CBT_QP_SOLVER: qpng

CBT_MIQP_SOLVER: gurobi

CBT_NLP_SOLVER: matlab

3 | The test suite starts by initialising the COBRA Toolbox and thereafter, all of the

tests are run. At the end of the test run, a comprehensive summary table is

presented in which the respective tests and their test outcome is shown. On a

fully configured system that is compatible with the most recent version of the

COBRA Toolbox, all tests should pass. It may not be necessary to have a fully

configured system to use one’s particular subset of methods.

Importing a reconstruction or model

4 | The reconstruction or model is loaded into the MATLAB workspace within a

structure named model, irrespective of whether the fileName specified a

reconstruction or model. The model structure should contain all of the

information in different fields. Table 3 provides an overview of the individual

Heirendt et al. Page 68

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model fields and their content. Very large SBML models may take some time to

load.

5 | An exported file containing the information from the model in the location and

format specified by the fileName.

Check the scaling of a reconstruction

14 | The checkScaling function returns a precisionEstimate string that is either

‘double’ or ‘quad’. The scaling estimate is based on the order of magnitude of

the ratio of the maximum and minimum row and column scaling coefficients,

which are determined such that the scaled stoichiometric matrix has entries close

to unity. In addition, a summary of scaling properties included in

scalingProperties may be returned.

Select a double- or quad-precision optimisation solver

15 | If the selected solver is installed, solverStatus == 1 will be returned, the solver

interface to MATLAB is configured correctly, and the solver is compatible with

the system environment. If the dqqMinos solver has been selected and

solverStatus == 1, then LP problem solutions are computed somewhat slower

than with a double precision solver, but with the advantage that solutions are

computed with a feasibility and optimality tolerance of 10−15, which becomes an

advantage for a multi-scale model, where the typical tolerance of 10−6 for a

double precision solver may be insufficient.

Identify stoichiometrically consistent and inconsistent molecular species

17 | Any molecular species corresponding to a non-zero entry within

SConsistentMetBool is always involved in mass imbalanced reactions indicating

that the stoichiometry is misspecified. Double check the chemical formulae

involved in the corresponding reactions to ensure that, e.g., the stoichiometry for

protons, cofactors, etc., leads to balanced reactions.

20 | Any non-zero entry in fluxinConsistentRxnBool indicates a flux inconsistent

reaction, i.e., a reaction that does not admit a non-zero flux. Blocked reactions can be

resolved by manual reconstruction6, algorithmic reconstruction82, or a combination

of both.

Sparse flux balance analysis

24 | There should be no such cycle in a network with bounds that are sufficiently

constrained. Figure 8 illustrates the cycle obtained from Recon3D with all

internal reaction bounds set to zero.

Integration of transcriptomic and proteomic data

40 | createTissuespecificModel returns a COBRA model which is constrained with

the context of the data provided to it. Usually, this means enrichment of

reactions with high expression and omission of reactions with low expression

Heirendt et al. Page 69

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

profiles. Each method returns a flux consistent model, hence it is likely that

certain reactions, without experimental evidence, are added to the context-

specific model in order to enable non-zero net flux through reactions for which

supporting experimental evidence for activity exists.

Quantitative biochemical fidelity testing

51 | For the Recon3Dmodel, the anticipated yield is 32 ATP per unit of glucose,

which compares favourably to the ATP yield of 31 ATP obtained from the

biochemical literature.

Uniform sampling of steady-state fluxes

55 | The marginal flux distributions for each reaction should be smooth and uni-

modal for any biochemical network with feasible set Ω: = υ |Sυ = 0; l ≤ υ ≤ u .

Identify all genetic manipulations leading to targeted overproductions

71 | The identified reaction is suet, i.e., a transporter for succinate (an intuitive

solution). However, changing the parameters will enable optForce to find non-

intuitive solutions.

Identify all genetic manipulations leading to targeted overproductions

73 | Figure 9 illustrates the interventions predicted by the OptForce method for

succinate overproduction in the AntCore E. coli model under aerobic conditions.

Thermodynamically constrain a metabolic model

82 | Thermodynamically constrained flux predictions can differ markedly from those

obtained with flux balance analysis. An open challenge is acquisition of

sufficient thermochemical training data as well as sufficient quantitative

metabolomic data, such that estimates of transformed reaction Gibbs energies

can be made with sufficiently low uncertainty to constrain reaction directionality

with high confidence. The degree of confidence typically differs markedly

between reactions. Therefore, a pragmatic approach to rank order reaction

directionality assignments by the probability that the thermodynamically

assigned reaction directionality is forward, reversible or reverse (see Figure 10

for an application to Recon3D).

Human metabolic network visualisation with ReconMap

93 | Figure 11 illustrates the overlay of an optimal regularised flux balance analysis

solution overlain within ReconMap within a web browser window.

Variable scope visualisation of a network with Paint4Net

96 | Figure 12 illustrates a fragment of a Paint4Net visualisation contextualised using

a flux vector to control the thickness and colour of edges representing reactions.

In the visualisation, one can discover the isolated parts of network without any

flux, as well as cycles running without any substrate.

Heirendt et al. Page 70

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Laurent Heirendt#1, Sylvain Arreckx#1, Thomas Pfau2, Sebastián N. Mendoza3,18,
Anne Richelle4, Almut Heinken1, Hulda S. Haraldsdóttir1, Jacek Wachowiak1, Sarah
M. Keating5, Vanja Vlasov1, Stefania Magnusdóttir1, Chiam Yu Ng6, German
Preciat1, Alise Žagare1, Siu H.J. Chan6, Maike K. Aurich1, Catherine M. Clancy1,
Jennifer Modamio1, John T. Sauls7, Alberto Noronha1, Aarash Bordbar8, Benjamin
Cousins9, Diana C. El Assal1, Luis V. Valcarcel10, Iñigo Apaolaza10, Susan
Ghaderi1, Masoud Ahookhosh1, Marouen Ben Guebila1, Andrejs Kostromins11,
Nicolas Sompairac22, Hoai M. Le1, Ding Ma12, Yuekai Sun23, Lin Wang6, James T.
Yurkovich13, Miguel A.P. Oliveira1, Phan T. Vuong1, Lemmer P. El Assal1, Inna
Kuperstein22, Andrei Zinovyev22, H. Scott Hinton14, William A. Bryant15, Francisco
J. Aragón Artacho16, Francisco J. Planes10, Egils Stalidzans11, Alejandro
Maass3,18, Santosh Vempala9, Michael Hucka17, Michael A. Saunders12, Costas D.
Maranas6, Nathan E. Lewis4,19, Thomas Sauter2, Bernhard Ø. Palsson13,21, Ines
Thiele1, and Ronan M.T. Fleming1,24

Affiliations
1Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue
du Swing, Belvaux, L-4367, Luxembourg.

2Life Sciences Research Unit, University of Luxembourg, 6 avenue du Swing,
Belvaux, L-4367, Luxembourg.

3Center for Genome Regulation (Fondap 15090007), University of Chile, Blanco
Encalada 2085, Santiago, Chile.

4Department of Pediatrics, University of California, San Diego, School of Medicine,
La Jolla, CA 92093, USA.

5European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-
EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom.

6Department of Chemical Engineering, The Pennsylvania State University,
University, University Park, PA 16802, USA.

7Department of Physics, University of California, San Diego, 9500 Gilman Dr., La
Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of
California, San Diego, La Jolla, CA, USA.

8Sinopia Biosciences, San Diego, CA, USA.

9School of Computer Science, Algorithms and Randomness Center, Georgia
Institute of Technology, Atlanta, GA, USA.

10Biomedical Engineering and Sciences Department, TECNUN, University of
Navarra, Paseo de Manuel Lardizabal, 13, 20018, San Sebastian, Spain.

Heirendt et al. Page 71

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

11Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1,
Riga LV-1004, Latvia.

12Department of Management Science and Engineering, Stanford University,
Stanford CA 94305-4026, USA.

13Bioengineering Department, University of California, San Diego, La Jolla, CA,
USA.

14Utah State University Research Foundation, 1695 North Research Park Way,
North Logan, Utah 84341, USA.

15Centre for Integrative Systems Biology and Bioinformatics, Department of Life
Sciences, Imperial College London, London, United Kingdom.

16Department of Mathematics, University of Alicante, Spain.

17California Institute of Technology, Computing and Mathematical Sciences, MC
305-16, 1200 E. California Blvd., Pasadena, CA 91125, USA.

18Mathomics, Center for Mathematical Modeling, University of Chile, Beauchef 851,
7th Floor, Santiago, Chile.

19Novo Nordisk Foundation Center for Biosustainability at the University of
California, San Diego, La Jolla, CA 92093, United States.

20Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, LV1067,
Latvia.

21Novo Nordisk Foundation Center for Biosustainability, Technical University of
Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.

22Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900,
F-75005, Paris, France.

23Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA.

24Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for
Drug Research, Faculty of Science, Leiden University.

