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Cytochrome P450 (P450) enzymes are major catalysts involved in
the oxidations of most drugs, steroids, carcinogens, fat-soluble
vitamins, and natural products. The binding of substrates to
some of the 57 human P450s and other mammalian P450s is
more complex than a two-state system and has been proposed
to involve mechanisms such as multiple ligand occupancy,
induced-fit, and conformational-selection. Here, we used
kinetic analysis of binding with multiple concentrations of sub-
strates and computational modeling of these data to discern
possible binding modes of several human P450s. We observed
that P450 2D6 binds its ligand rolapitant in a mechanism involv-
ing conformational-selection. P450 4A11 bound the substrate
lauric acid via conformational-selection, as did P450 2C8 with
palmitic acid. Binding of the steroid progesterone to P450 21A2
was also best described by a conformational-selection model.
Hexyl isonicotinate binding to P450 2E1 could be described by
either a conformational-selection or an induced-fit model. Sim-
ulation of the binding of the ligands midazolam, bromocriptine,
testosterone, and ketoconazole to P450 3A4 was consistent
with an induced-fit or a conformational-selection model, but
the concentration dependence of binding rates for varying
both P450 3A4 and midazolam concentrations revealed dis-
cordance in the parameters, indicative of conformational-se-
lection. Binding of the P450s 2C8, 2D6, 3A4, 4A11, and 21A2
was best described by conformational-selection, and P450
2E1 appeared to fit either mode. These findings highlight the
complexity of human P450-substrate interactions and that
conformational-selection is a dominant feature of many of
these interactions.

Cytochrome P450 (P450)3 (CYP) enzymes are the major cat-
alysts involved in the metabolism of drugs, steroids, fat-soluble
vitamins, chemical carcinogens, and numerous other chemicals
of natural and industrial origin (1, 2). Collectively the P450s are

involved in �95% of the reported oxidations and reductions of
all chemicals (3). The oxidation of a chemical by a P450 is a
complex process involving electron transfer, formation of a
highly reactive iron-oxygen complex, and breaking of C-H and
other bonds (Fig. 1) (1, 4, 5). The first step in the reaction cycle
is generally agreed to be substrate binding, in that the presence
of the substrate facilitates the introduction of an electron to the
ferric iron in some but not all cases (6). Binding of substrates
can also occur after initial iron reduction (7, 8).

Although the binding of substrate to P450 enzymes might
seem to be the simplest and most straightforward of the reac-
tion steps (4), it can also be complex. An early observation was
the change in heme Soret (and the �,�) spectra upon binding (9,
10), attributed to an iron low- to high-spin state shift (Type I
difference spectra) associated with partial removal of the distal
H2O ligand from the heme iron in the active site (1, 11–15).
Some ligands, mainly inhibitors, bind directly to the heme iron
via basic nitrogen atoms, yielding so-called Type II difference
spectra, but a number of these ligands can also be substrates
(16, 17). However, not all P450 substrates produce spectral
changes (18), and several other spectroscopic and other meth-
ods have been utilized to study P450-substrate binding (19, 20),
including X-ray crystallography (21). Several bacterial and
human P450s have now been demonstrated to show multiple
occupancy (22–25).

The binding of the substrate camphor by bacterial P450
101A1 (P450cam) is an apparently facile process that has been
described in terms of a 2-state system with a kon rate of 4.6 �
106 M�1 s�1 and koff rate of 6 s�1 (Kd � 1.3 �M) (26). Rates of
substrate binding have also been reported for a small number
of mammalian P450s, including several human P450s (Table
1). Several mammalian P450s have been reported to show
complex binding behavior, and some of these results may be
attributable to multiple occupancy (31–33). However, mul-
tistep binding can be observed even for a substrate (e.g. bro-
mocriptine) when only one molecule is present in the P450
enzyme (32, 34, 35).

