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Membrane protein-regulated networks across
human cancers
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Alterations in membrane proteins (MPs) and their regulated pathways have been established

as cancer hallmarks and extensively targeted in clinical applications. However, the analysis of

MP-interacting proteins and downstream pathways across human malignancies remains

challenging. Here, we present a systematically integrated method to generate a resource of

cancer membrane protein-regulated networks (CaMPNets), containing 63,746 high-

confidence protein–protein interactions (PPIs) for 1962 MPs, using expression profiles

from 5922 tumors with overall survival outcomes across 15 human cancers. Comprehensive

analysis of CaMPNets links MP partner communities and regulated pathways to provide MP-

based gene sets for identifying prognostic biomarkers and druggable targets. For example, we

identify CHRNA9 with 12 PPIs (e.g., ERBB2) can be a therapeutic target and find its anti-

metastasis agent, bupropion, for treatment in nicotine-induced breast cancer. This resource is

a study to systematically integrate MP interactions, genomics, and clinical outcomes for

helping illuminate cancer-wide atlas and prognostic landscapes in tumor homo/

heterogeneity.
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Membrane proteins (MPs) play a key role in mediating
intercellular communication and transducing signals in
cells through interacting proteins and downstream

cellular processes1. Alterations in MPs and their regulated path-
ways, involved in the formation and progression of human
cancers1,2, have been used for development of diagnostic/prog-
nostic biomarkers and pharmaceutical targets2–4. Although
intensive efforts over the past decades to explore the roles of
certain MPs in specific malignancies2–4, revealing where (tumor
type) and how (mechanism) a variety of MPs and their involved
pathways contribute to different cancer-associated networks as
well as further clinical implications is still a critical challenge.

In support of this pursuit, recent studies have established cell
type- and cancer-focused protein–protein interaction (PPI) net-
works in HEK293T cells5 and lung cancer cells6,7, respectively,
using large-scale experimental methods; however, these studies
are still limited to one cell type (or tumor type) and only one
method7 focuses on MPs and their PPIs. Identification of a set of
genes to develop and implement into clinical diagnostic tools is a
growing trend8,9. Despite a previous work has established the
prognostic landscape for individual genes and immune cells
across cancers3, the cancer-wide prognostic landscape of MPs and
their regulated pathways (i.e., gene sets) has not been addressed.
Therefore, establishing MP-regulated networks across human
cancers to illuminate a pan-cancer map and develop clinically
applicable molecular models is an unmet need.

Thus, the goal of this study is to simulate regulation patterns of
MPs, MP PPIs, and their relevant networks across human can-
cers, in order to facilitate the development of prognostic strati-
fication and targeted therapy. We first develop a systematically
integrated method (SIM) with a scoring system, termed SSIM, that
identify 63,746 high-confidence PPIs of 1962 MPs. Next, we
combine these MPs and their binding partners (i.e., MPP com-
munities) with data from 65 cancer-related pathways10 and
tumor gene expression profiles from 5922 patients11 to build
cancer membrane protein-regulated networks (CaMPNets),
including the MP, the MPP community, and MPP community-
regulated pathways, for 15 human cancers. Using these CaMP-
Nets in conjunction with overall survival data and a meta-
analytical framework, we further construct a global pan-cancer
landscape to quantify specific/common signatures and prognostic
associations in MPP communities and community-regulated
pathways. Based on CaMPNets resource (http://campnets.life.
nctu.edu.tw), we identify 12 interactions with nicotinic acet-
ylcholine receptor subunit α9 (CHRNA9) across human cancers
and validate a use for the Food and Drug Administration (FDA)-
approved drug bupropion, which targets CHRNA9, as an anti-
metastasis agent in breast cancer. In summary, CaMPNets can
reveal the cancer-wide atlas of MPs, MPP communities, and their
regulated pathways, with important implications for facilitating
the identification of gene set-based prognostic biomarkers as well
as therapeutic targets and agents.

Results
Identification and analysis of proteins interacting with MPs.
To identify MP-interacting proteins and further establish
CaMPNets, we first collected, curated, and integrated three data
sets for 2594 MPs (Fig. 1 and Supplementary Data 1). These sets
comprised a PPI set containing 749,087 reported PPIs, including
31,810 direct physical PPIs, across 497 species, a pathway set with
292 human pathways, including 65 cancer-related pathways
(Supplementary Table 1) from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database10, and a pan-cancer set from The
Cancer Genome Atlas (TCGA) comprising RNA sequencing
(RNA-seq) data and clinical outcome data in 15 cancer types

(Supplementary Table 2). Statistical analysis of the reported PPIs
and co-expressed gene pairs based on RNA-seq data across the
cancer types showed that the numbers of reported PPIs for 2594
MPs were significantly lower than those for the other non-MPs (P
value <3 × 10−16, Fisher’s exact test; Supplementary Fig. 1),
reflecting that many MP-interacting proteins are still unknown.

To identify the interacting proteins of each MP, we proposed a
SIM strategy to calculate interacting scores (SSIM) by selecting
reported PPIs (called reported PPI-based SIM) or direct physical
PPIs (called direct PPI-based SIM) as PPI templates (Fig. 1a and
Supplementary Fig. 2a–d; details in “Methods”). We sequentially
used the potential MP interacting regions (i.e., cytoplasmic
regions12) to select similar templates by searching reported (or
direct) PPIs based on the interacting region similarity (Sirs) and
the quality of the PPI template (Squl) (Supplementary Fig. 2b, c).
Subsequently, we utilized these selected PPI templates to infer
MP-interacting protein candidates by evaluating their SSIM values
by searching the complete human proteome database (UniProt12;
Supplementary Fig. 2d). We compared the PPI prediction
accuracies of our SSIM, six individual or combined scoring
methods13,14, the STRING database (v. 10.0)15, the FpClass
method16, and the generalized interolog mapping method17

(Supplementary Table 3 and Supplementary Note 1) using sets
of positive and negative cases (see “Methods” and Supplementary
Fig. 3). The result shows that the SSIM approach achieved an
average area under the receiver operating characteristic curve
(AUC) of 0.924, outperforming those using either source alone
(AUC ≤ 0.916), the STRING database (AUC= 0.824), the
FpClass method (AUC= 0.811), and the generalized interolog
mapping method (AUC= 0.793; Fig. 2a, Supplementary Fig. 4a,
and Supplementary Table 4). Similar results were observed for the
direct PPI-based SSIM approach (Supplementary Figs. 4 and 5 and
Supplementary Note 2). We also examined F2 scores across a
broad range of reported PPI- and direct PPI-based SSIM values to
determine the threshold for the MP-interacting proteins, and we
observed the highest F2 scores of 0.619 and 0.530 when SSIM
values were set to 3.6 and 3.7, respectively. To evaluate whether
the predictive power was biased toward certain MP types, we
classified 2594 MPs into five groups based on the classification/
family defined by Almen et al.1 (Supplementary Data 1). The SSIM
scoring method was highly accurate for predicting PPIs of
different MP types in comparison to the STRING database, the
FpClass method, and the generalized interolog mapping method
(Supplementary Table 4). Characterization of the biological
functions of the SSIM-predicted PPIs (Supplementary Figs. 6
and 7; details in Supplementary Note 3) demonstrated that they
displayed high functional similarity, performed/participated in
essential properties in humans, highlighted undiscovered reg-
ulatory pathways, and were frequently co-expressed in 7208 gene
expression sets. Based on the loss-of-function screens of Project
Achilles18 and the mutation and copy-number alteration data of
TCGA from the cBioPortal19 database, we further observed that
the percentages of MP PPIs with significant co-occurrence/
mutual exclusivity (P < 0.05, Fisher’s exact test) for our predicted/
positive sets in most of the cancer types were significantly higher
than those of random chance (empirical P value <0.05;
Supplementary Figs. 8 and 9 and Supplementary Note 4).
Notably, our results suggest that the gene pairs of the MP-
positive/predicted PPIs tend to exhibit co-occurrence of loss-of-
function effects (or genomic alterations) but to a limited extent.
Finally, we successfully identified 63,746 high-confidence PPIs for
1962 MPs to provide an interactome landscape (Supplementary
Data 2), and these data suggest that SIM is a valuable strategy for
the discovery of MP PPIs.

We next analyzed the hub properties of MPs and other
proteins (called non-MPs) in the PPI networks and investigated

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10920-8

2 NATURE COMMUNICATIONS |         (2019) 10:3131 | https://doi.org/10.1038/s41467-019-10920-8 | www.nature.com/naturecommunications

http://campnets.life.nctu.edu.tw
http://campnets.life.nctu.edu.tw
www.nature.com/naturecommunications


the topological properties and functional enrichment for the MP-
focused and non-MP subnetworks (Supplementary Note 5). In
comparison to non-MPs, MPs, which are located mainly in the
periphery and not in the center of the cellular interactome, exert
limited effects on network integrity (Supplementary Fig. 10) and
play roles in cell communication and immune responses on the
cell surface (Supplementary Fig. 11). We further characterized
the MPP communities by evaluating their compositions and the

overlap between the binding partners identified for different MPs
(Supplementary Note 6), suggesting that most communities
comprise high percentages of non-MP proteins (Supplementary
Fig. 12) and that MPs in a family often share their interacting
proteins (Supplementary Fig. 13).