ACKNOWLEDGEMENTS

The Reproducible Research Results (R3) team, in particular Christophe Trefois and Yohan Jarosz, of the
Luxembourg Centre for Systems Biomedicine, is acknowledged for their help in setting up the virtual machine and
the Jenkins server. This study was funded by the National Centre of Excellence in Research (NCER) on Parkinson’s
disease, the U.S. Department of Energy, Offices of Advanced Scientific Computing Research and the Biological
and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant no.
DE-SC0010429. This project has also received funding from the European Union’s HORIZON 2020 research and
innovation programme under grant agreement No 668738 and the Luxembourg National Research Fund (FNR)
ATTRACT program (FNR/A12/01) and OPEN (FNR/O16/11402054) grants. Nathan E. Lewis has been supported
by NIGMS (R35 GM119850) and the Novo Nordisk Foundation (NNF10CC1016517). Miguel A. P. Oliveira has
been supported by the Luxembourg National Research Fund (FNR) grant AFR/6669348. Anne Richelle has been
supported by the Lilly Innovation Fellows Award. Francisco Planes has been supported by the Minister of Economy
and Competitiveness of Spain (BIO2016-77998-R) and ELKARTEK Programme of the Basque Government
(KK-2016/00026). Iõigo Apaolaza has been supported by the Basque Government predoctoral grant
(PRE_2016_2_0044). Bernhard Ø. Palsson has been supported by the Novo Nordisk Foundation through the Center
for Biosustainability at the Technical University of Denmark (NNF10CC1016517).

Heirendt et al. Page 72

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendix

AUTHOR CONTRIBUTIONS

Author Contributions

Sylvain Arreckx Continuous integration, code review, opencobra.github.io/cobratoolbox, Jenkins,
Documenter.py, changeCobraSolver, pull request support, tutorials, tests, coordination,
manuscript, initCobraToolbox.

Laurent Heirendt Continuous integration, code review, fastFVA (new version, test & integration),
MATLAB.devTools, opencobra.github.io, tutorials, tests, pull request support,
coordination, manuscript, initCobraToolbox, forum support.

Thomas Pfau IO and transcriptomic integration, tutorials, tutorial reviews, IO and transcriptomic
integration sections of manuscript, forum support, pull request support, code review.

Sebastián N. Mendoza Development and update of strain design algorithms, GAMS and MATLAB integration,
tutorials.

Anne Richelle Transcriptomic data integration methods, tutorials, transcriptomic integration section of
manuscript, RuMBA, pFBA, metabolic tasks, tutorial review.

Almut Heinken Multispecies modelling code contribution, tutorial review, testing.

Hulda S. Haraldsdóttir Thermodynamics, conserved moiety and sampling methods.

Jacek Wachowiak Documentation.

Sarah M. Keating SBML input-output support.

Vanja Vlasov Tutorials.

Stefania Magnusdóttir Multispecies modelling, tutorial review, testing.

Chiam Yu Ng Strain design code review, tutorial review, manuscript (OptForce/biotech introduction).

German Preciat Tutorials and chemoinformatics for metabolite structures and atom mapping data.

Alise Žagare Metabolic cartography.

Siu H.J. Chan Solution navigation, multispecies modelling code, tutorial review.

Maike K. Aurich Metabolomic data integration.

Catherine M. Clancy Tutorials, testing.

Jennifer Modamio Metabolic cartography and human metabolic network visualisation tutorials.

John T. Sauls modelBorgifier code and tutorial.

Alberto Noronha Virtual metabolic human interoperability.

Aarash Bordbar MinSpan method and tutorial, supervision on uFBA method and tutorial.

Benjamin Cousins CHRR uniform sampling.

Diana C. El Assal Tutorials.

Luis V. Valcarcel Tutorials and genetic MCSs implementation.

Iñigo Apaolaza Tutorials and genetic MCSs implementation.

Susan Ghaderi Interoperability with CellNetAnalyzer.

Masoud Ahookhosh Adaptive Levenberg-Marquardt solver.

Marouen Ben Guebila Tutorial reviews.

Andrejs Kostromins Paint4Net code and tutorial.

Nicolas Sompairac Development of metabolomic cartography tool and tutorial.

Hoai M. Le Cardinality optimisation solver.

Ding Ma Quad precision solvers.

Yuekai Sun Multiscale flux balance analysis reformulation.

Heirendt et al. Page 73

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Author Contributions

Lin Wang Strain design code review, tutorial review, manuscript (OptForce).

James T. Yurkovich uFBA method and tutorial.

Miguel A.P. Oliveira Tutorial.

Phan T. Vuong Adaptive Levenberg-Marquardt solvers, boosted difference of convex optimisation
solver.

Lemmer P. El Assal Chemoinformatic data integration, documentation.

Inna Kuperstein Development of metabolomic cartography tool and tutorial.

Andrei Zinovyev Development of metabolomic cartography tool and tutorial.

H. Scott Hinton Tutorials.

William A. Bryant Code refinement.

Francisco J. Aragón Artacho Duplomonotone equation solver, boosted difference of convex optimisation solver,
adaptive Levenberg-Marquardt solvers.

Francisco J. Planes Academic Supervision, tutorials and genetic MCSs implementation.

Egils Stalidzans Academic supervision, Paint4Net, tutorial.

Alejandro Maass Academic supervision.

Santosh Vempala Academic supervision, CHRR uniform sampling algorithm.

Michael Hucka Academic supervision, SBML input-output support.

Michael A. Saunders Academic supervision, quad precision solvers, nullspace computation, convex
optimisation.

Costas D. Maranas Academic supervision, strain design algorithms.

Nathan E. Lewis Academic supervision and coding, transcriptomic data integration. RuMBA, pFBA,
metabolic tasks, tutorial review.

Thomas Sauter Academic supervision, FASTCORE algorithm.

Bernhard Ø. Palsson Academic supervision, openCOBRA stewardship.

Ines Thiele Academic supervision, tutorials, code contribution, manuscript.

Ronan M.T. Fleming Conceptualisation, lead developer, academic supervision, software architecture, code
review, sparse optimisation, nullspace computation, thermodynamics, variational
kinetics, fastGapFill, sampling, conserved moieties, network visualisation, forum
support, tutorials, manuscript.

REFERENCES

[1]. Palsson BØ Systems Biology: Constraint-based Reconstruction and Analysis. Cambridge
University Press, Cambridge, England, 1 (2015).

[2]. O’Brien EJ, Monk JM, and Palsson BO Using Genome-scale Models to Predict Biological
Capabilities. Cell 161(5), 971–987, 5 (2015). [PubMed: 26000478]

[3]. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, et al. Quantitative prediction of cellular
metabolism with constraint-based models: the COBRA Toolbox. Nat. Protocols 2(3), 727–738, 3
(2007). [PubMed: 17406635]

[4]. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, et al. Quantitative prediction of cellular
metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protocols 6(9), 1290–
1307, 9 (2011). [PubMed: 21886097]

[5]. Lewis NE, Nagarajan H, and Palsson BO Constraining the metabolic genotype–phenotype
relationship using a phylogeny of in silico methods. Nature Reviews Microbiology 10, 2 (2012).

[6]. Thiele I and Palsson BØ A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nat. Protocols 5(1), 93–121, 1 (2010). [PubMed: 20057383]

Heirendt et al. Page 74

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[7]. Kitano H, Ghosh S, and Matsuoka Y Social engineering for virtual ‘big science’ in systems
biology. Nat Chem Biol 7(6), 323–326, 6 (2011). [PubMed: 21587248]

[8]. Bordbar A, Monk JM, King ZA, and Palsson BO Constraint-based models predict metabolic and
associated cellular functions. Nat Rev Genet 15(2), 107–120, 2 (2014). [PubMed: 24430943]

[9]. Maia P, Rocha M, and Rocha I In Silico Constraint-Based Strain Optimization Methods: the Quest
for Optimal Cell Factories. Microbiol. Mol. Biol. Rev. 80(1), 45–67, 3 (2016). [PubMed:
26609052]

[10]. Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, et al. A Consensus Genome-scale
Reconstruction of Chinese Hamster Ovary Cell Metabolism. cels 3(5), 434–443.e8, 11 (2016).

[11]. Yusufi FNK, Lakshmanan M, Ho YS, Loo BLW, Ariyaratne P, et al. Mammalian Systems
Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line. cels 4(5),
530–542.e6, 5 (2017).

[12]. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, et al. Genome-scale dynamic modeling of
the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J
5(2), 305–316, 2 (2011). [PubMed: 20668487]

[13]. Jamshidi N and Palsson BØ Systems biology of the human red blood cell. Blood cells, molecules
& diseases 36(2), 239–47 (2006).

[14]. Yizhak K, Gabay O, Cohen H, and Ruppin E Model-based identification of drug targets that
revert disrupted metabolism and its application to ageing. Nat Commun 4, 2632 (2013).
[PubMed: 24153335]

[15]. Shlomi T, Cabili MN, and Ruppin E Predicting metabolic biomarkers of human inborn errors of
metabolism. Molecular Systems Biology 5(1), 263, 1 (2009). [PubMed: 19401675]

[16]. Sahoo S, Franzson L, Jonsson JJ, and Thiele I A compendium of inborn errors of metabolism
mapped onto the human metabolic network. Molecular BioSystems 8(10), 2545, 10 (2012).
[PubMed: 22699794]

[17]. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, et al. A community-driven global
reconstruction of human metabolism. Nat Biotech 31(5), 419–425, 5 (2013).

[18]. Pagliarini R and di Bernardo D A Genome-Scale Modeling Approach to Study Inborn Errors of
Liver Metabolism: Toward an In Silico Patient. Journal of Computational Biology 20(5), 383–
397, 3 (2013). [PubMed: 23464878]

[19]. Shaked I, Oberhardt MA, Atias N, Sharan R, and Ruppin E Metabolic Network Prediction of
Drug Side Effects. cels 2(3), 209–213, 3 (2016).

[20]. Chang RL, Xie L, Xie L, Bourne PE, and Palsson B Drug Off-Target Effects Predicted Using
Structural Analysis in the Context of a Metabolic Network Model. PLoS Comput Biol 6(9), 9
(2010).