The multistep nature of ligand binding to some P450s (31–
35) raises the issue of whether the basis of the phenomenon is
mainly attributable to induced-fit or conformational-selection
(Fig. 2), a general question in modern enzymology (36 –41). The
two pathways can be considered energetically equivalent in
terms of a “thermodynamic box” diagram, and distinguishing
between them is usually not trivial. Evidence for both models
has been presented for P450s. Davydov et al. (42) reported high
pressure spectroscopic evidence for conformational heteroge-
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neity of P450 3A4 in the absence of ligand. Our laboratory pre-
sented kinetic evidence suggesting an induced-fit model for
binding of testosterone to P450 3A4, based upon kinetic dou-
ble-mixing experiments with testosterone and the (Type II)
inhibitor indinavir (33). Studies with other P450s have pro-
vided evidence for both models, depending upon the case.
For instance, an NMR study with an unnatural amino acid
showed spectral heterogeneity of bacterial P450 119, which can
be evidence for a conformational-selection model (43). NMR
spectra of P450 17A1, in the presence of substrates and ligands,
revealed peaks indicative of multiple conformations (44), and

protein structures differed in the presence of the R- and S-enan-
tiomers of orteronel (45). The existence of multiple structures
of human P450 2E1 (46, 47), P450 1A1 (48, 49), and 3A4 (25, 34,
50, 51) can be interpreted as evidence for an induced-fit mech-
anism but cannot be excluded as support for an alternative con-
formational-selection model.

We investigated the binding of steroids to human P450
17A1 and concluded that the mechanism is dominated by
conformational-selection, not induced-fit (52). The conclu-
sion was based upon (i) the decreasing rates of ligand binding
as a function of steroid concentration (37), (ii) the differing
plots of concentration dependence seen with the ligand and
the enzyme (53), and (iii) comparisons made by fitting into
KinTek Explorer models (54). In this report we evaluated
more human P450-substrate systems (Fig. 3) and also re-ex-
amined some previous conclusions, with a view to minimal-
ization of models if possible. Accordingly, we investigated
human P450 2C8, 2E1, 4A11, and 21A2 binding and also
reinvestigated previous data obtained with P450s 3A4 and
2D6, as well as adding new experiments. We conclude that
the P450s examined also primarily use conformational-se-
lection mechanisms.
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Figure 1. General catalytic mechanism for P450 reactions (1, 4).

Table 1
Estimated rate constants for 2-state binding of substrates and human P450s from previous literature

P450 Substrate
Rate constants

Referencekon koff

2A6 Coumarin 2.7 � 106 M�1 s�1 5.7 s�1 7
7-Hydroxycoumarin 2.0 � 106 M�1 s�1 6.8 s�1

4A11 Lauric acid 2.0 � 106 M�1 s�1 4.0 s�1 27
19A1 Androstenedione 2.5 � 106 M�1 s�1 1.4 s�1 28

19-OH androstenedione 2.0 � 107 M�1 s�1 240 s�1

19-Formyl androstenedione 2.5 � 106 M�1 s�1 300 s�1

21A2 Progesterone 2.4 � 107 M�1 s�1 0.24 s�1 29
17�-OH progesterone 2.2 � 106 M�1 s�1 0.66 s�1

27C1 All-trans-retinol 7.2 � 105 M�1 s�1 0.42 s�1 30
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Figure 2. Induced-fit and conformational-selection kinetic schemes. E
and E� are conformationally distinct forms of the enzyme (S is substrate and P
is product).
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Results

General

All experiments were done with ferric P450 enzymes. Although
ferrous P450s can bind substrates (e.g. Ref. 7), in many (but not
all) P450 systems the binding of substrate facilitates the kinetics
of reduction (6, 55). Therefore most of the interest in substrate
binding is with the ferric enzymes. The point should be made
that even if binding is not the rate-limiting step, the absence of
bound substrate may therefore change rates of other steps in
the catalytic cycle (Fig. 1). As pointed out in the Introduction,
we monitored the binding of substrates to P450s in most cases
by observing the spectral changes associated with partial
removal of the distal H2O ligand from the heme iron in the
active site (Type I change), a relatively well-established princi-
ple (1, 11–15).