MPP community-regulated pathways in 15 cancer types. To
build CaMPNets in 15 cancer types, we first identified MPP
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community-regulated pathways by evaluating the enrichment
P values, measured by hypergeometric distribution, of co-
expressed gene pairs of differentially expressed genes (DEGs)
between 2594 MPP communities and 65 cancer-related pathways
based on TCGA RNA-seq data (see “Methods” and Fig. 1b). Here
an MPP community consists of an MP and its interacting part-
ners derived from the reported/direct and predicted PPIs. Next,
we determined the empirical P value of each community-
regulated pathway based on 1000 permutations by randomly
shuffling gene labels of all proteins interacting with 2594 MPs
(Fig. 1c and Supplementary Fig. 14a).

First, we used the CaMPNets to quantify tumor homogeneity
in community-regulated pathways for MPs (or MP families)
across 15 cancers (see “Methods” and Supplementary Fig. 14b).
We observed that community-regulated pathways for MPs (or
MP families), filtered at enrichment P values ≤0.05 and
empirical P values ≤0.05, were significantly more likely to be
shared by distinct tumor types than was expected by random
chance (P < 5 × 10−11, Wilcoxon signed-rank test; Fig. 2b, c and
Supplementary Fig. 15). This result was reproducible across the
other statistical thresholds. Communities in MP families
(73–95%) involved in 65 cancer-related pathways are shared
by multiple cancers (≥3 cancer types) more often than
individual MPP communities (37–72%). When comparing
individual MPP communities (<16%), ~31–59% of the com-
munities in MP families are connected to certain pathways in at
least seven diverse cancers. These results not only are
reminiscent of the high cancer-wide concordance reported
among genome-wide prognostic genes3 but also imply MPs in a
family often functionally compensate each other to regulate
specific pathways in cancers.

To validate the identified MPP community-regulated path-
ways, we independently tested our CaMPNet approach on an
external microarray set containing 19 data sets in 15 cancers
from the Gene Expression Omnibus (GEO) database20

(Supplementary Table 5). In each cancer type, the involvement
scores (−log10 enrichment P) of community-regulated path-
ways of both TCGA RNA-seq and microarray data sets showed
a significant positive correlation (R ≥ 0.46, P < 2.2 × 10−16,
Pearson correlation, t test; Supplementary Fig. 16). We also
observed similar results for the meta-z-scores of community-
regulated pathways across 15 cancers (R= 0.78, P < 2.2 × 10−16,
Pearson correlation, t test), reflecting the consistency of using
TCGA RNA-seq and microarray data sets (Fig. 2d and
Supplementary Fig. 17a). For example, the cell cycle pathway,
the most fundamental cancer cell trait for sustaining prolif-
erative signaling21, was identified as a top one regulated by
some MPP communities in both sets. These results show that
the construction of CaMPNets is reproducible even using
different gene expression resources.

To further investigate whether CaMPNets could identify the
undiscovered regulation between MPP communities and cancer-
related pathways, we compared the numbers of involved path-
ways in 15 distinct cancers considering only the MP itself, the MP
with reported/direct PPIs, as well as the reported PPI-based and
direct PPI-based MPP communities. The MPP communities
achieved the highest annotation rate at different thresholds of the
co-expressed gene pairs using TCGA RNA-seq data, both with
and without filtering by the empirical P value ≤0.05 (Fig. 3a and
Supplementary Fig. 18). For example, ~56% of the MPP
communities had at least one involved pathway (compared with
<31% for MPs themselves and for MPs with reported PPIs). In
view of the above results, our strategy is a technique for the
comprehensive analysis of MPP community-regulated pathways
to reflect their tumor homogeneity and uncover the regulation of
cellular processes by MPP communities.

CaMPNets for pan-cancer analysis. To investigate the roles of
CaMPNets in cancer-wide landscape and cancer hallmarks, we
built the CaMPNet-based networks using identified MPP
community-regulated pathways. The networks constructed by
1862 reported PPI-based CaMPNets (or 1009 direct PPI-based
CaMPNets) in 15 cancers as well as the pan-cancer network
(filtered at meta-z > 1.64; Supplementary Fig. 17a, b) possessed
scale-free network characteristics (Supplementary Fig. 19). In
these CaMPNet-based networks, the degree exponent (γ) values
all ranged between 1.184 and 1.990, consistent with the archi-
tecture of previously described biological networks22–24; smaller γ
value means that the role of hubs was more important in the
network than the network having larger γ value25. Moreover, we
observed that the degree (i.e., regulated pathway number) of the
MPP community was proportional to the cancer-wide involve-
ment (R= 0.78, P < 2.2 × 10−16, Pearson correlation, t test),
which was the mean meta-z-score (divided by the degree; Fig. 3b
and Supplementary Fig. 17b). This result shows that MPP com-
munities that participate in multiple cellular processes are often
involved in many cancers. We therefore considered the com-
munities with degrees within the top 25% of all communities
(here, degree ≥26) as the hubs26 of the pan-cancer network. For
example, the amyloid precursor protein (APP) community
involved in 58 pathways (i.e., highest degree) across 15 cancers
was found to be implicated in common cancer features (Fig. 3b),
such as the induction of necroptotic endothelial cell death to
promote metastasis and tumor cell proliferation27,28. In short,
the CaMPNet-based networks display scale-free topology and the
MPP community hubs are usually not only found in multiple
cancers but also relevant to various cancer hallmarks (Supple-
mentary Note 7).

To obtain a global map of the CaMPNets patterns, we clustered
the enrichment-associated meta-z-scores of MPP communities
across all 65 cancer-related pathways based on hierarchical
clustering using the average agglomeration method with correla-
tions as the distance metric (Supplementary Data 3 and 4). We
first observed the top-sized clusters for 1862 reported PPI-based
MPP communities and 1009 direct PPI-based MPP communities
across these cancer-related pathways presenting the similar
associations between communities and pathways (Fig. 3c and
Supplementary Fig. 20). Among the four largest clusters with
>100 reported PPI-based MPP communities, the cluster with 135
communities, such as BDNF/NT-3 growth factor receptor
(encoded by NTRK2), was broadly linked to the most pathways
relevant to cancer hallmarks (Supplementary Fig. 21a and
Supplementary Note 7). By contrast, the other three top-sized
clusters were relatively specific to certain cancer-related pathways
that separately contribute to avoiding immune destruction
(Fig. 3d, 279 communities), activating invasion and metastasis
(Supplementary Fig. 21b, 119 communities), and evading growth
suppressors and virus-induced tumor development (Supplemen-
tary Fig. 21c, 105 communities). Our findings also suggest that
CaMPNet resource could reflect tissue-specific behaviors of
cancers and provide clues to identify common or specific
therapeutic targets among different cancer types (Fig. 3d and
Supplementary Figs. 21b, c and 22; details in Supplementary
Note 7)

We next asked whether our CaMPNets can provide insights
into second cancers, defined as histologically distinct cancers that
develop in cancer survivors (different from the first cancer). In
contrast to other approaches, our CaMPNets achieved better
performance, and we found that two cancers with high-profile
similarities, not only in the same or adjacent tissues (e.g., COAD
and rectum adenocarcinoma (READ)) but also in distinct tissues
(e.g., breast invasive carcinoma (BRCA) and uterine corpus
endometrial carcinoma (UCEC)), were on the second cancer list
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provided by the American Cancer Society, Inc.29 (Supplementary
Fig. 23; details in Supplementary Note 8). Analogous micro-
environments identified by CaMPNets (e.g., MP expression
pattern) in different cancers may illustrate the similarities
between these cancers as well as the possible causal relationships
of first and second cancers.

In brief, CaMPNets could systematically and comprehensively
map compositional differences (or similarities) in MPP commu-
nities and their regulated pathways across human cancers and be
useful for exploring tumor heterogeneity (or homogeneity).

The prognostic landscape of MPP community-regulated
pathways. To examine whether MPP communities and
community-regulated pathways could identify prognostic

associations in cancers, we assessed the association of each MP
gene and gene set (i.e., MPP community and community-
regulated pathway) with 10-year survival outcomes (see “Meth-
ods” and Supplementary Data 5 and 6). Based on the combined
scores in 15 distinct cancers, the MPP communities and
community-regulated pathways displayed higher frequencies with
significant prognostic outcomes (P < 0.05, log-rank test) in
comparison to MPs themselves, regardless of whether the patients
were stratified by the auto-select best cutoff (25–75%)30 or
the median cutoff3 (50%; Fig. 4a and Supplementary Fig. 24a–c).
Similar results for direct PPI-based ones are shown in Supple-
mentary Fig. 25a–d. To further explore cancer-wide prog-
nostic signatures, we used the meta-z-scores of adverse and
favorable prognostic associations to establish CaMPNets as pan-
cancer survival models. The meta-z-scores of prognostic
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Fig. 3 Cancer-wide atlas of cancer membrane protein-regulated networks (CaMPNets). a Distributions (boxplot) between the numbers of involved
pathways and proteins (or protein sets) in membrane protein (MP) itself, MP with reported/direct protein–protein interactions (PPIs), and MP with
predicted PPIs and reported/direct PPIs (i.e., reported PPI- and direct PPI-based MPP (an MP with binding partners) communities) across 15 cancers when
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Fig. 4 Prognostic landscape of cancer membrane protein-regulated networks (CaMPNets) in 15 cancer types. a Comparison of prognostic significance
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community-regulated pathways and the involvement of these
pathways were significantly correlated, especially for positive
correlations with adverse prognostic outcomes (red; R= 0.52, P <
2.2 × 10−16, Pearson correlation, t test; Fig. 4b). Notably, the
number of adverse prognostic community-regulated pathways
was higher (2.5-fold, 3046/1209) than those of favorable out-
comes, implying that carcinogenicity is relatively common across
tumors (as a pan-cancer characteristic), but cancer suppressors
may be partially common in specific cancer types (as a compo-
nent of tumor heterogeneity).