[21]. Kell DB Systems biology, metabolic modelling and metabolomics in drug discovery and
development. Drug Discovery Today 11(23), 1085–1092, 12 (2006). [PubMed: 17129827]

[22]. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. Global reconstruction of the human
metabolic network based on genomic and bibliomic data. Proceedings of the National Academy
of Sciences of the United States of America 104(6), 1777–82 (2007). [PubMed: 17267599]

[23]. Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, et al. Recon 2.2: from reconstruction
to model of human metabolism. Metabolomics 12(7), 109, 7 (2016). [PubMed: 27358602]

[24]. Pornputtapong N, Nookaew I, and Nielsen J Human metabolic atlas: an online resource for
human metabolism. Database (Oxford) 2015, 1 (2015).

[25]. Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, et al. Systems biology analysis of
drivers underlying hallmarks of cancer cell metabolism. Scientific Reports 7, srep41241, 1
(2017).

[26]. Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, et al. Genome-scale metabolic
modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver
disease. Nature Communications 5, ncomms4083, 1 (2014).

[27]. Karlstädt A, Fliegner D, Kararigas G, Ruderisch HS, Regitz-Zagrosek V, et al. CardioNet: A
human metabolic network suited for the study of cardiomyocyte metabolism. BMC Systems
Biology 6, 114 (2012). [PubMed: 22929619]

Heirendt et al. Page 75

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[28]. Gille C, Bölling C, Hoppe A, Bulik S, Hoffmann S, et al. HepatoNet1: a comprehensive
metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular
Systems Biology 6, 411, 9 (2010). [PubMed: 20823849]

[29]. Conde M, Rosario P. d., Sauter T, and Pfau T Constraint Based Modeling Going Multicellular.
Front. Mol. Biosci. 3 (2016).

[30]. Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, et al. A multi-tissue type
genome-scale metabolic network for analysis of whole-body systems physiology. BMC Systems
Biology 5, 180 (2011). [PubMed: 22041191]

[31]. Yizhak K, Gaude E, Dévédec SL, Waldman YY, Stein GY, et al. Phenotype-based cell-specific
metabolic modeling reveals metabolic liabilities of cancer. eLife Sciences 3, e03641, 11 (2014).

[32]. Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I, et al. Integration of clinical data with
a genome-scale metabolic model of the human adipocyte. Molecular Systems Biology 9(1), 649,
January (2013). [PubMed: 23511207]

[33]. Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N, et al. Personalized Whole-
Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. cels
1(4), 283–292, 10 (2015).

[34]. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, et al. Quantifying Diet-
Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism 22(2), 320–331, 8
(2015). [PubMed: 26244934]

[35]. Nogiec CD and Kasif S To Supplement or Not to Supplement: A Metabolic Network Framework
for Human Nutritional Supplements. PLOS ONE 8(8), e68751, 8 (2013).

[36]. Heinken A, Sahoo S, Fleming RMT, and Thiele I Systems-level characterization of a host-
microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4(1), 28–40, 2 (2013).
[PubMed: 23022739]

[37]. Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJM, et al. Functional metabolic map
of Faecalibacterium prausnitzii, a beneficial human gut microbe. J. Bacteriol. 196(18), 3289–
3302, 9 (2014). [PubMed: 25002542]

[38]. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, et al. Generation of genome-scale
metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotech 35(1), 81–
89, 1 (2017).

[39]. Lakshmanan M, Koh G, Chung BKS, and Lee D-Y Software applications for flux balance
analysis. Brief Bioinform 15(1), 108–122, 1 (2014). [PubMed: 23131418]

[40]. Ebrahim A, Lerman JA, Palsson BO, and Hyduke DR COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Systems Biology 7, 74 (2013). [PubMed:
23927696]

[41]. Arkin AP, Stevens RL, Cottingham RW, Maslov S, Henry CS, et al. The DOE Systems Biology
Knowledgebase (KBase). 00001, 12 (2016).

[42]. Heirendt L, Thiele I, and Fleming RMT DistributedFBA.jl: high-level, high-performance flux
balance analysis in Julia. Bioinformatics 33(9), 1421–1423, 5 (2017). [PubMed: 28453682]

[43]. Latendresse M, Krummenacker M, Trupp M, and Karp PD Construction and completion of flux
balance models from pathway databases. Bioinformatics 28(3), 388–396, 2 (2012). [PubMed:
22262672]

[44]. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, et al. Pathway Tools version
19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform
17(5), 877–890, 9 (2016). [PubMed: 26454094]

[45]. Sandve GK, Nekrutenko A, Taylor J, and Hovig E Ten Simple Rules for Reproducible
Computational Research. PLOS Computational Biology 9(10), e1003285, 10 (2013).

[46]. Ince DC, Hatton L, and Graham-Cumming J The case for open computer programs. Nature
482(7386), 485–488, 2 (2012). [PubMed: 22358837]

[47]. Gevorgyan A, Bushell ME, Avignone-Rossa C, and Kierzek AM SurreyFBA: a command line
tool and graphics user interface for constraint-based modeling of genome-scale metabolic
reaction networks. Bioinformatics 27(3), 433–434, 2 (2011). [PubMed: 21148545]

[48]. Thorleifsson SG and Thiele I rBioNet: A COBRA toolbox extension for reconstructing high-
quality biochemical networks. Bioinformatics 27(14), 2009–10 (2011). [PubMed: 21596791]

Heirendt et al. Page 76

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[49]. Sauls JT and Buescher JM Assimilating genome-scale metabolic reconstructions with model-
Borgifier. Bioinformatics (Oxford, England) 30(7), 1036–1038 (2014).

[50]. Noronha A, Daníelsdóttir AD, Gawron P, Jóhannsson F, Jónsdóttir S, et al. ReconMap: an
interactive visualization of human metabolism. Bioinformatics 33(4), 605–607, 2 (2017).
[PubMed: 27993782]

[51]. Gawron P, Ostaszewski M, Satagopam V, Gebel S, Mazein A, et al. MINERVA—a platform for
visualization and curation of molecular interaction networks. npj Systems Biology and
Applications 2, 16020, 9 (2016). [PubMed: 28725475]

[52]. Olivier BG, Rohwer JM, and Hofmeyr J-HS Modelling cellular systems with PySCeS.
Bioinformatics 21(4), 560–1 (2005). [PubMed: 15454409]

[53]. Gelius-Dietrich G, Desouki AA, Fritzemeier CJ, and Lercher MJ sybil – Efficient constraint-
based modelling in R. BMC Systems Biology 7, 125 (2013). [PubMed: 24224957]

[54]. Ma D, Yang L, Fleming RMT, Thiele I, Palsson BO, et al. Reliable and efficient solution of
genome-scale models of Metabolism and macromolecular Expression. Scientific Reports 7,
srep40863, 1 (2017).

[55]. Klamt S, Saez-Rodriguez J, and Gilles ED Structural and functional analysis of cellular networks
with CellNetAnalyzer. BMC Systems Biology 1, 2 (2007). [PubMed: 17408509]

[56]. Klamt S and von Kamp A An application programming interface for CellNetAnalyzer.
Biosystems 105(2), 162–168, 8 (2011). [PubMed: 21315797]

[57]. Apaolaza I, José-Eneriz San E., Tobalina L, Miranda E, Garate L, et al. An in-silico approach to
predict and exploit synthetic lethality in cancer metabolism. Nature Communications 8(1), 12
(2017).

[58]. Maranas CD and Zomorrodi AR Optimization Methods in Metabolic Networks. Wiley, New
York, (2016).

[59]. Chowdhury A, Zomorrodi AR, and Maranas CD Bilevel optimization techniques in
computational strain design. Computers & Chemical Engineering 72, 363–372, 1 (2015).

[60]. Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, et al. Multiscale Modeling of Metabolism
and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage.
PLoS ONE 7(9), e45635, 9 (2012).

[61]. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, et al. A genome-scale metabolic
reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic information. Molecular Systems Biology 3, 121 (2007). [PubMed: 17593909]

[62]. Thiele I, Jamshidi N, Fleming RMT, and Palsson BØ Genome-scale reconstruction of Escherichia
coli’s transcriptional and translational machinery: a knowledge base, its mathematical
formulation, and its functional characterization. PLoS Computational Biology 5(3), e1000312
(2009).

[63]. Yang L, Tan J, O’Brien EJ, Monk JM, Kim D, et al. Systems biology definition of the core
proteome of metabolism and expression is consistent with high-throughput data. Proceedings of
the National Academy of Sciences 112(34), 10810–10815, 8 (2015).

[64]. Bornstein BJ, Keating SM, Jouraku A, and Hucka M LibSBML: an API Library for SBML.
Bioinformatics 24(6), 880–881, 3 (2008). [PubMed: 18252737]

[65]. Aurich MK, Fleming RMT, and Thiele I MetaboTools: A Comprehensive Toolbox for Analysis
of Genome-Scale Metabolic Models. Front. Physiol. 7 (2016).

[66]. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Aurich M, et al. Recon 3{D}: A resource
enabling a three-dimensional view of gene variation in human metabolism. (submitted) 1 (2017).

[67]. Ma D and Saunders MA Solving Multiscale Linear Programs Using the Simplex Method in
Quadruple Precision In Numerical Analysis and Optimization, Al-Baali M, Grandinetti L, and
Purnama A, editors, volume 134, 223–235. Springer International Publishing, Cham (2015).