P450 2D6 and rolapitant

The binding of P450 2D6 and the inhibitory drug rolapitant
have been described with a 2-state model using data we devel-
oped earlier (56). The single-exponential fits (Fig. 4A) were rel-
atively good, and the amplitudes could be plotted versus the
rolapitant concentration to yield a Kd,app of �10 �M (Fig. 4B) (cf.
1.2 �M in steady-state (56)). A plot of the binding rates versus
rolapitant concentration yielded a negative slope (Fig. 4C),
indicative of a conformational-selection process (37). A simple
2-state model did not provide an adequate fit to the experi-
mental data (Fig. 4D). Although a reasonable fit could be
achieved with an induced-fit model (Fig. 4E), the fit to a
conformational model (Fig. 4F) was as good or better. We
conclude, based largely on the relationship between rates of
binding and rolapitant concentration (Fig. 4C), that the pro-
cess involves conformational-selection.

P450 4A11 and lauric acid

We previously described binding of lauric acid to P450 4A11
based on a simple second-order experiment with equal concen-

trations of enzyme and substrate (kon 2 � 106 M�1 s�1, koff 4
s�1) (Table 1) (27). Reinvestigation of the binding with multiple
concentrations of lauric acid showed complex behavior, with a
need to use biexponential fitting (Fig. 5A). Rates for both phases
of binding showed inverse relationships with the concentration
of lauric acid (Figs. 5, B and C), indicative of a conformational-
selection model (37).

Fitting to an induced-fit model yielded a poor fit, particularly
at the lower lauric acid concentrations (Fig. 5D). Fitting to a
simple conformational-selection model showed good fits at the
lower concentrations of lauric acid, although the fit at higher
concentrations was less satisfactory (Fig. 5E).

P450 2E1 and hexyl isonicotinate

Many of the classic substrates for P450 2E1 are small mole-
cules (57) and do not give strong binding spectra (58). Alkyl
isonicotinic acid esters have been shown to be substrates for
�-1 hydroxylation by P450 2E1 (at least in reactions supported
by the oxygen surrogate cumene hydroperoxide), as well as gen-
erating Type II binding spectra (17). The binding of hexyl isoni-
cotinate to P450 2E1 was rapid and could be fit with single
exponential or biexponential equations (Fig. 6, A and B). The
rate of the fast phase of binding increased with the ligand con-
centration (Fig. 6B) but the rate of the slower phase did not (Fig.
6C).

A simple 2-state model was not adequate in fitting the data
(Fig. 6D). Both an induced-fit model (Fig. 6E) and a conforma-
tional-selection model (Fig. 6F) yielded satisfactory fits, at least
at the lower concentrations of the substrate, and a conclusion
could not be reached as to which was superior.

P450 21A2 and progesterone

P450 21A2 bound its substrate progesterone in a clearly biex-
ponential mode (Fig. 7, A and B, showing separate time frames).
Plotting of either the single-exponential rate (Fig. 7C) or the
slow rate of the biexponential fit (Fig. 7D) yielded plots that
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Figure 4. Binding of rolapitant to P450 2D6. P450 2D6 (2 �M) was mixed with rolapitant (2 (green), 10 (red), 20 (dark blue), 50 (gold), and 100 (light blue) �M)
(raw data presented previously (56)). A, single exponential fits of �A390–A418 traces. B, plot of �A390–A418 amplitude versus final concentrations of rolapitant
(Kd,app �33 �M). C, plot of single exponential rate fits versus final rolapitant concentration. D, fits to a simple 2-state kinetic model (E � S^ ES, Fig. 2) with k1 �
1.0 � 106

M
�1 s�1 and k�1 � 7.4 s�1 (�390 – 418 5.3 mM

�1 cm�1). E, fit to an induced-fit model (Fig. 2) with k1 � 1.1 � 106
M

�1 s�1, k�1 � 26 s�1, k2 � 9.6 s�1, and
k�2 � 1.8 s�1 (�390 – 418 5.7 mM

�1 cm�1). F, fit to a conformational-selection model (Fig. 2) with k1 � 0.65 s�1, k�1 � 0.46 s�1, k2 � 0.19 � 106 �M
�1 s�1, and

k�2 � 2.0 s�1 (�390 – 418 4.2 mM
�1 cm�1).
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50 (purple), 75 (dark green), and 150 (light green) �M). A, biexponential fits to traces of �A390–A418. B, plot of fast rate from A versus final concentration of lauric
acid. C, plot of slow rate from A versus final concentration of lauric acid. D, fit of data (A) to an induced-fit model (Fig. 2) with k1 � 0.09 � 106