Here we described some of the most significant community-
regulated pathways associated with adverse or favorable outcomes
as follows and Supplementary Note 9. Regulation of the cell cycle
by numerous MPP communities (e.g., SLC16A7, SLC12A9, and
CDH1/3) was associated with adverse outcomes and strong
involvement (more significant P value). For instance, SLC16A7
that mediates lactate homeostasis in cancer cells, and lactate has
emerged as a critical regulator of tumor progression, inflamma-
tion, and angiogenesis31. In comparison to SLC16A7 expression
being associated with adverse outcomes in only lung adenocarci-
noma (LUAD) and UCEC, there is added value in taking into
account the genes in the SLC16A7 community-regulated cell
cycle for more accurate predictions, thus improving the
prognostic power for adverse outcomes in 10 cancers (e.g.,
kidney renal clear cell carcinoma (KIRC), LUAD, and UCEC)
and favorable outcomes in two cancers (i.e., COAD and LUSC;
Fig. 4c, d). Of note, the number of genes in the community-
regulated pathway demonstrated no correlation with the prog-
nostic association (Supplementary Figs. 24d and 25e). Taken
together, these results suggest that MPP communities and their
regulated pathways showed more prognostic significance than
when considering only the MPs themselves, especially in
association with adverse outcomes.

Considering 65 cancer-related pathways (or 1862 MPP
communities) across cancers for a specific MPP community (or
pathway), we further examined whether a meta-analysis (i.e.,
global meta-z-score; Supplementary Fig. 17c, d) could determine
which communities (or pathways) are associated with biological
functions required for long-term survival in cancer patients. For
example, the SLC16A7 and CD40 communities were the most
adverse and favorable prognostic communities, respectively; and
the focal adhesion and ErbB signaling pathways were the most
adverse and favorable prognostic pathways, respectively (Supple-
mentary Fig. 26; details in Supplementary Note 9). Furthermore,
we identified the top ten frequently adverse and favorable
prognostic MPP communities (Fig. 4e) and cancer-related
pathways (Fig. 4f) relevant to almost all cancer hallmarks21

(Supplementary Note 9), including promoting tumor inflamma-
tion (e.g., IFNGR1 and IL2RG), sustaining proliferative signaling
(e.g., PI3K-Akt signaling and cell cycle), evading growth
suppressors (e.g., CD40 and apoptosis), and activating invasion
and metastasis (e.g., LSR, several integrins, and extracellular
matrix–receptor interaction pathway), as well as virus-induced
tumor development (e.g., hepatitis B and HTLV-1 infection).
Notably, adverse MPP communities and pathways were more
likely to be involved in multiple cancers, but favorable
communities were relatively discordant (usually in specific
cancers) in the engagement of pathways and communities.
Therefore, we performed an in silico dissection of CaMPNets to
offer routes of access for discovering and developing gene set-
based prognostic biomarkers.

CHRNA9 CaMPNets in cancers. Nicotinic acetylcholine recep-
tor (nAChR) is a membrane receptor of a neurotransmitter and
an ion channel. Several subtypes of nAChR have been indicated

to be closely correlated to the formation of cancers32–34. We have
previously shown that CHRNA9 is involved in smoking-induced
tumor formation in human tumor cells and was highly expressed
(mean 7.84-fold) in 186 (67.4%) of the 276 breast cancer paired
samples32,33. In contrast with several above-mentioned MPs (e.g.,
CD44, EGFR/ERBB2, and APP) that have been well studied, the
interacting partners and pathways associated with CHRNA9 in
breast cancer remain to be elucidated.

To further validate our strategy and CaMPNet resource,
we generated the CHRNA9 CaMPNets to discover PPIs, to
illustrate the cellular functions of CHRNA9 in cancers, to
determine whether CHRNA9 community-regulated pathways
could be utilized to predict prognosis in patients with different
cancer types, and to determine whether existing drugs could be
repurposed to target CHRNA9 signaling pathway. First, we
identified 64 candidates that could potentially interact with
CHRNA9 with SSIM ≥ 3.0, including 14 candidates with SSIM ≥ 3.6
and then hierarchically clustered them into 5 subgroups using
similarity scores for selecting 18 representative candidates to
experimentally validate the method (Supplementary Fig. 27a, b
and Supplementary Note 10). Among these 64 candidates, only
one (i.e., CHRNA1) has been previously recorded in the STRING
database15 (medium confidence), while none of the other
candidates have been previously recorded. In addition, APP35,
EGFR36, FYN37–39, and SRC39–41 have been proposed to bind
with other nAChRs (Supplementary Fig. 27c). These suggest that
our SIM strategy could identify potential interacting proteins of
CHRNA9 and uncover its possible regulated pathways (Supple-
mentary Fig. 27d).

Next, we used our strategy to link the CHRNA9 community,
comprising CHRNA9 and its interacting proteins, and 65 cancer-
related pathways to construct CaMPNets based on TCGA RNA-
seq data in 15 cancer types (Fig. 5a). These CaMPNets in 15
cancers contained 38 total pathways, which were associated with
specific cancers (heterogeneity) or up to nine cancers (homo-
geneity). For instance, our results indicate that the CHRNA9
community was suggested to be implicated in the hepatitis B
pathway in five cancers, such as liver hepatocellular carcinoma
(LIHC; pink) and KIRC (light blue). Based on the results of
microarray, real-time quantitative polymerase chain reaction
(Q-PCR), and enzyme-linked immunosorbent assay (ELISA)
analyses in Hep3B cells containing an integrated HBV genome in
which CHRNA9 was knocked down, we observed that CHRNA9
plays functional roles in the hepatitis B pathway in LIHC,
especially in inflammatory-, apoptosis-, and metastasis-related
processes (Supplementary Fig. 28 and Supplementary Note 11).
Conversely, some CHRNA9 community-regulated pathways,
such as cell cycle, adherens junction, and ErbB signaling, were
related to cell growth and communication in more than six
cancer types, reflecting commonalities across many human
malignancies (Fig. 5a). For example, genes of the cell cycle
pathway strongly associated with the CHRNA9 and SLC16A7
communities in BRCA and LUAD were significantly altered in
MDA-MB-231 and A549 cells in which CHRNA9 and SLC16A7
were knocked down compared to those in the control
(Supplementary Fig. 29). These results imply that the CHRNA9
community plays a role in tumor formation, progression, and
metastasis.

Our findings also indicated a role for CHRNA9 in breast cancer
metastasis. CHRNA9 was found to interact with ERBB2 and EGFR,
and their genes are co-expressed with numerous downregulated
genes, such as nectin-3 (NECTIN3), in the adherens junction
pathway to mediate cell–cell adhesion in BRCA (Fig. 5b). Notably,
the combined scores of genes in the CHRNA9 community-
regulated adherens junction pathway (P= 0.0019, log-rank test;
Fig. 5c) were significantly associated with favorable outcomes in
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BRCA. These observations suggest that the CHRNA9 community-
regulated adherens junction pathway is not only relevant to
metastasis but also a significant predictor of favorable survival
across several solid tumors (e.g., BRCA and KIRC; Fig. 5c).

Validation of CaMPNets in cancers. To experimentally validate
our SIM strategy in general, we examined 18 representative
interacting partners of CHRNA9 (Supplementary Fig. 27a, b;
details in Supplementary Note 10) via immunoprecipitation
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(IP; Supplementary Fig. 30) or Förster resonance energy transfer
(FRET; Fig. 6a and Supplementary Fig. 31) assays42 in human
cancer cells. The results demonstrated that ≥66.7% of the protein
interactions associated with CHRNA9 were identified in BT474
(83.3%), MDA-MB-231 (83.3%), A549 (72.2%), RT4 (83.3%) and
MIA PaCa-2 (66.7%) via IP assays; moreover, similar interacting
profiles were also discovered in BT474 (77.8%) and MDA-MB-

231 (72.2%) cells by FRET analysis (Fig. 6b and Supplementary
Table 6; details in Supplementary Note 12). In addition, we also
illustrated that CHK1, CDK1, and PLK1 were associated with
SLC16A7 in MDA-MB-231 and A549 cancer cells, providing a
75% validation ratio among four selected candidates (Supple-
mentary Fig. 32). Next, we observed high protein expression of
CHRNA9 and ERBB2, having an SSIM= 3.66 and displaying a
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strong association, in HER2-enriched breast cancer cell lines (e.g.,
BT474) compared with that in the other cell lines (Supplementary
Fig. 33a). Furthermore, a clinical investigation of HER2+ breast
tissues revealed a strong protein interaction between CHRNA9
and ERBB2 compared to that in triple-negative breast cancer
(TNBC) breast tissues (Fig. 6c). These suggest that our SIM
strategy is useful for identifying potential proteins associated with
CHRNA9 in various cancer types.

In subsequent experiments, we validated whether CHRNA9
and ERBB2 could form a complex by using nicotine as an agonist
for CHRNA9 and investigating downstream signaling in breast
cancer cells. We found a significant dissociation of the CHRNA9/
ERBB2 complex with exposure to nicotine at 1 and 10 µM in
BT474 cells (Fig. 6d). Our results also suggest that nicotine could
induce CHRNA9/ERBB2 interaction change and activate ERBB2
and EGFR downstream signals (Supplementary Fig. 33b–g; details
in Supplementary Note 13). To further illustrate the dissociation
between CHRNA9 and ERBB2 upon nicotine exposure, we used
two-photon confocal microscopy to monitor FRET efficiency
with lifetime imaging (i.e., fluorescence-lifetime imaging micro-
scopy (FLIM)) of both fusion proteins43. The pretreatment image
clearly showed strong FRET efficiency (green) on the cell
membrane (Fig. 6e). Following nicotine exposure, the FRET
efficiency gradually vanished (blue), and after removing the
nicotine by washing with phosphate-buffered saline (PBS), the
FRET efficiency on the cell membrane began to recover (turning
to green) to baseline, suggesting that nicotine reversibly
manipulates interaction between CHRNA9 and ERBB2.