[68]. Fleming R and Thiele I Mass conserved elementary kinetics is sufficient for the existence of a
non-equilibrium steady state concentration. Journal of Theoretical Biology 314, 173–181, 12
(2012). [PubMed: 22947275]

[69]. Gevorgyan A, Poolman MG, and Fell D. a. Detection of stoichiometric inconsistencies in
biomolecular models. Bioinformatics 24(19), 2245–51 (2008). [PubMed: 18697772]

Heirendt et al. Page 77

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[70]. Orth JD, Thiele I, and Palsson BØ What is flux balance analysis? Nat Biotech 28(3), 245–248, 3
(2010).

[71]. Feist AM and Palsson BO The biomass objective function. Current Opinion in Microbiology
13(3), 344–349, 6 (2010). [PubMed: 20430689]

[72]. Meléndez-Hevia E and Isidoro A The game of the pentose phosphate cycle. Journal of
Theoretical Biology 117(2), 251–263 (1985). [PubMed: 4079448]

[73]. Orth JD and Palsson BØ Systematizing the generation of missing metabolic knowledge.
Biotechnol. Bioeng. 107(3), 403–412, 10 (2010). [PubMed: 20589842]

[74]. Yamada T, Waller AS, Raes J, Zelezniak A, Perchat N, et al. Prediction and identification of
sequences coding for orphan enzymes using genomic and metagenomic neighbours. Mol. Syst.
Biol. 8, 581, 5 (2012). [PubMed: 22569339]

[75]. Liberal R and Pinney JW Simple topological properties predict functional misannotations in a
metabolic network. Bioinformatics 29(13), i154–161, 7 (2013). [PubMed: 23812979]

[76]. Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, et al. Systems approach to refining
genome annotation. Proc Natl Acad Sci U S A 103(46), 17480–17484, 11 (2006). [PubMed:
17088549]

[77]. Orth JD and Palsson B Gap-filling analysis of the iJO1366 Escherichia coli metabolic network
reconstruction for discovery of metabolic functions. BMC Systems Biology 6, 30, 5 (2012).
[PubMed: 22548736]

[78]. Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, et al. Metabolic network
reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst
Biol 7, 518, 8 (2011). [PubMed: 21811229]

[79]. Rolfsson O, Palsson BØ, and Thiele I The human metabolic reconstruction Recon 1 directs
hypotheses of novel human metabolic functions. BMC Systems Biology 5, 155, 10 (2011).
[PubMed: 21962087]

[80]. Rolfsson Ó, Paglia G, Magnusdóttir M, Palsson BØ, and Thiele I Inferring the metabolism of
human orphan metabolites from their metabolic network context affirms human gluconokinase
activity. Biochem. J. 449(2), 427–435, 1 (2013). [PubMed: 23067238]

[81]. Kumar Satish V., Dasika MS, and Maranas CD Optimization based automated curation of
metabolic reconstructions. BMC Bioinformatics 8, 212, 6 (2007). [PubMed: 17584497]

[82]. Thiele I, Vlassis N, and Fleming RMT fastGapFill: efficient gap filling in metabolic networks.
Bioinformatics 30(17), 2529–2531, 9 (2014). [PubMed: 24812336]

[83]. Willemsen AM, Hendrickx DM, Hoefsloot HCJ, Hendriks MMWB, Wahl SA, et al. MetDFBA:
incorporating time-resolved metabolomics measurements into dynamic flux balance analysis.
Mol. BioSyst. 11(1), 137–145, 12 (2014). [PubMed: 25315283]

[84]. Kleessen S, Irgang S, Klie S, Giavalisco P, and Nikoloski Z Integration of transcriptomics and
metabolomics data specifies the metabolic response of Chlamydomonas to rapamycin treatment.
Plant J 81(5), 822–835, 3 (2015). [PubMed: 25600836]

[85]. Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE, et al. Elucidating dynamic
metabolic physiology through network integration of quantitative time-course metabolomics.
Scientific Reports 7, srep46249, 4 (2017).

[86]. Blazier AS and Papin JA Integration of expression data in genome-scale metabolic network
reconstructions. Front Physiol 3, 8 (2012).

[87]. Opdam S, Richelle A, Kellman B, Li S, Zielinski DC, et al. A systematic evaluation of methods
for tailoring genome-scale metabolic models. Cell Systems 4(3), 318–329.e6, 3 (2017).
[PubMed: 28215528]

[88]. Estévez SR and Nikoloski Z Generalized framework for context-specific metabolic model
extraction methods. Frontiers in Plant Science 5 (2014).

[89]. Vlassis N, Pacheco MP, and Sauter T Fast reconstruction of compact context-specific metabolic
network models. PLoS Comput Biol 10(1), e1003424, 1 (2014).

[90]. Becker SA and Palsson BO Context-Specific Metabolic Networks Are Consistent with
Experiments. PLoS Comput Biol 4(5), e1000082, 5 (2008).

[91]. Zur H, Ruppin E, and Shlomi T iMAT: an integrative metabolic analysis tool. Bioinformatics
26(24), 3140–3142, 12 (2010). [PubMed: 21081510]

Heirendt et al. Page 78

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[92]. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, et al. Reconstruction of
Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using
INIT. PLOS Computational Biology 8(5), e1002518, 5 (2012).

[93]. Jerby L, Shlomi T, and Ruppin E Computational reconstruction of tissue-specific metabolic
models: application to human liver metabolism. Molecular Systems Biology 6(1), n/a–n/a, 1
(2010).

[94]. Wang Y, Eddy JA, and Price ND Reconstruction of genome-scale metabolic models for 126
human tissues using mCADRE. BMC Systems Biology 6(1), 153, 12 (2012). [PubMed:
23234303]

[95]. Kuhar MJ On the Use of Protein Turnover and Half-Lives. Neuropsychopharmacology 34(5),
1172–1173, 10 (2008). [PubMed: 18923400]

[96]. Lajtha A and Sylvester V Handbook of Neurochemistry and Molecular Neurobiology. Springer,
(2008).

[97]. Schuster S and Hilgetag C On elementary flux modes in biochemical reaction systems at steady
state. Journal of Biological Systems 02(02), 165–182, 6 (1994).

[98]. Schilling CH, Letscher D, and Palsson BØ Theory for the systemic definition of metabolic
pathways and their use in interpreting metabolic function from a pathway-oriented perspective.
Journal of Theoretical Biology 203(3), 229–48 (2000). [PubMed: 10716907]

[99]. Klamt S, Regensburger G, Gerstl MP, Jungreuthmayer C, Schuster S, et al. From elementary flux
modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux
constraints. PLOS Computational Biology 13(4), e1005409, 4 (2017).

[100]. Bordbar A, Nagarajan H, Lewis NE, Latif H, Ebrahim A, et al. Minimal metabolic pathway
structure is consistent with associated biomolecular interactions. Molecular Systems Biology
10(7), 737, 7 (2014). [PubMed: 24987116]

[101]. Gudmundsson S and Thiele I Computationally efficient flux variability analysis. BMC
Bioinformatics 11(1), 489, 9 (2010). [PubMed: 20920235]

[102]. Haraldsdottir HS, Cousins B, Thiele I, Fleming RMT, and Vempala S CHRR: coordinate hit-
and-run with rounding for uniform sampling of constraint-based models. Bioinformatics 33(11),
1741–1743, 6 (2017). [PubMed: 28158334]

[103]. Cousins B and Vempala S Bypassing KLS: Gaussian Cooling and an O*(n̂3) Volume Algorithm.
00000 arXiv: 1409.6011, 9 (2014).

[104]. Cousins B and Vempala S A practical volume algorithm. Math. Prog. Comp. 8(133), 1–28, 10
(2015).

[105]. Burgard AP, Pharkya P, and Maranas CD Optknock: a bilevel programming framework for
identifying gene knockout strategies for microbial strain optimization. Biotechnology and
Bioengineering 84(6), 647–57 (2003). [PubMed: 14595777]

[106]. Patil KR, Rocha I, Förster J, and Nielsen J Evolutionary programming as a platform for in silico
metabolic engineering. BMC Bioinformatics 6, 308, 12 (2005). [PubMed: 16375763]

[107]. Lun DS, Rockwell G, Guido NJ, Baym M, Kelner JA, et al. Large-scale identification of genetic
design strategies using local search. Molecular Systems Biology 5(1), 296, 1 (2009). [PubMed:
19690565]

[108]. Ranganathan S, Suthers PF, and Maranas CD OptForce: An Optimization Procedure for
Identifying All Genetic Manipulations Leading to Targeted Overproductions. PLOS
Computational Biology 6(4), e1000744, 4 (2010).

[109]. Antoniewicz MR, Kraynie DF, Laffend LA, González-Lergier J, Kelleher JK, et al. Metabolic
flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E.
coli producing 1,3-propanediol. Metabolic Engineering 9(3), 277–292, 5 (2007). [PubMed:
17400499]

[110]. Haraldsdóttir HS, Thiele I, and Fleming RM Comparative evaluation of open source software
for mapping between metabolite identifiers in metabolic network reconstructions: application to
Recon 2. Journal of Cheminformatics 6(1), 2, 1 (2014). [PubMed: 24468196]

[111]. Preciat Gonzalez GA, El Assal LRP, Noronha A, Thiele I, Haraldsdottir HS, et al. Comparative
evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon
3{D}. Journal of Cheminformatics 9, 39 (2017). [PubMed: 29086112]

Heirendt et al. Page 79

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[112]. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, et al. PubChem Substance and Compound
databases. Nucleic Acids Res. 44(D1), D1202–1213, 1 (2016).