M
�1 s�1, k�1 � 8.5

s�1, k2 � 24 s�1, and k�2 � 0.73 s�1 (�390 – 418 8.0 mM
�1 cm�1). E, fit of data (A) to a conformational-selection model with k1 � 0.15 s�1, and k�1 � 0.25 s�1,

k2 � 0.55 � 106
M

�1 s�1, and k�2 � 1.6 s�1 (�390 – 418 9.5 mM
�1 cm�1).
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showed decreasing rates with increasing substrate concentra-
tions, suggesting a conformational-selection model (the faster
of the biexponential rates were too fast to be useful). Fitting of
the data yielded a generally better fit for a conformational-se-
lection model than an induced-fit model (Fig. 7, E and F).

P450 2C8 and palmitic acid

The binding of the substrate palmitic acid to P450 2C8
yielded relatively weak spectral changes and the data were less
robust (Fig. 8A). However, the traces could only be fit to biex-
ponential plots (Fig. 8A). The rates of the faster phase increased
slightly with the concentration of palmitic acid (Fig. 8B) but the
rates of the slower phase decreased (Fig. 8C), indicative of a
conformational-selection process. The fit to an induced-fit
model (Fig. 8D) was generally not as good as that to a confor-
mational-selection model (Fig. 8E).

P450 3A4 binding of midazolam and other ligands

P450 3A4 interactions with several substrates and inhibitors
were previously reported (32, 33), including the drug midazolam.
We previously considered several possibilities for binding of mida-
zolam to P450 3A4, including versions with multiple occupancy
(32). The best of these fits, developed then using DynaFit software
(59), involved a double induced-fit mechanism with two spectrally
equivalent complexes (e.g. Scheme 1A of Ref. 32), and we tested
some simpler models with the goal of finding less complex models
that could adequately explain the data.

We re-evaluated some of the original data (32, 33) using our
newer approaches, including the KinTek Explorer software
(54). In our previous work, we reported rates of single-exponen-

tial fits for the rates of binding plotted versus midazolam con-
centration (32). The binding traces are clearly complex, as
reported earlier (32) with biphasic absorbance changes (Fig.
9A). Neither plots of single-exponential fits nor either of the
double-exponential rates yielded linear plots as a function of
substrate concentration (Fig. 9B).

Reasonable fits were obtained with a simple induced-fit
model (Fig. 9C). The kon rate (k1) was 4.4 � 106 M�1 s�1, which
is realistic in light of other P450s (Table 1). The fit began to
diverge at the higher midazolam concentrations. A basic con-
formational-selection model (which was not included earlier
(32)) also fit well except at the higher midazolam concentra-
tions (Fig. 9D). The kon rate of only 0.29 � 106 M�1 s�1 is low but
probably not unrealistic. We also re-evaluated the binding of
other ligands to P450 3A4, using the data files from our previ-
ous work (Figs. S1–S3).

With the substrate testosterone, a single-exponential fit was
not unreasonable, and the rates increased with the substrate
concentration (Fig. S1, A and B). A biexponential fit was better,
and the rates for both reaction phases increased with testoster-
one concentration (Fig. S1, C and D). An induced-fit model
(with kon 1.7 � 106 M�1 s�1, Fig. S1E) provided a credible fit,
except for being somewhat too fast at the higher concentra-
tions. Adjustment of the conformational-selection model (Fig.
S1F) to fit the higher concentration data involved a kon rate of
only 0.13 � 106 M�1 s�1, and the fit was inadequate at lower
testosterone concentrations.