To confirm this finding in an animal model, a split luciferase
complementation assay was used to investigate associations and
dissociations between CHRNA9 and ERBB2 in MDA-MB-231
cells (Supplementary Fig. 33h–j). We inoculated the mammary
pads of nude mice with MDA-MB-231 cells expressing split
luciferase fusion proteins and confirmed that the breast tumors
expressed high levels of luciferase activity in the tumor regions
(Fig. 6f, red–yellow). However, after nicotine exposure, the
luciferase activity in the tumor region was dramatically reduced
to 26.3% (Fig. 6f, blue) of the original level, indicating that
nicotine strongly dissociated CHRNA9/ERBB2 complex forma-
tion in this animal model. These observations not only reveal that
nicotine exposure activates cell signal transduction of ERBB2 but
also imply that CHRNA9 could be a potential therapeutic target
in nicotine-induced breast tumorigenesis.

We next asked whether we could prevent dissociation between
CHRNA9 and ERBB2 chemically using an existing FDA-
approved drug. By using our previous method (Homopharma44)
and tool (iGEMDOCK45), we selected several drug candidates
(e.g., fencamfamine, mitotane, and bupropion) as potential
CHRNA9 inhibitors (see “Methods” and Supplementary Fig. 34).
Among these candidates, bupropion was chosen for use in
bioassays because it docked into an allosteric-binding site with
the lowest binding energy (Fig. 7a and Supplementary Fig. 35).
When tested in vitro, we found that bupropion pretreatment
could dramatically inhibit the dissociation of the CHRNA9/
ERBB2 complex with or without nicotine dose-dependent
treatment, as determined by an IP assay (Fig. 7b). Bupropion
also significantly attenuated nicotine-induced EGFR and ERBB2
phosphorylation in BT474 cells (Supplementary Fig. 36a).
Similarly, the inhibitory effect of the CHRNA9/ERBB2 complex
disassociation and signal transduction caused by bupropion were
also found in lung cancer (A549) cells exposed to nicotine
(Supplementary Fig. 37). These results indicate that our screening
approach is useful for discovering allosteric-binding inhibitors of
CHRNA9.

Based on the finding that the CHRNA9 community-regulated
adherens junction pathway is relevant to metastasis, we tested

whether bupropion could function as an anti-metastasis agent in
breast cancer with and without nicotine stimulation by measuring
both the migration and invasion abilities of BT474 and MDA-
MB-231 cells. Upon 10 µM nicotine treatment, both BT474
and MDA-MB-231 cells had strong cancer migration (Fig. 7c, d
and Supplementary Fig. 36b, c) and invasion (Fig. 7e, f and
Supplementary Fig. 36d, e) abilities, whereas pretreatment of
these two cell lines with bupropion significantly attenuated their
nicotine-induced cancer invasion and migration abilities com-
pared to those of cells treated with the dimethyl sulfoxide control.
In addition, cells in which CHRNA9 (or ERBB2) were knocked
down showed weak or no changes in their migration and invasion
abilities in response to nicotine and bupropion exposure
(Supplementary Figs. 38 and 39 and Supplementary Note 14).

Since treatment of TNBC metastasis was considered a
challenge in clinic, we further applied bupropion as a nicotine
blockade in an MDA-MB-231-based spontaneous pulmonary
metastasis animal model46. After 2 months of observation,
nicotine treatment administered via drinking water significantly
increased tumor distant metastasis in lung tissues, as determined
by in vivo imaging system (IVIS) imaging (Fig. 7g, up) and
photon influx measurements (Fig. 7g, down). Usage of 100 and
200 µg kg−1 bupropion three times per week significantly
suppressed the number of lung metastasis nodules both with
and without nicotine treatment, indicating that bupropion not
only blocked the signal from nicotine but also inhibited signals
from other endogenous nAChR agonists. Next, we performed a
microarray analysis of the above mammary primary tumors to
understand the roles of bupropion in anti-metastasis (Supple-
mentary Figs. 40–42; details in Supplementary Note 15). By
comparing BRCA tissue samples in TCGA data and treatment
with only nicotine, we found that bupropion inhibited signaling
cascades in metastasis-related pathways, such as focal adhesion,
tight junctions, and adherens junctions, and attenuated nicotine-
induced cell metastasis. In summary, the above results indicate
that bupropion could suppress metastasis-related pathways.

Discussion
Because understanding when, where, and how MPs contribute to
cancer-focused networks is an emergent need for the develop-
ment of diagnostic and therapeutic strategies, our CaMPNets
represent a resource for delineating MP PPIs and their regulated
pathways within and across cancers, illuminating the roles of MPs
in tumor homogeneity/heterogeneity and aiding the discovery of
gene set-based biomarkers and druggable targets.

CaMPNets have unique advantages over related
resources3,5–7,15,47. First, the SSIM scoring method system-
atically simulates MPs undergoing evolutionary processes and
environmental forces in time and space. In contrast to the
FpClass method, generalized interolog mapping method, and
well-known STRING database, our predicted PPIs indeed
performed better and added undiscovered MP pathways. Sec-
ond, multiple RNA-seq and microarray data sets for certain
human cancers were included to establish and validate the
cancer-focused MPP communities and community-regulated
pathways of the CaMPNets. By comparing our data with pre-
vious studies focused on one cell5,47 or tumor type6,7, this
resource further quantified which cancer types and pathways
were associated with MPs and which proteins (or genes) of the
pathways would interact (or be affected) with these MPs in
specific cancers. Third, integrating CaMPNets with a meta-z
approach across numerous malignancies provides pan-cancer
analysis for revealing which MPs and regulated pathways are
specific and which are common tumor hallmarks (Supple-
mentary Note 16). Finally, a set of genes was developed and
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implemented into clinical diagnostic tools, such as Mamma-
Print8 and Oncotype DX9. CaMPNets offer a framework to
guide the design of prognostic gene set tests via MPP com-
munities and their regulated pathways across human cancers.
This resource links MP interactions, genomics, and clinical
outcomes to inform biological and diagnostic/therapeutic
strategies.

Our resource also offers clues for observing how changes in
cancer-related pathways or MPP communities reflect clinical
outcomes, such as alterations in prognostic associations (details in
Supplementary Note 16). In addition, our observations may
explain why multi-target therapeutics are effective and overcome
adaptive resistance to cancer therapy48 since MPs belonging to

the same family often display complementary functions toward
each other in mediating certain pathways in distinct human
cancers. This study also suggests that bupropion could have uti-
lity in smoking-related metastatic cancer patients with high
nAChR expression (Supplementary Note 16). However, the target
proteins (e.g., nAChRs) of bupropion to suppress nicotine-
induced complex disassociation, downstream signals, and meta-
static ability in BRCA remain to be fully elucidated. Even so, the
integration of CaMPNets and homopharma will be useful for the
future development of precision medicine.

CaMPNets have several limitations, challenges, and perspec-
tives (details in Supplementary Note 17). First, the predicted PPIs
identified by reported PPI- or direct PPI-based SIM still need to
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be experimentally validated. Second, one potential limitation of
CaMPNets is that our approach may miss gene sets that belong to
the same pathway but are potentially not sufficiently co-expres-
sed, as the co-expression may be less evident in the case signaling
pathways that are often hierarchical in nature. Third, we believe
that our approach is a general strategy for identifying interactions
of other MPs and further constructing disease-associated net-
works via corresponding genomic data. Fourth, another CaMP-
Nets challenge is to consider interactions between MPs and
extracellular proteins for elucidating tumor microenvironment
responses. The unabated progress in single-cell sequencing and
next-generation sequencing technologies49 will allow this issue to
be addressed as well as revolutionize our model to reconstruct
close-to-real CaMPNets.

In conclusion, our results shed light on the cancer-wide atlas
and prognostic landscape of both MPP communities and their
regulated pathways, as well as providing numerous clues for
further investigation and clinical translation. Our resource also
promotes discoveries of MPs and their PPIs as promising targets
for the development of biomarkers and therapeutic targets.
According to our knowledge, our resource and approaches pro-
vide a useful framework to facilitate the discovery of MP PPIs,
PPI modulators, communities, regulated pathways, and further
clinical applications.

Methods
MP set. MPs can be broadly classified into integral (intrinsic) and peripheral
(extrinsic) proteins according to the nature of their membrane–protein interac-
tions. Here we focused on integral MPs in the plasma membrane, which are
intrinsic to the plasma membrane and contain transmembrane region(s) as well as
extracellular and/or cytoplasmic region(s). The cytoplasmic region of an integral
MP plays a key role in conveying signals into cells by interacting with other
proteins, including direct binding and phosphorylation in intracellular signaling
pathways. We restricted our focus to identify the interacting proteins of MPs in the
plasma membrane within tumor cells to comprehensively establish intracellular
CaMPNets across human cancers. Therefore, we selected 2594 MPs from the
UniProt complete proteome database12 based on the following criteria (Supple-
mentary Data 1): an MP is annotated with (1) the specific “plasma membrane”
term or its children’s terms (e.g., plasma membrane receptor complex and integral
component of plasma membrane) of cellular components (CCs) in the gene
ontology (GO) database and (2) “Cytoplasmic” of topological domains as well as
either “Transmembrane” or “Intramembrane” in the topology feature of the
UniProt Knowledgebase. To further characterize the 2594 MPs, they were classified
into 214 families belonging to 5 functional groups, including receptors (1073
members, 1073/2594= 41.4%), transporters (450, 17.3%), miscellaneous (296,
11.4%), enzymes (89, 3.4%), and unclassified (686, 26.4%), according to the study
by Almén et al.1.