[113]. Kanehisa M and Goto S KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids
research 28(1), 27–30, 1 (2000). [PubMed: 10592173]

[114]. Hastings J, Matos P. d., Dekker A, Ennis M, Harsha B, et al. The ChEBI reference database and
ontology for biologically relevant chemistry: enhancements for 2013. Nucl. Acids Res. 41(D1),
D456–D463, 1 (2013). [PubMed: 23180789]

[115]. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, et al. LMSD: LIPID MAPS structure database.
Nucleic acids research 35(Database issue), D527–32, 1 (2007).

[116]. Forster M, Pick A, Raitner M, Schreiber F, and Brandenburg FJ The system architecture of the
BioPath system. In Silico Biol. (Gedrukt) 2(3), 415–426 (2002). [PubMed: 12542424]

[117]. Williams AJ, Tkachenko V, Golotvin S, Kidd R, and McCann G ChemSpider - building a
foundation for the semantic web by hosting a crowd sourced databasing platform for chemistry. J
Cheminform 2(Suppl 1), O16, 5 (2010).

[118]. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. HMDB: the Human Metabolome
Database. Nucl. Acids Res. 35(suppl 1), D521–D526, 1 (2007). [PubMed: 17202168]

[119]. Rahman SA, Torrance G, Baldacci L, Cuesta SM, Fenninger F, et al. Reaction Decoder Tool
(RDT): extracting features from chemical reactions. Bioinformatics 32(13), 2065–2066, 7 (2016).
[PubMed: 27153692]

[120]. Kumar A and Maranas CD CLCA: Maximum Common Molecular Substructure Queries within
the MetRxn Database. J. Chem. Inf. Model. 54(12), 3417–3438, 12 (2014). [PubMed: 25412255]

[121]. Shimizu Y, Hattori M, Goto S, and Kanehisa M Generalized reaction patterns for prediction of
unknown enzymatic reactions. Genome Inform 20, 149–158 (2008). [PubMed: 19425130]

[122]. Haraldsdóttir HS and Fleming RMT Identification of Conserved Moieties in Metabolic
Networks by Graph Theoretical Analysis of Atom Transition Networks. PLOS Computational
Biology 12(11), e1004999, 11 (2016).

[123]. Klamt S, Haus U-U, and Theis F Hypergraphs and Cellular Networks. PLoS Comput Biol 5(5),
5 (2009).

[124]. Fleming RMT and Thiele I von Bertalanffy 1.0: a COBRA toolbox extension to
thermodynamically constrain metabolic models. Bioinformatics 27(1), 142–143, 1 (2011).
[PubMed: 21115436]

[125]. Fleming RMT, Thiele I, and Nasheuer HP Quantitative assignment of reaction directionality in
constraint-based models of metabolism: application to Escherichia coli. Biophysical chemistry
145(2–3), 47–56 (2009). [PubMed: 19783351]

[126]. Haraldsdóttir HS, Thiele I, and Fleming RMT Quantitative assignment of reaction directionality
in a multicompartmental human metabolic reconstruction. Biophysical Journal 102, 1703–1711
(2012). [PubMed: 22768925]

[127]. Noor E, Haraldsdóttir HS, Milo R, and Fleming RMT Consistent Estimation of Gibbs Energy
Using Component Contributions. PLoS Comput Biol 9(7), e1003098, 7 (2013).

[128]. Fleming RMT, Maes CM, Saunders MA, Ye Y, and Palsson BØ A variational principle for
computing nonequilibrium fluxes and potentials in genome-scale biochemical networks. Journal
of Theoretical Biology 292, 71–77, 1 (2012). [PubMed: 21983269]

[129]. Beard DA, Liang S-D, and Qian H Energy balance for analysis of complex metabolic networks.
Biophysical Journal 83(1), 79–86 (2002). [PubMed: 12080101]

[130]. Qian H and Beard DA Thermodynamics of stoichiometric biochemical networks in living
systems far from equilibrium. Biophysical chemistry 114(2–3), 213–20 (2005). [PubMed:
15829355]

[131]. Fleming RMT, Thiele I, Provan G, and Nasheuer HP Integrated stoichiometric, thermodynamic
and kinetic modelling of steady state metabolism. Journal of Theoretical Biology 264(3), 683–92
(2010). [PubMed: 20230840]

[132]. Schellenberger J, Lewis NE, and Palsson BØ Elimination of Thermodynamically Infeasible
Loops in Steady-State Metabolic Models. Biophysical Journal 100(3), 544–553, 2 (2011).
[PubMed: 21281568]

Heirendt et al. Page 80

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[133]. Soh KC and Hatzimanikatis V Network thermodynamics in the post-genomic era. Current
opinion in microbiology 13(3), 350–7 (2010). [PubMed: 20378394]

[134]. Fleming RMT, Vlassis N, Thiele I, and Saunders MA Conditions for duality between fluxes and
concentrations in biochemical networks. Journal of Theoretical Biology 409, 1–10, 11 (2016).
[PubMed: 27345817]

[135]. Artacho FJA, Fleming RMT, and Vuong PT Accelerating the DC algorithm for smooth
functions. arXiv: 1507.07375, 7 (2015).

[136]. Artacho FJA and Fleming RMT Globally convergent algorithms for finding zeros of
duplomonotone mappings. Optim Lett 9(569), 1–16, 9 (2014).

[137]. Ahookhosh M, Aragón FJ, Fleming RMT, and Vuong PT Local convergence of Levenberg-
Marquardt methods under Hölder metric subregularity. 3 (2017).

[138]. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504, 11
(2003). [PubMed: 14597658]

[139]. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, et al. Escher: A Web Application
for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways. PLOS
Computational Biology 11(8), e1004321, 8 (2015).

[140]. Kuperstein I, Cohen DP, Pook S, Viara E, Calzone L, et al. NaviCell: a web-based environment
for navigation, curation and maintenance of large molecular interaction maps. BMC Systems
Biology 7, 100 (2013). [PubMed: 24099179]

[141]. Kostromins A and Stalidzans E Paint4net: COBRA Toolbox extension for visualization of
stoichiometric models of metabolism. Biosystems 109(2), 233–239, 8 (2012). [PubMed:
22446067]

[142]. Aurich MK, Paglia G, Rolfsson O, Hrafnsdottir S, Magnusdottir M, et al. Prediction of
intracellular metabolic states from extracellular metabolomic data. Metabolomics 11(3), 603–
619, 8 (2014). [PubMed: 25972769]

[143]. Guebila MB and Thiele I Model-based dietary optimization for late-stage, levodopa-treated,
Parkinson’s disease patients. npj Systems Biology and Applications 2, 16013, 6 (2016).
[PubMed: 28725472]

[144]. Sun Y, Fleming RM, Thiele I, and Saunders MA Robust flux balance analysis of multiscale
biochemical reaction networks. BMC Bioinformatics 14, 240 (2013). [PubMed: 23899245]

[145]. Lewis NE, Hixson KK, Conrad TM, Lerman J. a., Charusanti P, et al. Omic data from evolved
E. coli are consistent with computed optimal growth from genome-scale models. Molecular
Systems Biology 6(390), 390 (2010). [PubMed: 20664636]

[146]. Thiele I, Fleming RMT, Bordbar A, Schellenberger J, and Palsson BØ Functional
characterization of alternate optimal solutions of Escherichia coli’s transcriptional and
translational machinery. Biophysical Journal 98(10), 2072–81 (2010). [PubMed: 20483314]

[147]. Ballerstein K, Kamp A. v., Klamt S, and Haus U-U Minimal cut sets in a metabolic network are
elementary modes in a dual network. Bioinformatics 28(3), 381–387, 2 (2012). [PubMed:
22190691]

[148]. von Kamp A and Klamt S Enumeration of smallest intervention strategies in genome-scale
metabolic networks. PLoS Comput Biol 10(1), e1003378, 1 (2014).

[149]. Fujita KA, Ostaszewski M, Matsuoka Y, Ghosh S, Glaab E, et al. Integrating Pathways of
Parkinson’s Disease in a Molecular Interaction Map. Mol Neurobiol 49(1), 88–102, 2 (2014).
[PubMed: 23832570]

[150]. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, et al. The RAVEN Toolbox and Its Use
for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum. PLOS
Computational Biology 9(3), e1002980, 3 (2013).

[151]. Grafahrend-Belau E, Klukas C, Junker BH, and Schreiber F FBA-SimVis: interactive
visualization of constraint-based metabolic models. Bioinformatics 25(20), 2755–2757, 10
(2009). [PubMed: 19578041]

[152]. Rocha I, Maia P, Evangelista P, Vilaga P, Soares S, et al. OptFlux: an open-source software
platform for in silico metabolic engineering. BMC Systems Biology 4, 45 (2010). [PubMed:
20403172]

Heirendt et al. Page 81

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[153]. Poolman MG ScrumPy: metabolic modelling with Python. IEE Proceedings - Systems Biology
153(5), 375–378, 9 (2006). [PubMed: 16986321]

[154]. Hoppe A, Hoffmann S, Gerasch A, Gille C, and Holzhütter H-G FASIMU: flexible software for
flux-balance computation series in large metabolic networks. BMC Bioinformatics 12, 28 (2011).
[PubMed: 21255455]

[155]. Boele J, Olivier BG, and Teusink B FAME, the Flux Analysis and Modeling Environment.
BMC Systems Biology 6, 8 (2012). [PubMed: 22289213]

Heirendt et al. Page 82

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Overview of key constraint-based reconstruction and analysis concepts. a. A genome-scale

metabolic reconstruction is a structured knowledge-base that abstracts pertinent information

on the biochemical transformations taking place within a chosen biochemical system, e.g.,

the human gut microbiome38. Genome-scale metabolic reconstructions are built in two steps.