Bromocriptine binding was also re-examined (32), in that the
size of this substrate and the crystal structure of the complex
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M
�1 s�1 and

koff � 1.3 s�1 (results not shown). B, biexponential fit of data of A. C, fast (red points) and slow (green points) rates of binding as a function of substrate
concentration. D, fits of binding data with a 2-state model (solid lines) for varying concentrations of hexyl isonicotinate, with kon � 1.5 � 106

M
�1 s�1 and koff �

1.2 s�1. E, fits of data with an induced-fit model, with k1 � 1.9 � 106
M

�1 s�1, k�1 � 5.5 s�1, k2 � 15 s�1, and k�2 � 2.8 s�1 (�430 – 410 19.5 mM
�1 cm�1). F, fits of

data with a conformational-selection model, with k1 � 18 s�1, and k�1 � 110 s�1, k2 � 10 � 106
M

�1 s�1, and k�2 0.41 s�1 (�430 – 410 15.5 mM
�1 cm�1).
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(34) rule out multiple ligand occupancy. Plotting the single-
exponential fits of the data (Fig. S2A) versus the bromocriptine
concentration showed increasing rates (Fig. S2B), as reported
earlier (32). With biexponential fits (Fig. S2C), the faster rate
also increased with bromocriptine concentration (Fig. S2D).
Fitting to a simple induced-fit model was fair at low substrate
concentrations (Fig. S2E) but attempts to fit to a conformation-
al-selection model were much worse at multiplex bromocrip-
tine concentrations (Fig. S2F).

Ketoconazole is an inhibitor of P450 3A4, producing a Type
II difference spectrum with an azole nitrogen bonding to the
heme iron (25). This inhibitory drug has also been reported to

be a substrate and be oxidized by P450 3A4 (60). Fitting the
previous data (33) to either single or biexponential plots of rate
versus ketoconazole concentration (Fig. S3, A and C) gave plots
in which the rates increased with the ketoconazole concentra-
tion (Fig. S3, B and D). The plots could be fit with an induced-fit
or a conformational-selection model (Fig. S3, E and F), with
deficiencies in each.

P450 3A4 and midazolam concentration dependence

The results with fitting of the previous P450 3A4 data (32, 33)
were ambiguous, in that some could be fit with either an
induced-fit or a conformational-selection model (Fig. 9, C and

Figure 7. Binding of progesterone to P450 21A2. P450 21A2 (2 �M) was mixed with varying concentrations of progesterone (2 (red), 4 (green), 8 (dark blue, lower
trace), 12 (gold), 20 (light blue), 40 (magenta), 60 (red), and 80 (dark blue, upper trace) �M). A, traces of�A390-A418 measured with varying concentrations of progesterone.
B, expansion of early phase (first 3 s) of A. C, plot of single exponential rates of binding versus progesterone concentration. D, plot of rates of the slow phase of
biexponential fits (A) versus progesterone concentration. E, fits of data with an induced-fit model, with k1 � 1.2 � 106

M
�1 s�1, k�1 � 100 s�1, k2 � 1.2 s�1, and k2 � 3.7

s�1 (�390–418 46 mM
�1 cm�1). F, fits of data with a conformational-selection model with k1 � 1.1 s�1, k�1 � 1.1 s�1, k2 � 6.6 � 106

M
�1 s�1, and k�2 � 2.2 s�1 (�390–418

12 mM
�1 cm�1).
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D, and Figs. S1, E and F, and S3, E and F). Furthermore,
increased rates (hyperbolic) as a function of ligand concentra-
tion can be interpreted in terms of both induced-fit and confor-
mational-selection models in the absence of more data (40, 53).

We repeated the rate measurements with a fixed concentra-
tion of P450 3A4 and varying concentrations of midazolam (Fig.
10A). As before (32), the rate increased with the midazolam
concentration (Figs. 9B and 10A). The P450 3A4 concentration
was also increased in the presence of a fixed concentration of a
midazolam (2.5 �M) (Fig. 10B), yielding increased rates as a
function of P450 3A4 concentration. Combining the results of
Fig. 10, C and D (from plots of single exponential fits of the data
from Fig. 10, A and B, respectively), in Fig. 10E indicated dis-
cordance in the patterns of rate dependence, which is a pattern
characteristic of conformational-selection (with fast pre-equi-
librium steps) but not an induced-fit model, in which the sec-
ond-order rate plots should be identical (53).