PPI data sets. To predict proteins that interact with the MPs, we first collected
749,087 reported and non-redundant PPIs across 497 species (called the reported
PPI set; Supplementary Fig. 43) from 5 public databases, including IntAct50, Bio-
GRID51, DIP52, MIPS53, and MINT54, and then filtered by considering both two
proteins of each PPI recorded in the UniProt complete proteome database. The
information that was collected and processed during curation of these PPIs
included the UniProt accession numbers, gene names, and species for both proteins
of the interaction; the associated PubMed identifier; and the identifier number and
name of the interaction element following the standard “interaction detection
method” and “interaction type” vocabulary implemented in the Molecular Inter-
actions (MI) of HUPO Proteomics Standards Initiative (PSI)55. To further identify
direct physical interactions from 749,087 reported PPIs, we first used the term
“experimental interaction detection (MI:0045),” which indicates the methods based
on laboratory experiments to determine an interaction, and its subclass terms to
filter the reported PPIs that have no MI annotation term related to experimental
validation. Based on the definition of a direct physical interaction in the DIP52,
IntAct50, and PICKLE56 databases, we then used the term “direct interaction
(MI:0407),” which is defined as an interaction between molecules that are in direct
contact with each other, and the subclass terms of direct interaction (e.g., covalent
binding, MI:0195) to determine whether a reported PPI was a direct interaction
candidate. According to criteria 1 and 2, 174,193 reported PPIs were classified as
direct interaction candidates.

Next, we assigned the scores to experimental interaction detection methods
according to the reliability of experimental techniques defined by HIPPIE57

and BioGRID51. The scores ranged from 0 (lowest confidence) to 10 (highest
confidence); for example, X-ray crystallography and genetic interference were given

the highest and lowest scores, respectively. In the BioGRID database, these two
techniques were also separately deemed to be approaches for detecting the direct
and physical interactions and the synthetic/suppressive/additive genetic
interactions defined by inequality. In addition, the high-throughput screening
experiments, such as the two-hybrid screening and the mass spectrometry-based
proteomics, were assigned scores ≤5. If an MI term lacked an assigned score, it
inherited the score from the nearest parental term. Moreover, the child term was
chosen as the representative term and its score was used when one term belonged
to the subclass term of another one. To avoid high-throughput screening
experiments lacking secondary experimental validation, we only selected the direct
PPI candidates with a sum of scores ≥6. Finally, 749,087 reported PPIs (or 31,810
direct PPIs; Supplementary Data 7) were used as PPI templates to predict the MP-
interacting proteins; notably, to avoid bias in evaluating the predictive power of our
method, all reported PPIs (or direct PPIs) of each MP were excluded in advance of
the PPI templates being selected by sequence alignment of the cytoplasmic region
of that specific MP.

To evaluate the reliability of the predicted PPIs for 2,594 human MPs derived
from our method, we further curated three data sets, two standard positive (SP) sets
and a negative (SN) set. The positive cases of MPs in two SP sets consisted of
18,827 reported PPIs and 2049 direct PPIs in humans derived from the reported
PPI set. In the SN set, the negative protein pairs were defined using relative
specificity similarities (RSSBP and RSSCC) between GO biological processes (BPs)
and GO CCs, as proposed by Wu et al.58 (Supplementary Fig. 3). Our results
showed that >95% of the human PPIs (or PPIs of MPs) in the reported PPI set had
RSSBP ≥ 0.4 or RSSCC ≥ 0.4. Here 555,438 and 75,799 protein pairs, for which
RSSBP < 0.4 or RSSCC < 0.4, were considered negative cases among 4,500,936 and
774,751 candidates with joint sequence similarities (joint E value) ≤ 10−40 based on
749,087 PPI templates and 31,810 direct PPI templates, respectively. To further
evaluate the essentiality of the PPI candidates, we also collected 2570 essential
human genes from the Database of Essential Genes (version 6.5)59. Here an
essential PPI was defined as both genes of the PPI candidate being essential. In
addition, we qualified our predicted PPIs and compared performances between our
methods, the STRING database, the FpClass method, and the generalized
interologs mapping method, based on these sets (Supplementary Note 1).

KEGG pathway set. To evaluate how MPs would be involved in certain kinds of
pathways during tumorigenesis, we first collected 292 human pathways containing
8962 proteins from the KEGG database and then derived 22 cancer pathways
belonging to the categories “Cancers: Overview” (e.g., viral carcinogenesis) and
“Cancers: Specific types” (e.g., colorectal cancer-related pathway) in human dis-
eases. Next, some pathways that were linked to these cancer pathways were
regarded as related pathways. For example, there were 30 related pathways, such as
the cell cycle, apoptosis, and adherens junction, recorded in the pathways in cancer
(hsa05200). Finally, these 22 cancer pathways and 43 non-redundant related
pathways were deemed cancer-related pathways (total of 65; Supplementary
Table 1).

Gene expression data sets in 15 cancer types. To evaluate co-expression
enrichment between genes of MPs (or MPP communities) and cancer-related
pathways in 15 cancer types, we first identified DEGs between tumor tissues and
corresponding normal tissues in distinct cancers. RNA-seq profiling data, including
5922 tumor samples and 660 normal tissues in 15 cancers (Supplementary
Table 2), were assembled from TCGA Data Coordinating Center using the Pro-
cessRNASeqData function of TCGA-assembler60. We downloaded level 3 RNA-
SeqV2 data containing the expression profiles of 20,531 genes with Entrez Gene
IDs for 6582 samples, and the values represented upper quartile-normalized RNA-
seq by expectation maximization count estimates. Next, the counts were log2-
transformed before being used for further analysis. RNA-seq data were matched
through the patient barcode provided by TCGA. In addition, we assembled
microarray expression data sets in these 15 cancers from GEO20 as independent
sets (Supplementary Table 5) to validate concordance for the enrichment of co-
expression between the microarray and TCGA RNA-seq sets. For microarray data,
the SOFT format file and corresponding annotation file retrieved from GEO were
used to determine and describe the array platform, including the Probe ID, Entrez
Gene ID, UniProt accession numbers, and gene description.

The following normalization strategy for gene expression sets derived from
diverse microarray platforms was applied to unify the data. For Affymetrix data, we
downloaded and normalized raw CEL files with the Robust Multi-array Average
algorithm61,62 (affy package v. 1.46.1 of Bioconductor v. 3.1 in R 3.2.1). Regarding
probe set summarization, a custom chip definition file was used to map array
oligonucleotides to the Entrez Gene ID. For Agilent data, raw TXT files were
downloaded and processed with the limma package (v. 3.24.15)63. Background
correction was performed with the backgroundCorrect function using the normexp
method and an offset of 50, and normalization was implemented with the
normalizeBetweenArrays function with the quantile method. Finally, a modified
t-statistic (limma package v. 3.24.15) was utilized to measure DEGs between
tumors and corresponding normal samples in each cancer type for the microarray
and TCGA RNA-seq sets. The adjusted P value was used for multiple hypothesis
testing using Benjamini and Hochberg’s method64, and the false discovery rate was
controlled at 5%. Here we used |log2(fold change)| ≥ 1 and adjusted P values ≤0.05
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to identify DEGs. The expression profiles of the DEGs were used to calculate
enrichment P values between MPP communities and their regulated pathways.

A systematically integrated method for predicting MP PPIs. To infer protein
candidates interacting with an MP, we developed a SIM (Fig. 1a and Supple-
mentary Fig. 2a–d) to calculate their interaction scores (SSIM). SSIM consists of the
interacting region similarity (Sirs), the quality of the PPI template (Squl), the nor-
malized joint sequence similarity (Sjss)13,14, the normalized ranking of joint
sequence similarity (Srank)14, the evolutionary conserved score across multiple
species (Ses)14, and the network topology score in a human PPI network (Stopo).
SSIM is defined as

SSIM ¼ Sirs þ Squl þ Sjss þ Srank þ Ses þ Stopo ð1Þ
Based on our previous works13,14,65–68, we statistically analyzed and simplified

these six scores ranging from 0 to 1 (the total score SSIM ranges from 0 to 6). The
detailed scoring method and scheme for identifying MP-interacting protein
candidates are as follows. In the first stage, each sequence in the cytoplasmic region
of an MP derived from the “Cytoplasmic” annotation is individually used to search
PPI templates (i.e., reported PPIs or direct physical PPIs) by using the Sirs
(Supplementary Fig. 2a–c). The Sirs is given as