First, several platforms exist for the generation of a draft metabolic reconstruction based on

genome annotations. Second, the draft reconstructions need to be refined based on known

experimental and biochemical data from literature6. Novel experiments can be performed on

the organism and the reconstruction refined accordingly. b. A phenotypically feasible

solution space is defined by specifying certain assumptions, e.g., a steady-state assumption,

then converting the reconstruction into computational model that eliminates

physicochemically or biochemically infeasible network states. Various methods are used to

interrogate the solution space. For example, optimisation for a biologically motivated

objective function (e.g. biomass production) identifies a single optimal flux vector, whereas

uniform sampling provides an unbiased characterisation via flux vectors uniformly

distributed in the solution space. c Flux balance analysis is an optimization method that

maximizes a linear objective function, ψ(υ) = cTυ, formed by multiplying every reaction flux

Heirendt et al. Page 83

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

υj with a predetermined coefficient, cj, subject to a steady state assumption, Sυ = 0, as well

as lower and upper bounds on each reaction flux (lbj and ubj, respectively).

Heirendt et al. Page 84

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Continuous integration of new code (submitted by developers) is performed on a dedicated

server running Jenkins (https://jenkins.io). The main code is located in the src folder and

tests functions in the test folder. A test not only runs a function (first degree testing), but

tests the output of that function (second degree testing). The continuous integration setup

relies on end-of-year releases of MATLAB only. Soon after the latest stable version of

MATLAB is released, full support will be provided for the COBRA Toolbox. After a

successful run of tests on the three latest end-of-year releases of MATLAB using various

solver packages, the documentation based on the headers of the functions (docstrings) is

extracted, generated, and automatically deployed. Immediate feedback through code

coverage reports (https://codecov.io/gh/opencobra/cobratoolbox) and build statuses are

reported on GitHub. With this setup, the impact of local changes in the code base is

promptly revealed.

Heirendt et al. Page 85

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://jenkins.io/
https://codecov.io/gh/opencobra/cobratoolbox

Figure 3:
Conceptual overview of the main steps involved in the unsteady-state flux balance analysis

(uFBA) method.

Heirendt et al. Page 86

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Solution spaces from steady state fluxes are anisotropic, that is, long in some directions and

short in others. This impedes the ability of any sampling algorithm taking a random

direction to evenly explore the full feasible set (artificial centering hit-and-run (ACHR)

algorithm). The CHRR (coordinate hit-and-run with rounding) algorithm first rounds the

solution space based on the maximum volume ellipsoid. Then, the rounded solution space is

uniformly sampled using a provably efficient coordinate hit-and-run random walk. Finally,

the samples are projected back onto the anisotropic feasible set. This leads to a more

Heirendt et al. Page 87

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

distributed uniform sampling, so that the converged sampling distributions for the selected

reactions become smoother. As an example, for both sampling distributions, the parameters

were defined as: nSkip = 8 × (dim(fluxSpace))2, nSarnples = 1000.

Heirendt et al. Page 88

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
In the OptForce procedure, the MUST sets are determined by contrasting the flux ranges

obtained using flux variability analysis (FVA) of a wild-type (blue bars) and an

overproducing strain (red bars). The first order MUST sets (top panel) are denoted MUSTL

and MUSTU. For instance, a reaction belongs to the MUSTU set if the upper bound of the

flux range in the wild-type is less than the lower bound of the flux range of the

overproducing strain. The center and bottom panels show all possible second order MUST

sets.

Heirendt et al. Page 89

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
The openCOBRA repository and the fork of a contributor located on the Github server can

be cloned to the local computer as cobratoolbox and fork-cobratoolbox folders, respectively.

Each repository might contain different branches, but each repository contains the master
and develop branches. Note that contributors only have read on the openCOBRA repository.

The stable branch is the master branch (black branch), while the development of code is

made on the develop branch (green branch). The master branch shall be checked out when

using the cobratoolbox repository, whereas contributors shall create new branches

originating from the develop branch (local fork-cobratoolbox directory and online

<username>/cobratoolbox repository). In the present example, myBranch1 (blue branch) has

already been pushed to the forked repository on the Github server, while myBranch2 (pink

branch) is only present locally. The branch myBranch1 may be merged into the develop
branch of the openCOBRA repository through opening a pull request. In order to submit the

contributions (commits) on myBranch2, the contributor must first push the commits to the

forked repository (https://github.com/<username>/cobratoolbox) before opening a pull

request. Any commit made on the develop branch (red square) will be merged to the master
branch if the develop branch is stable overall (orange square).

Heirendt et al. Page 90

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/%3cusername%3e/cobratoolbox

Figure 7:
Output of initialisation of the COBRA Toolbox with initCobraToolbox.

Heirendt et al. Page 91

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8: An energy generating stoichiometrically balanced cycle.
The smallest stoichiometrically balanced cycle that produces ATP at a maximal rate using

the ATP synthase reaction, in Recon3D, with all internal reactions. All metabolite and

reaction abbreviations are primary keys in the Virtual Metabolic Human database (https://

vmh.uni.lu): reaction abbreviation, reaction name: ADK1m, adenylate kinase,

mitochondrial; G5SDym, glutamate-5-semialdehyde dehydrogenase, mitochondrial;

GLU5Km, glutamate 5-kinase, mitochondrial; P45027A15m, 5-beta-cytochrome P450,

family 27, subfamily A, polypeptide 1; PPAm, inorganic diphosphatase; r0074, L-glutamate

5-semialdehyde:NAD+ oxidoreductase; HMR_3966, nucleoside-triphosphate giphosphatase;

ATPS4mi, ATP synthase (four protons for one ATP); CYOR_u10mi, ubiquinol-6

cytochrome c reductase, Complex III; NADH2_u10mi, NADH dehydrogenase,

mitochondrial; CYOOm2i, cytochrome c oxidase, mitochondrial complex IV.

Heirendt et al. Page 92

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://vmh.uni.lu/
https://vmh.uni.lu/

Figure 9:
The interventions predicted by the OptForce method for succinate overproduction in E. coli
(AntCore model) under aerobic conditions. Reactions that need to be up-regulated (green

arrows and labels) and knocked out (red arrows and labels) are shown in this simplified

metabolic map. The strategies include up-regulation of reactions generating succinate such

as isocitrate dehydrogenase (R2), α-ketoglutarate dehydrogenase or succinyl-CoA

synthetase, along with knockout of reactions draining succinate such as succinate

Heirendt et al. Page 93

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dehydrogenase or fumarate hydratase. Note that each of these reactions may associate with

one or more genes in E. coli.

Heirendt et al. Page 94

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10: Qualitatively forward, quantitatively reverse reactions in a multi-compartmental,
genome-scale model.
In Recon3D, the transformed reaction Gibbs energy could be estimated for 7, 215 reactions.

Of these reactions, 2, 868 reactions were qualitatively assigned to be forward in the

reconstruction, but were quantitatively assigned to be reversible using subcellular

compartment specific thermodynamic parameters, the component contribution method, and

broad bounds on metabolite concentrations (10−5 – 0.02 mol/L), except for certain cofactors.

The geometric mean (green) and feasible range (between maximum and minimum) of

estimated millimolar standard transformed reaction Gibbs energy (Ar G’m, blue) and

Heirendt et al. Page 95

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

transformed reaction Gibbs energy (ΔrG′m, red) are illustrated. The relative uncertainty in

metabolite concentrations versus uncertainty in thermochemical estimates is reflected by the

relative breadth of the red and blue bars for each reaction, respectively. The reactions are

rank ordered by the cumulative probability that millimolar standard transformed reaction

Gibbs energy is less than zero, P(ΔrG′m < 0), (black descending line from left to right). This

assumes that all metabolites are at a millimolar concentration (1mM) and a Gaussian error is

assumed in component contribution estimates. In this ordering, forward transport reactions

have P(ΔrG′m < 0) = 1 (far left) and reverse transport reactions have P(ΔrG′m < 0) = 0 (far

right). In between, from left to right are biochemical reactions with decreasing cumulative

probability of being forward in direction, subject to the stated assumptions. Alternative

rankings are possible. The key point is to observe that the COBRA Toolbox is primed for

quantitative integration of metabolomic data as the uncertainty in transformed reaction

Gibbs energy associated with thermochemical estimates using the component contribution

method is now significantly lower than the uncertainty associated with the assumption of

broad concentration range.

Heirendt et al. Page 96

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11:
Overlay of the flux vector for maximum ATP synthase flux, using flux balance analysis with

regularisation of the flux vector. Active fluxes are highlighted (purple).

Heirendt et al. Page 97

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12:
Selective scope visualisation of the E. coli core model model by Paint4Net. Rectangles

represent reactions with rates of fluxes in brackets; the red rectangles represent reactions

with only one metabolite; ellipses represent metabolites; the red ellipses represent dead end

metabolites; grey edges represent zero-rate fluxes; green edges represent positive-rate

(forward) fluxes; and blue edges represent negative-rate (backward) fluxes. Network

visualisation also enables zoom to specific regions.

Heirendt et al. Page 98

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heirendt et al. Page 99

Table 1:

Each method available in the COBRA Toolbox 3.0 is made accessible with a narrative tutorial that illustrates

how the corresponding function(s) are combined to implement each COBRA method in the respective src/

directories (https://github.com/opencobra/cobratoolbox/tree/master/src): base (B), reconstruction (R),

datalntegration (I), analysis (A), design (D), visualisation (V).

src/ Narrative Novelty in the COBRA Toolbox 3.0 compared to 2.0

B Initialise and verify the installation Software dependency audit, e.g., solvers, binaries, git.

R Input and output of reconstructions and models Support for latest standards, e.g., SBML flux balance constraints64.

R Reconstruction: rBioNet New software for quality controlled reconstruction48.

R Reconstruction: create a functional generic subnetwork New methods for selecting different types of subnetworks.

R Reconstruction exploration New methods, e.g., find adjacent reactions.

R Reconstruction refinement Maintenance of internal model consistency, e.g., upon subnetwork
generation29.

R Numerical reconstruction properties Flag a reconstruction requiring a multi-scale solver54.

R Convert a reconstruction into a flux balance analysis
model

Identification of a maximal flux and stoichiometrically consistent subset69.

I Atomically resolve a metabolic reconstruction New algorithms and methods for working with molecular structures, atom
mapping, identification of conserved moieties110, 122.

I Integration of metabolomic data New methods for analysis of metabolomic data in a network context65, 142.

I Integration of transcriptomic and proteomic data New algorithms for generation of context-specific models89.

A Flux balance analysis and its variants New flux balance methods, multi-scale model rescaling and multi-scale
solvers, additional solver interfaces, thermodynamically feasible methods42,
60, 128, 132, 143, 144.

A Variation on reaction rate bounds in flux balance
analysis

Increased computational efficiency.

A Parsimonious flux balance analysis New method for parsimonious flux balance analysis145.

A Sparse flux balance analysis New method for sparse flux balance analysis.

A Gap filling Increased computational efficiency82.

A Adding biological constraints to a flux balance model New methods for coupling reaction rates38, 146.

A Testing biochemical fidelity Human metabolic function test suite17.

A Testing basic properties of a metabolic model (sanity
checks)

New methods to minimise occurrence of modelling artefacts66.

A Minimal spanning pathway vectors New method for determining minimal spanning pathway vectors100.

A Elementary modes and pathway vectors Extended functionality by integration with CellNetAnalyzer55.

A Minimal cut sets Extended functionality by integration with CellNetAnalyzer147, 148, and new
algorithms for genetic MCSs57.

A Flux variability analysis Increased computational efficiency101.

A Uniform sampling of steady-state fluxes New algorithm, guaranteed convergence to uniform distribution102.

A Thermodynamically constrain reaction directionality New algorithms and methods for estimation of thermochemical parameter
estimation in multi-compartmental, genome-scale metabolic models126, 127.

A Variational kinetic modelling New algorithms and methods for genome-scale kinetic modelling68, 135–137.

D Metabolic engineering and strain design New methods, e.g., OptForce, interpretation of new strain designs. New
modelling language interface to GAMS59.

V Human metabolic network visualisation: ReconMap New method for genome-scale metabolic network visualisation50, 51, 149.

V Variable scope visualisation with automatic layout
generation

New method for automatic visualisation of network parts141.

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

https://github.com/opencobra/cobratoolbox/tree/master/src

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heirendt et al. Page 100

src/ Narrative Novelty in the COBRA Toolbox 3.0 compared to 2.0

Contributing to the COBRA Toolbox with
MATLAB.devTools

New software application enabling contributions by those unfamiliar with
version control software.

Engaging with the COBRA Toolbox Forum More than 800 posted questions with supportive replies connecting problems
and solutions.

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heirendt et al. Page 101

Table 2:

A selection of actively developed software applications with constraint-based modelling (COBRA)

capabilities. GUI, graphical user interface. The COBRA Toolbox: https://opencobra.github.io/cobratoolbox,

RAVEN: https://github.com/SysBioChalmers/RAVEN, CellNetAnalyzer: https://www2.mpi-

magdeburg.mpg.de/projects/cna/cna.html, FBA-SimVis: https://immersive-analytics.infotech.monash.edu/

fbasimvis, OptFlux: http://www.optflux.org, COBRA.jl: https://opencobra.github.io/COBRA.jl, Sybil: https://

rdrr.io/cran/sybil, COBRApy: http://opencobra.github.io/cobrapy, CBMPy: http://cbmpy.sourceforge.net,

SurreyFBA: http://sysbio.sbs.surrey.ac.uk/sfba, FASIMU: http://www.bioinformatics.org/fasimu, FAME:

http://f-a-m-e.org, Pathway Tools: http://bioinformatics.ai.sri.com/ptools, KBase: https://kbase.us. The symbol
† in the development column refers to an inactive project and the * to an active project. The column “Distrib.”

refers to the distribution channel. The label ‘all’ in the OS column means that the applications is compatible

with Windows, Linux and macOS operating systems.

Name Implementation Interface Development Distrib. OS

COBRA Toolbox MATLAB (etc) Script/Narrative open source* git all

RAVEN150 MATLAB Script open source* git all

CellNetAnalyzer55 MATLAB (etc) Script/GUI closed source* zip all

FBA-SimVis151 Java + MATLAB GUI closed source† zip Windows

OptFlux152 Java Script open source* svn all

COBRA.jl42 Julia Script/Narrative open source* git all

Sybil53 R package Script open source* zip all

COBRApy40 Python Script/Narrative open source* git all

CBMPy52 Python Script open source* zip all

Scrumpy153 Python Script open source* tar all

SurreyFBA47 C++ Script/GUI open source* zip all

FASIMU154 C Script open source† zip Linux

FAME155 Web-based GUI open source† zip all

PathwayTools43 Web-based GUI/Script closed source* N/A all

KBase41 Web-based Script/Narrative open source* git all

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

https://opencobra.github.io/cobratoolbox
https://github.com/SysBioChalmers/RAVEN
https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
https://immersive-analytics.infotech.monash.edu/fbasimvis
https://immersive-analytics.infotech.monash.edu/fbasimvis
http://www.optflux.org/
https://opencobra.github.io/COBRA.jl
https://rdrr.io/cran/sybil
https://rdrr.io/cran/sybil
http://opencobra.github.io/cobrapy
http://cbmpy.sourceforge.net/
http://sysbio.sbs.surrey.ac.uk/sfba
http://www.bioinformatics.org/fasimu
http://f-a-m-e.org/
http://bioinformatics.ai.sri.com/ptools
https://kbase.us/

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heirendt et al. Page 102

Table 3:

A description of the main fields of a standard model structure.

Field name Size Data Type Field description

.b m × 1 double The coefficients of the constraints of the metabolites (Sυ = b).

.csense m × 1 char The sense of the constraints represented by b, each row is either ‘E’ (equality), ‘L’
(less than) or ‘G’ (greater than).

.metCharges m × 1 numeric The charge of the respective metabolite (NaN if unknown).

.metFormulas m × 1 cell of char Elemental formula for each metabolite.

.metInChIString m × 1 cell of char Formula for each metabolite in the InCHI strings format.

.metNames m × 1 cell of char Full name of each corresponding metabolite.

.mets m × 1 cell of char Identifiers of the metabolites.

.metSmiles m × 1 cell of char Formula for each metabolite in SMILES Format.

.c n × 1 double The objective coefficient of the reactions.

.grRules n × 1 cell of char A string representation of the GPR rules defined in a readable format.

.lb n × 1 double Lower bounds for fluxes through the reactions.

.rxnConfidenceScores n × 1 numeric Confidence scores for reaction presence (0–5, with 5 being the highest confidence).

.rxnECNumbers n × 1 cell of char E.C. number for each reaction.

.rxnNames n × 1 cell of char Full name of each corresponding reaction.

.rxnNotes n × 1 cell of char Description of each corresponding reaction.

.rxnReferences n × 1 cell of char Description of references for each corresponding reaction.

.rxns n × 1 cell Identifiers of the reactions.

.subSystems n × 1 cell of cell of char subSystem assignments for each reaction.

.ub n × 1 double Upper bounds for fluxes through the reactions.

.S m × n numeric The stoichiometric matrix containing the model structure (for large models a sparse
format is suggested).

.geneNames g × 1 cell of char Full name of each corresponding gene.

.genes g × 1 cell of char Identifiers of the genes in the model.

.proteinNames g × 1 cell of char Full name for each protein.

.proteins g × 1 cell of char Proteins associated with each gene (one protein per gene).

.rxnGeneMat n × g numeric or logical Matrix with rows corresponding to reactions and columns corresponding to genes.

.compNames c × 1 cell of char Descriptions of the Compartments (compNames(m) is associated with comps(m)).

.comps c × 1 cell of char Symbols for compartments.

.osenseStr 1 × 3 char The objective sense: either ‘max’ (maximisation) or ‘min’ (minimisation).

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heirendt et al. Page 103

Table 4:

An overview of the types of optimisation problems solved by each optimisation solver. The interface to certain

standard optimisation solvers is actively supported, whereas the interface to other non-standard solvers

requires testing by the end user to ensure compatibility, while a legacy solver interface might require

refinement before it becomes compatible with newer solver or MATLAB releases.