Sirs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI ´

L
Qd

s
ð2Þ

where SI is the BLASTP sequence identity between sequences of the cytoplasmic
region d of an MP and the protein p of a PPI template, Qd is the sequence length of
d, and L is the aligned length between the sequences of d and p. Next, Squl is used to
determine the quality of a PPI template based on the numbers of interaction
detection methods (xm), interacting types (xt), and references (xr). The xm and xt
values are derived from public PPI databases and recorded using PSI MI 2.5
ontology55. The xr value is calculated by the number of PubMed identifiers
recorded in public PPI databases. The xj value is given as

xj ¼
xj; xj<2

2; xj � 2

(
ð3Þ

where j is m, t, or r. Then the Squl is defined as

Squl ¼
xm þ xt þ xr

6
ð4Þ

where xm, xt, and xr range from 0 to 2, and the value of Squl ranges from 0 to 1.
In the second stage, for the selected PPI template (A–B) using Sirs, we first

identified its homologous PPI candidates (i.e., A′–B′, one of them is the MP) by
considering the homologous proteins (BLASTP E value ≤10−10) of proteins A and
B with joint sequence similarities (joint E value ≤10−40), defined as the geometric
mean of individual E values of a protein pair13,17, by searching the UniProt
complete human proteome database (Supplementary Fig. 2d). According to our
previous studies13,65, the concept of homologous PPIs is briefly described as
follows: (1) proteins A′ and B′ are the homologs of A and B, respectively; (2) the
protein pairs A′–B′ and A–B share significant interface similarity. Then we further
evaluated the Sjss between the PPI candidate (A′–B′) and PPI template (A–B). Sjss is
given as

Sjss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log10ðEA′Þ
�log10ðEAÞ

s
´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log10ðEB′Þ
�log10ðEBÞ

s
ð5Þ

where EA′ is the BLAST E value between A and A′, EB′ is the BLAST E value
between B and B′, and EA and EB are the BLAST E values when aligning A to A and
B to B, respectively. We used EA and EB as the maximum values to normalize the
joint sequence similarity (0 ≤ Sjss ≤ 1) because the maximum BLAST E value is
dependent on the protein length. Srank is calculated as

Srank ¼ 1� log10ðrA′�B′Þ
log10ðrmaxÞ

ð6Þ

where rA′�B′ is the rank of candidate A′–B′ based on Sjss, and rmax is the total
number of PPI candidates derived from the PPI template A–B. Ses is defined as

Ses ¼
Xn
f¼1

Ef
A′�B′ ´

mf

2

� �
;mf ¼

mf ;mf <2

2;mf � 2

(
ð7Þ

where Ef
A′�B′ is the normalized evolutionary distance (Supplementary Fig. 2d)

between the target organism (e.g., Homo sapiens) and the source organism f (e.g.,
Caenorhabditis elegans), n is the number of source organisms containing at least
one PPI template used to infer the PPI candidate A′–B′, and mf is the number of
PPI templates inferring the candidate A′–B′ in the source organism f. In this study,
we assumed that the candidate A′–B′ derived from multiple PPI templates (i.e.,
mf ≥ 2) in the source organism was more highly evolutionarily conserved than that
derived from only one PPI template (i.e., mf= 1). This distance was obtained based
on the phylogenetic tree with 273 species proposed by InParanoid69. In addition,
the distance is the mean distance between a target organism and two corresponding
source organisms if two proteins of a PPI template belong to different organisms.

Next, we computed Stopo based on the assumption that two proteins with more
shared interacting proteins, one of which has a high degree (e.g., hubs) in the
network, would be more likely to associate with each other. Stopo is calculated as

Stopo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C
N

´D

r
ð8Þ

where C is the number of shared interacting proteins between A′ (an MP) and its
interacting protein B′ in the PPI network of target species (here it is H. sapiens);
N is the degree of A′ in the PPI network; D is given as 1− ((RB− 1)/Rmax), which is
the normalized ranking score for the fractional ranking (RB) of candidate B′ degree
in the PPI network based on the Borda count strategy70, and Rmax (here it is
13,913) is the fractional ranking of the protein with the smallest degree in the
network. The ranking score is normalized to avoid the long-tail phenomenon
caused by certain proteins, such as polyubiquitin-C (UBC), being associated with a
large number of interacting proteins that is far greater than the remaining proteins
in the PPI network derived from reported PPI data.

Finally, we utilized the precision, recall, and F2 measures to determine the
threshold of SSIM for inferring MP-interacting proteins by using the SP and SN sets.
Here precision and recall are defined as TP/(TP+ FP) and TP/(TP+ FN), where
TP, FP, and FN are the numbers of true-positive, false-positive, and false-negative
cases, respectively. Systematic parameter variation provided evidences that the
reported PPI- and direct PPI-based SSIM thresholds were set to 3.6 and 3.7,
respectively (Fig. 2a, Supplementary Fig. 4, and Supplementary Table 4).

Cancer membrane protein-regulated networks. For construction of the
CaMPNets of each MP with its interacting proteins (MPP community) in 15 cancer
types, we evaluated the enrichment of co-expressed gene pairs between all genes of
MPP communities and cancer-related pathways using the gene expression profiles
of tumor samples in TCGA RNA-seq or microarray data. For each cancer type, two
DEGs with Pearson’s correlation coefficient |Pearson’s r| ≥ h (here, h is set to 0.5
based on a large effect size) were considered a co-expressed pair. For each DEG as
an involved gene in the MPP community, we first used the co-expressed pairs
between it and a cancer-related pathway to determine its involvement (−log10
enrichment P value) for this pathway in each cancer type based on hypergeometric
distribution. Moreover, for each MPP community, we measured the involvement
between its involved genes and all the DEGs of regulated pathways in a certain
cancer type. Here we computed the enrichment P value of the hypergeometric
distribution67,71 as

P ¼
Xn
i¼x

M

i

� �
N �M

n� i

� �

N

n

� � ð9Þ

where i and n are the numbers of co-expressed gene pairs and all the combinational
gene pairs, respectively; x is the observed co-expressed gene pairs with |Pearson’s
r| ≥ 0.5, for example, x and n are separately 6 (orange lines) and 44 between the
CHRNA9 community (two involved genes: EGFR and ERBB2) and the adherens
junction pathway (comprising 22 DEGs) in BRCA (Supplementary Fig. 2e); M and
N are the total numbers of all the co-expressed gene pairs and combinational gene
pairs, respectively, between all the involved DEGs of the MPP community and all
the DEGs in 292 KEGG pathways.

To further examine the statistical significance of the involvement of an MPP
community regulating a specific pathway (called the observed MPP community-
regulated pathway), we generated its 1000 shuffled MPP communities (Monte
Carlo trials) by randomly shuffling its interacting proteins with 2594 MPs and then
calculated their involvement values (an example in Supplementary Fig. 14a) for
each cancer. Based on these 1000 shuffled MPP communities, we then determined
the empirical P value of the involvement of this MPP community-regulated
pathway for a cancer. Finally, the involvement of the observed MPP community-
regulated pathway in each tumor type was considered statistically significant when
its empirical P value was ≤0.05.

To assess each MPP community for a certain pathway with involvement
significance across 15 cancer types, the enrichment P value for each MPP
community-regulated pathway of CaMPNets was transformed to z-score, and then
these z-scores in 15 cancers were further summarized using Stouffer’s unweighted
Z-transform test72 (i.e., meta-z-score; Supplementary Fig. 17a). Furthermore, we
wanted to observe cancer-wide common signatures based on two issues: which
cancer-related pathway is regulated by the most communities in multiple tumors,
and which MPP community is involved in the most cancer-related pathways across
human cancers. Therefore, we combined the meta-z-scores into a global meta-z-
score for certain MPP communities (or pathways) considering 65 cancer-related
pathways (or 1862 MPP communities) based on Stouffer’s method (Supplementary
Fig. 17c, d).

Quantification of tumor homogeneity in CaMPNets. To analyze the significance
of the fraction of MPP community-regulated pathways shared by distinct tumor
types, we first randomly shuffled gene labels of all the proteins interacting with
2594 MPs for each MPP community to generate 1000 shuffled MPP communities
for each cancer-related pathway in a cancer type (again, using empirical P value
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≤0.05; Supplementary Fig. 14b). For each cancer-related pathway, we then calcu-
lated the fraction of MPP communities (an observed set) and the median fraction
of shuffled MPP communities (expected sets) that regulate this pathway and are
shared by at least 2, 3, 5, 7, and 9 cancer types (Fig. 2b, c and Supplementary
Fig. 15). Finally, we used the Wilcoxon signed-rank test to compute the P value
between the fraction distributions of MPP communities and shuffled ones for 65
cancer-related pathways filtered at enrichment P value ≤ 0.05, 0.01, 0.005, 0.001,
0.0005, or 0.0001.

Prognostic genes and gene sets in 15 cancers. To assess the association of each
gene/gene set with survival outcomes, we only considered the patient samples (i.e.,
primary solid tumors) with the gene expression data and clinical outcome data
(Supplementary Table 2). For each cancer, we assessed the association of each
involved gene and gene set of an MPP community (or community-regulated
pathway) with 10-year survival outcomes by Cox proportional hazards regression
analysis using the coxph function of the R survival package (v. 2.37.2). Here we
defined the involved gene set in a community-regulated pathway, containing all
genes of co-expressed DEG pairs between the MPP community and the regulated
pathway, for each cancer. Cox coefficients, P values (log-rank test), z-scores, and
hazard ratios (HRs) with 95% confidence intervals were acquired for each gene. We
integrated all the genes of an involved gene set into a combined score (CSt) in a
certain cancer type with independent weights via considering their expression
values in tumor samples and HRs. Here the CSt for an involved gene set with g
genes is defined as

MVt ¼
Xg
j¼1

wj ´ Ej
� �

ð10Þ

CSt ¼ MVt ´RC;RC ¼ �1;� 75% of the patients withMV<0

1; others

�
ð11Þ

where Ej is the expression value of gene j in tumor sample of the patient t, and wj is
1 and −1 when gene j has HR ≥ 1 and <1, respectively. The weight (wj) is set to 1 or
−1 according to the HR of each gene to evade neutralization between adverse and
favorable prognostic genes. To prevent most genes with favorable prognostic
associations resulting in a large negative value and being misjudged as a low
expression value by the coxph function, we set the reverse coefficient (RC) to −1
when ≥75% of the patient tumor samples had MV values <0. Note that gene sets
containing 26–74% of patient tumor samples with MV ≥ 0 or <0 were considered
unable to evaluate adverse or favorable prognostic associations.