Name Version Interface LP MILP QP MIQP NLP

Active Support

DQQ - dqqMinos ⋆

GLPK 2.7+ glpk ⋆ ⋆

GUROBI 7.0+ gurobi ⋆ ⋆ ⋆ ⋆

ILOG CPLEX 12.7.1 + ibm cplex ⋆ ⋆ ⋆

MATLAB R2014b+ matlab ⋆ ⋆

MINOS - quadMinos ⋆ ⋆

MOSEK 8.0+ mosek ⋆ ⋆ ⋆

PDCO - pdco ⋆ ⋆ ⋆ ⋆

Tomlab CPLEX 8.0+ cplex_direct
tomlab_cplex

⋆
⋆

⋆
⋆

⋆
⋆

⋆

Passive

OPTI 2.27+ opti ⋆ ⋆ ⋆ ⋆ ⋆

QPNG - qpng ⋆

Tomlab SNOPT 8.0+ tomlab_snopt ⋆

Legacy

GUROBI 7.0+ Gurobi_mex ⋆ ⋆ ⋆ ⋆

LINDO
MATLAB

2.0+
R2014b+

lindo_old
lindo_legacy
lp_solve

⋆
⋆
⋆
⋆

Nat Protoc. Author manuscript; available in PMC 2020 March 01.

	Abstract
	INTRODUCTION
	Development of the protocol
	Applications of COBRA methods
	Key features and comparisons
	Experimental Design
	Software architecture of the COBRA Toolbox 3.0
	Open-source software development with the COBRA Toolbox
	Controls

	Required expertise
	Limitations

	MATERIALS
	Equipment setup
	Required hardware
	Required software
	Optional software
	Solvers
	Application specific software
	Contributing software

	PROCEDURE
	Initialisation of the COBRA Toolbox ● TIMING 5 – 30 s
	Verify and test the COBRA Toolbox ● TIMING ~ 103 s
	Importing a reconstruction or a model ● TIMING 10 – 102 s
	Exporting a reconstruction or a model ● TIMING 10 – 102 s
	Use of rBioNet to add reactions to a reconstruction ● TIMING 1 – 103 s
	Use of a spreadsheet to add reactions to a reconstruction ● TIMING 1 – 103 s
	Use of scripts with reconstruction functions ● TIMING 1 – 102s
	Check the scaling of a reconstruction ● TIMING 1 – 102 s
	Select a double- or quad-precision optimisation solver ● TIMING 1 – 5 s
	Identify stoichiometrically consistent and inconsistent reactions ● TIMING 1 – 105s
	Identify stoichiometrically consistent and inconsistent molecular species ● TIMING 1 – 103 s
	Set simulation constraints ● TIMING 1 – 103 s
	Identify molecular species that leak, or siphon, across the boundary of the model ● TIMING 1 – 103 s
	Identify flux inconsistent reactions ● TIMING 1 – 103 s
	Flux balance analysis ● TIMING 1 – 102 s
	Relaxed flux balance analysis ● TIMING 1 – 103 s
	Sparse flux balance analysis ● TIMING 1 – 103 s
	Identify dead-end metabolites and blocked reactions ● TIMING ~102 s
	Gap fill a metabolic network ● TIMING 102 – 105 s
	Extracellular metabolomic data ● TIMING 103 – 105 s
	Intracellular metabolomic data ● TIMING 102 – 104 s
	Integration of transcriptomic and proteomic data ● TIMING 102 – 104 s
	Adding biological constraints to a flux balance model ● TIMING ~ 102 s
	Qualitative chemical and biochemical fidelity testing ● TIMING 102 – 103 s
	Quantitative biochemical fidelity testing ● TIMING 102 – 103 s
	MinSpan Pathways: a sparse basis of the nullspace of a stoichiometric matrix ● TIMING 102 − 104 s
	Low dimensional flux variability analysis ● TIMING 1 – 103 s
	High dimensional flux variability analysis ● TIMING 1 – 105 s
	Uniform sampling of steady-state fluxes ● TIMING 1 – 103 s
	Identify all genetic manipulations leading to targeted overproductions ● TIMING 10 –105 s
	Atomically resolve a metabolic reconstruction ● TIMING 10 – 105 s
	Thermodynamically constrain a metabolic model ● TIMING 1 – 103 s
	Convert a flux balance model into a kinetic model ● TIMING 1 – 103 s
	Compute a non-equilibrium kinetic steady state ● TIMING 1 – 103 s
	Compute a moiety conserved non-equilibrium kinetic steady state ● TIMING 1 – 103 s
	Human metabolic network visualisation with ReconMap ● TIMING 1 – 102 s
	Variable scope visualisation of a network with Paint4Net ● TIMING 1 – 103
s
	Contributing to the COBRA Toolbox with MATLAB.devTools ● TIMING 1 – 30 s
	Engaging with the COBRA Toolbox forum ● TIMING 1 – 102 s

	Table T2
	● TIMING

	ANTICIPATED RESULTS
	Initialisation of the COBRA Toolbox
	Importing a reconstruction or model
	Check the scaling of a reconstruction
	Select a double- or quad-precision optimisation solver
	Identify stoichiometrically consistent and inconsistent molecular species
	Sparse flux balance analysis
	Integration of transcriptomic and proteomic data
	Quantitative biochemical fidelity testing
	Uniform sampling of steady-state fluxes
	Identify all genetic manipulations leading to targeted overproductions
	Identify all genetic manipulations leading to targeted overproductions
	Thermodynamically constrain a metabolic model
	Human metabolic network visualisation with ReconMap
	Variable scope visualisation of a network with Paint4Net

	AppendixAUTHOR CONTRIBUTIONSAuthorContributionsSylvain ArreckxContinuous integration, code review, opencobra.github.io/cobratoolbox, Jenkins, Documenter.py, changeCobraSolver, pull request support, tutorials, tests, coordination, manuscript, initCobraToolbox.Laurent HeirendtContinuous integration, code review, fastFVA (new version, test & integration), MATLAB.devTools, opencobra.github.io, tutorials, tests, pull request support, coordination, manuscript, initCobraToolbox, forum support.Thomas PfauIO and transcriptomic integration, tutorials, tutorial reviews, IO and transcriptomic integration sections of manuscript, forum support, pull request support, code review.Sebastián N. MendozaDevelopment and update of strain design algorithms, GAMS and MATLAB integration, tutorials.Anne RichelleTranscriptomic data integration methods, tutorials, transcriptomic integration section of manuscript, RuMBA, pFBA, metabolic tasks, tutorial review.Almut HeinkenMultispecies modelling code contribution, tutorial review, testing.Hulda S. HaraldsdóttirThermodynamics, conserved moiety and sampling methods.Jacek WachowiakDocumentation.Sarah M. KeatingSBML input-output support.Vanja VlasovTutorials.Stefania MagnusdóttirMultispecies modelling, tutorial review, testing.Chiam Yu NgStrain design code review, tutorial review, manuscript (OptForce/biotech introduction).German PreciatTutorials and chemoinformatics for metabolite structures and atom mapping data.Alise ŽagareMetabolic cartography.Siu H.J. ChanSolution navigation, multispecies modelling code, tutorial review.Maike K. AurichMetabolomic data integration.Catherine M. ClancyTutorials, testing.Jennifer ModamioMetabolic cartography and human metabolic network visualisation tutorials.John T. SaulsmodelBorgifier code and tutorial.Alberto NoronhaVirtual metabolic human interoperability.Aarash BordbarMinSpan method and tutorial, supervision on uFBA method and tutorial.Benjamin CousinsCHRR uniform sampling.Diana C. El AssalTutorials.Luis V. ValcarcelTutorials and genetic MCSs implementation.Iñigo ApaolazaTutorials and genetic MCSs implementation.Susan GhaderiInteroperability with CellNetAnalyzer.Masoud AhookhoshAdaptive Levenberg-Marquardt solver.Marouen Ben GuebilaTutorial reviews.Andrejs KostrominsPaint4Net code and tutorial.Nicolas SompairacDevelopment of metabolomic cartography tool and tutorial.Hoai M. LeCardinality optimisation solver.Ding MaQuad precision solvers.Yuekai SunMultiscale flux balance analysis reformulation.Lin WangStrain design code review, tutorial review, manuscript (OptForce).James T. YurkovichuFBA method and tutorial.Miguel A.P. OliveiraTutorial.Phan T. VuongAdaptive Levenberg-Marquardt solvers, boosted difference of convex optimisation solver.Lemmer P. El AssalChemoinformatic data integration, documentation.Inna KupersteinDevelopment of metabolomic cartography tool and tutorial.Andrei ZinovyevDevelopment of metabolomic cartography tool and tutorial.H. Scott HintonTutorials.William A. BryantCode refinement.Francisco J. Aragón ArtachoDuplomonotone equation solver, boosted difference of convex optimisation solver, adaptive Levenberg-Marquardt solvers.Francisco J. PlanesAcademic Supervision, tutorials and genetic MCSs implementation.Egils StalidzansAcademic supervision, Paint4Net, tutorial.Alejandro MaassAcademic supervision.Santosh VempalaAcademic supervision, CHRR uniform sampling algorithm.Michael HuckaAcademic supervision, SBML input-output support.Michael A. SaundersAcademic supervision, quad precision solvers, nullspace computation, convex optimisation.Costas D. MaranasAcademic supervision, strain design algorithms.Nathan E. LewisAcademic supervision and coding, transcriptomic data integration. RuMBA, pFBA, metabolic tasks, tutorial review.Thomas SauterAcademic supervision, FASTCORE algorithm.Bernhard Ø. PalssonAcademic supervision, openCOBRA stewardship.Ines ThieleAcademic supervision, tutorials, code contribution, manuscript.Ronan M.T. FlemingConceptualisation, lead developer, academic supervision, software architecture, code review, sparse optimisation, nullspace computation, thermodynamics, variational kinetics, fastGapFill, sampling, conserved moieties, network visualisation, forum support, tutorials, manuscript.
	Table T1
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Figure 12:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