For an involved gene set of the MPP community or community-regulated
pathway in a cancer, the median value (50%) or auto-select best cutoff (25–75%)
value of the CS was used to stratify corresponding patients into high- and low-risk
groups for subjection to Kaplan–Meier analysis of their association with 10-year
survival. Moreover, Cox proportional hazards regression analysis was also utilized
to obtain the Cox coefficients, HRs with 95% confidence intervals, P values, and z-
scores for each gene set in a malignancy. Similarly, we assessed the cancer-wide
prognostic significance for each gene set by summarizing the z-scores in 15 cancers
into meta-z-scores using Stouffer’s method (unweighted). We further examined
cancer-wide prognostic signatures for certain MPP communities and pathways
across 65 cancer-related pathways and 1862 MPP communities, respectively
(Fig. 4e, f and Supplementary Fig. 26). Here we used a global meta-z-score to
combine the meta-z-scores of prognostic significance using Stouffer’s unweighted
Z-transform method.

Drug repurposing for discovering CHRNA9 inhibitors. To discover potential
CHRNA9 drugs, we applied our previous concepts and tools (e.g., Homopharma44

and iGEMDOCK45) to screen 1543 FDA-approved drugs on 33 protein–ligand
nAChR structures. A homopharma of protein–ligand complex comprises a set of
proteins that possess a conserved sub-binding environment at protein–compound
interfaces and a set of compounds with similar topology (Supplementary Fig. 34a).
For the homopharma of acetylcholine-binding complex (e.g., PDB code: 1UW673

[http://sci-hub.tw/10.2210/pdb1UW6/pdb]), we first rapidly search for its similar
binding interfaces, which consists of a set of spatially discontinuous pharma-motifs,
using 3D-BLAST74. Here a pharma-motif is defined as a short conserved peptide
forming a specific interface that has specific physico-chemical properties. Next, we
superimposed these candidates to the target protein using DALI75, a protein
structure alignment tool, based on these discontinuous pharma-motifs, and retained
structures with root mean square deviations ≤3 Å. In addition, similar compounds
were also superimposed into the ligand in the target complex. Finally, we mined
conserved binding environments forming conserved contact residues and similar
functional groups between proteins and compounds. We next used our in-house
tool iGEMDOCK to dock each drug in the FDA library to the target structures (e.g.,
1UW6) for drug repurposing. The 40 top-ranked compounds with low energy were
used to compute a protein–drug interaction profile based on different interaction
energy types (electrostatic, hydrogen bonding, and van der Waals). According to
this profile, these compounds were clustered into five groups by two-way hier-
archical clustering (e.g., nicotine and bupropion were in groups 3 and 5, respec-
tively; Supplementary Fig. 34b, c). Finally, for each group, we selected representative
drugs having low binding energy and fitting the conserved binding environment.

Cell culture and patient samples. All human breast cancer samples were obtained
from anonymous donors at Taipei Medical University Hospital, Taipei according
to a protocol approved by the Institutional Review Board (N201612082). Upon
histological inspection, all patient samples consisted of >80% tumor tissue. Human
mammary gland epithelial cancer cells of HER2-enriched (SKBR3, AU565, BT474,
UACC893, HCC1954, and HCC1419) and TNBC (Hs578T, MDA-MB-231, BT549,
HCC1937, MDA-MB-436, and MDA-MB-468) cancer cell lines, a human lung
cancer cell line (A549), a human hepatocellular carcinoma cell line (Hep3B), and a
human normal mammary gland epithelial fibrocystic cell line (MCF-10A) were
purchased from American Type Culture Collection (ATCC, Manassas, VA, USA).
The human urinary bladder cancer cell line (RT4) and human pancreas cancer cell
line (MIA PaCa-2) were purchased from the Bioresource Collection and Research
Center (BCRC, Hsinchu, Taiwan). All cancer cells used in this study were main-
tained in Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 culture medium,
whereas MCF-10A cells were maintained in complete MCF-10A culture medium,
which comprised a 1:1 mixture of DMEM and Ham’s F12 medium supplemented
with 10 μg ml−1 insulin, 0.5 μg ml−1 hydrocortisol, and 20 ng ml−1 epidermal
growth factor (Life Technologies, Rockville, MD, USA). The cell lines were con-
firmed to be Mycoplasma-free using Q-PCR analysis. The primer sequences are
listed in Supplementary Table 8.

Protein extraction, western blotting, and antibodies. For the determination of
protein expression, normal breast epithelial cells and other breast cancer cells were
collected and listed according to breast cancer subtype. To investigate signal
transduction, BT474 cells were used with 10 μM nicotine treatment for the indi-
cated time points, whereas pretreatment with bupropion was administered 30 min
before nicotine exposure. The cells were placed on ice in protein lysis buffer
(50 mM Tris-HCl (pH 8.0), 120 mM NaCl2, 0.5% Nonidet P-40 (NP-40), 100 mM
sodium fluoride, and 200 µM sodium orthovanadate) containing protease and
phosphatase inhibitors. Protein (50 μg) from each sample was resolved by 12%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), trans-
ferred to a nitrocellulose membrane, and analyzed by western blotting. The pri-
mary and secondary antibodies utilized are listed in Supplementary Table 7. The
assay was repeated twice with duplicate samples.

Co-immunoprecipitation (Co-IP). Co-IP of CHRNA9 and the associated proteins
was performed on five cancer cells, including breast (BT474 and MDA-MB-231),
lung (A549), bladder (RT4), and pancreatic (MIA PaCa-2) cancer cell lines. Cells
were harvested in 1% NP40 lysis buffer, and 200/400 µg protein extracts were
incubated with the indicated amounts of primary antibodies and Protein G beads
for 3 h to allow complex formation (Supplementary Table 7), whereas IgG antibody
was used as a negative control. The complexes were washed with PBS five times,
denatured, and identified using SDS-PAGE immunoblotting. To avoid the presence
of heavy chains from the immunoprecipitation antibody, a secondary antibody of
mouse anti-rabbit light chain-specific antibody was used for CHRNA9 (or 18
interacting candidates) immunoblotting. Following protein lysis of five cancer cell
lines, we immunoprecipitated protein extracts with the CHRNA9 antibody, fol-
lowed by western blotting using 18 interacting partner antibodies, whereas IgG
antibody immunoprecipitation served as a negative control (Supplementary
Fig. 30a). In a reciprocal fashion76, we further immunoprecipitated protein extracts
with 18 interacting candidate antibodies, followed by western blotting using the
CHRNA9 antibody (Supplementary Fig. 30b). To determine the positive interac-
tions between CHRNA9 and 18 interacting candidates (or SLC16A7 and four
interacting candidates), we first measured the band Intensities77 of Immunopre-
cipitated Proteins (IIP) and Input loading Controls (IIC; Supplementary Fig. 30c)
on blots using the ImageJ software78. Next, the IP ratio (IPR) for each immuno-
precipitated protein in comparison to its loading control was utilized to evaluate
the IP efficiency. The IPR is defined as

IPR ¼ IIP
IIC

´
AIC
AIP

´ 100% ð12Þ

where AIP and AIC are the protein Amounts used for Immunoprecipitation and
Input loading Control, respectively. Here a candidate that passes the IPR threshold
(>3%) of both reciprocal IP assays is considered as a positive interaction. For
example, ABCB1 is a positive case in MDA-MB-231 cells (3.05 and 25.06%) but a
negative case in A549 cells (2.63 and 1.61%; Supplementary Fig. 30c). To inves-
tigate formation of the CHRNA9/ERBB2 complex, cancer cells were starved for
24 h. The starved cells were then administered with nicotine for 15 min or/and
administered bupropion for 30 min prior to nicotine treatment. For CHRNA9/
ERBB2 complex formation, total ERBB2 was used as the loading control. All
antibodies utilized for IP are listed in Supplementary Table 7.

FRET and FLIM. Images from FRET or FLIM experiments were performed on a
Leica TCS SP5 Confocal Spectral Microscope Imaging System (Leica Microsystems,
Wetzlar, Germany). For the FRET analysis of CHRNA9 and 18 candidate proteins,
BT474 and MDA-MB-231 cells were hybridized with a 100× diluted primary
antibodies of CHRNA9 and interacting proteins for 2 h at room temperature,
followed by a 50× diluted secondary rhodamine and fluorescein isothiocyanate
(FITC) dyes labeling for 1 h at room temperature, respectively. For the measure-
ment of FRET background, BT474 and MDA-MB-231 cells were hybridized with
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the primary antibody of each interacting protein (without CHRNA9 antibody),
followed by secondary rhodamine and FITC dye conjugations. According to SIM
strategy, CAV1 (caveolin-1) was not an interacting protein of CHRNA9; therefore,
this protein pair was selected to measure the FRET efficiency as a negative control.
Coverslips were mounted with VECTASHIELD Antifade Mounting Medium
(Vector Laboratories, California) and imaged by confocal microscopy. The protein
expression and merged images were obtained by 405- and 532-nm laser lines to
excite fluorescent dyes. Then we photobleached the field at 532 nm by high-
intensity light (100%) for 60 s and acquired a second set of images. The FRET
efficiency (FE) was calculated as follows: FE= (Dpost−Dpre)/Dpost for all Dpost >
Dpre, where Dpre and Dpost represent the donor fluorescence intensity before and
after photobleaching, respectively42,79. At least three different cell membrane
regions were examined for the presence of FRET signals. The threshold of positive
interaction is defined as

FRETcut ¼ max
1�i�38

ðMFEi þ SEiÞ ð13Þ
where MFEi and SEi are the mean and the standard error of FRET efficiency for the
background signals or the negative control signal (i.e., CAV1), respectively; and i is
one of the 18 interacting candidates (e.g., ERBB4) and the negative control in
BT474 or MDA-MB-231 cells (Supplementary Fig. 31c–f). Here the FRETcut was
set to 0.045 (i.e., ERBB4 in MDA-MB-231). For the live cell-based FLIM, MDA-
MB-231 breast cancer cells were co-transfected with the ERBB2-YFP/CHRNA9-
CFP plasmids using electroporation and seeded in the glass bottom of 3.5 cm dish.
After 8 h, the cells were washed with PBS and placed with starvation medium for
24 h. Leica two-photon excitation microscopy was used and the intensity input was
regulated with an amplitude modulator linked to the software system. During the
experiment, the starved cells were treated with 10 μM nicotine for 30 min and
washed with PBS for another 30 min, whereas the intensity images from the CFP
and YFP channels were recorded every 10 min. All plasmids used in the FRET
assay were Sanger-sequenced and listed in Supplementary Data 8.

Split luciferase complementation assay. Split luciferase vectors were constructed
by inserting luciferase gene fragments of N- (Nluc) and C-terminal (Cluc) amino
acid residues from 1 to 398 and from 394 to 550, respectively, and a flexible linker
region into pcDNA3 (Life Technologies). The CHRNA9 and ERBB2 genes were
cloned into the Nluc and Cluc-pcDNA3 plasmids, respectively. Next, 5 × 106

MDA-MB-231 breast cancer cells were co-transfected using 10 µg of the CHRNA9-
Nluc/ERBB2-Cluc or CHRNA9-Cluc/ERBB2-Nluc plasmid pairs. For cellular
investigation, MDA-MB-231 cells were co-transfected with the CHRNA9-Cluc/
ERBB2-Nluc plasmids and seeded in a six-well dish. Luciferase activity with or
without 15 min of 10 µM nicotine treatment were measured by an non-invasion
IVIS. For animal study, 6-week-old female BALB/c nude (CAnN.Cg-Foxn1nu/Crl)
mice were purchased from the National Science Council Animal Center of Taipei.
The animal study protocol was approved by the Laboratory Animal Center
(IACUC-15-327) in the National Defense Medical Center (NDMC, Taipei, Taiwan)
and the Laboratory Animal Center (LAC-201-0177) of Taipei Medical University
(Taipei, Taiwan). Mice were monitored every day for food and water supply, and
the health status of the animals was monitored once daily by a qualified veter-
inarian. This study was carried out in strict accordance with the recommendations
in the Guide for the Care and Use of Laboratory Animals from the National
Institutes of Health. The NMDC SPF is accredited by the American Association for
the Accreditation of Laboratory Animal Care (AAALAC). MDA-MB-231 breast
cancer cells co-transfected with split luciferase plasmids were subcutaneously
injected into SCID mice (5 × 106 cells/mouse), and IVIS-imaged after 3 days. The
mice were administered 100 µg kg−1 nicotine orally for the split luciferase assay in
an animal model. All plasmids used in the split luciferase complementation assay
were Sanger-sequenced and listed in Supplementary Data 8.

Orthotropic xenograft model. SCID mice (NOD.CB17/Icr-Prkdcscid/NcrCrl, female,
4 weeks old) purchased from the National Science Council Animal Center of Taipei
were injected subcutaneously with MDA-MB-231 (5 × 106) cells. The mice were
anesthetized with 2% isoflurane, and the mammary pads of each mouse were
implanted with 5 × 106 luciferase-expressing MDA-MB-231 cells. During the experi-
ment, all mice were randomized into six groups (n= 5 per group) and intraperitoneally
(i.p.) injected with PBS, 100 or 200 µg kg−1 bupropion three times per week, and with
or without nicotine treatment (10 μgml−1) via their drinking water. The mice
underwent bioluminescent imaging every week by the IVIS camera system, and the
images were integrated, digitized, and displayed. Regions of interest from the displayed
images were identified and quantified as total photon counts or photons using the
Living Image software 4.0 (Caliper, Alameda, CA). The xenografts were weighed and
either snap-frozen on dry ice and stored at −80 °C for RNA and protein analysis.

Bioluminescent imaging. Bioluminescent imaging was performed with a highly
sensitive, cooled charge-coupled device camera mounted in a light-tight specimen
box (In Vivo Imaging System—IVIS™; Xenogen)46. Imaging and quantification of
signals were controlled by the acquisition and analysis Living Image software
(Xenogen). For in vivo imaging, animals were administered the substrate D-
luciferin by i.p. injection at 100 mg kg−1 in PBS and then anesthetized (2.5%

isoflurane). Mice were then placed onto a warmed stage (37 °C) inside the light-
tight camera box with continuous exposure to 1.5% isoflurane. Imaging times
ranged from 3 to 8 min depending on the split luciferase plasmid combination
being analyzed. Generally, one group of mice (5 mice in each group) were imaged
at a time. No data was excluded from the analysis. The low levels of light emitted
from bioluminescent tumors or cells were detected by the IVIS camera system,
integrated, digitized, and displayed. Regions of interest from the displayed images
were identified around the tumor sites and quantified as photon counts per second
using the Living Image software (Xenogen).

mRNA microarray assay and Q-PCR. To investigate our CaMPNets for studying
the mechanisms of anti-metastasis on bupropion, we performed microarray ana-
lysis for mammary tumors of xenograft mice. Total RNA was extracted from the
xenograft tumors using TRIzol Reagent through chloroform/isopropanol pur-
ification. RNA was labeled with 5 μg of Cy5-labeled aminoallyl RNA and then
hybridized in duplicate to the Human OneArray ver. 7 release 1.0 (HOA7.1;
Phalanx Biotech Group, Hsinchu, Taiwan), containing 28,264 probes with each
probe corresponding to the annotated genes and proteins in the RefSeq v70 and
UniProt databases, respectively. Each probe was a 60-mer oligonucleotide designed
in the sense direction. Raw data were normalized using the normalizeQuantiles
function of the limma package (v. 3.30.7) and log2-transformed. DEGs, including
upregulated and downregulated genes, were defined as those with a fold change of
at least 1.5 compared with the control and were used to analyze pathway enrich-
ment calculated by hypergeometric distribution (Supplementary Figs. 28b, c, 29,
and 40–42). For Q-PCR analysis, the specific primers for each gene were synthe-
sized (Supplementary Table 8) with the LightCycler thermocycler (Roche Mole-
cular Biochemicals, Mannheim, Germany). All mRNA fluorescence intensities were
measured and normalized to β-glucuronidase (GUS) expression using built-in
software (Roche LightCycler Version 4).

CRISPR/Cas9 gene editing of CHRNA9, ERBB2, and SLC16A7. Custom
sgRNAs for CHRNA9, ERBB2, and SLC16A7 were designed using the MIT
CRISPR Design website (http://crispr.mit.edu). Guide oligonucleotides were
phosphorylated, annealed, and cloned into the BsmBI site of the lentiCRISPR v2
vector (Addgene, 52961, kindly provided by Feng Zhang) according to the Zhang
laboratory protocol80 (F. Zhang lab, MIT, Cambridge, MA, USA). All plasmid
constructs were verified by sequencing. Lentiviral particles were produced by
transient transfection of Phoenix-ECO cells (CRL-3214) using TransIT-LT1
Reagent (Mirus Bio LLC, Madison, WI, USA). The lentiCRISPR construct was co-
transfected with pMD2.G (Addgene plasmid #12259) and psPAX2 (Addgene
plasmid #12260, both kindly provided by Didier Trono, EPFL, Lausanne, Swit-
zerland). Lentiviral particles were collected at 36 and 72 h and then concentrated
with a Lenti-X Concentrator (Clontech, Mountain View, CA, USA). The lentivirus
concentration for each gene was quantified by Q-PCR. Biohazards and restricted
materials were used in this study in accordance with the Safety Guidelines for
Biosafety Level 1 to Level 3 Laboratory. The protocol was approved by the Insti-
tutional Biosafety Committee of Taipei Medical University, Taipei, Taiwan. The
CRISPR/Cas9 gene-editing sequences for CHRNA9, ERBB2, and SLC16A7 are
listed in Supplementary Table 8.

Measurement of HBsAg. Hep3B cells and CRISPR knockdown cells were seeded
with culture medium in 24-well plates at a concentration of 50,000 cells per well.
After the cells were attached, the culture medium was replaced with serum-free
medium for 48 h, and cell numbers were determined by trypan blue exclusion. The
HBsAg titer in the serum-free medium were determined by enzyme-linked
immunosorbent assay (General Biological, Taiwan, Republic of China). The optical
density values were normalized to the cell numbers.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data generated in this study are available on the website of CaMPNets (http://
campnets.life.nctu.edu.tw). The accession number for microarray data reported in this
paper is GEO: GSE105445. The source data underlying Figs. 2, 3, 4a–c, e, f, 5a, 6d, and
7b–g and Supplementary Figs. 30a, 31f, and 32a are provided as a Source Data file. Other
Supplementary Figures and other images of this study are available from the
corresponding authors upon reasonable request.

Code availability
The custom codes of SIM and CaMPNets are available on the website of CaMPNets
(http://campnets.life.nctu.edu.tw).
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