Discussion

Several human P450s were examined regarding the kinetics
of interaction with substrates, with the aim of developing mod-
els that are as simple as possible and judging whether induced-
fit or conformational-selection dominates. Based on previous
work (32, 33, 52) and new experimental studies, we conclude
(Table 2) that (i) some systems are simple and can be repre-
sented by two states, (ii) most P450-substrate systems can be
described by a conformational-selection model, (iii) some

P450-substrate systems may be described by an induced-fit or a
conformational-selection mechanism in the absence of more
data, and (iv) some P450-substrate systems are still more complex
and probably involve elements of both induced-fit and conforma-
tional-selection. The simple systems (item i and Table 2) may
prove to be more complex upon further analysis.

Clearly many mammalian P450s show complex binding
behavior, as judged by lack of increased binding rates with sub-
strate concentration (e.g. Figs. 4, 5, 7, and 8). Even when con-
ventional methods produce linear plots, further analysis may
indicate more kinetic complexity (e.g. P450 2E1, Fig. 6). In pre-
vious studies with P450s, we concluded that initial encounters
of substrates with P450s were fast (1–10 � 106 M�1 s�1) and
that subsequent steps involved migration of the substrate to the
vicinity of the heme prosthetic group to produce the spectral
changes (31–33). This can be considered a type of induced-fit
mechanism, or at least one that would appear to be in the
kinetic analysis. However, in several cases a pure induced-fit
mechanism could not fit the data (e.g. Figs. 4, 5, 7, and 8), and a
conformational-selection model was more appropriate. An
issue with a pure conformational-selection model for a P450 is
that the initial conformational equilibrium (Fig. 2) should be
independent of the substrate used, and the only major differ-
ence in the kinetics with different substrates should be in k�2,
the koff rate constant (Fig. 2), in that kon (k�2) should be similar
for different substrates.

Figure 8. Binding of palmitic acid to P450 2C8. P450 2C8 (2 �M) was mixed with varying concentrations of palmitic acid (1.0 (red), 2.0 (dark blue), 4.0 (green),
10 (gold), 20 (magenta), and 40 (light blue) �M). A, biexponential fits to traces of �A390-A418. B, plots of fast (red points) and slow (green points) rates from A. C, plot
of slow rate of binding from A, expanded from B. D, fit of data (A) to an induced-fit model (Fig. 2) with k1 � 0.11 � 106

M
�1 s�1, k�1 � 6.8 s�1, k2 � 24 s�1, k�2

� 1.8 s�1 (�390 – 418 4.0 mM
�1 cm�1). E, fit of data (A) to a conformational-selection model (Fig. 2) with k1 � 0.4 s�1, k�1 � 110 s�1, k2 � 4.0 � 106

M
�1 s�1, and

k�2 � 0.26 s�1 (�390 – 418 4.0 mM
�1 cm�1).
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Figure 9. Binding of midazolam to P450 3A4 (data from Ref. 32). P450 3A4 (2 �M) was mixed with midazolam (20 (red), 40 (green), 60 (dark blue), 80 (gold),
100 (light blue), and 150 (magenta) �M). A, double-exponential fits to data from (32) at varying midazolam concentrations. B, plots of biexponential rates (A)
versus midazolam concentration: fast rate (f); slow rate (Œ). C, fits to induced-fit model (Fig. 2) with k1 � 3.6 � 106

M
�1 s�1, k�1 � 70 s�1, k2 � 3.4 s�1, and

k�2 � 4.5 s�1 (�390 – 418 28 mM
�1 cm�1). D, fits to conformation selection model (Fig. 2) with k1 � 1.8 s�1, k�1 � 1.6 s�1, k2 � 0.2 � 106

M
�1 s�1, and k�2 � 8.1

s�1 (�390 – 418 10 mM
�1 cm�1).

Figure 10. Binding of midazolam and P450 3A4 as functions of concentration of each component. A, P450 3A4 (2 �M) was mixed with the indicated
concentration of midazolam (color schemes match the indicated concentrations used). B, midazolam (5 �M) was mixed with the indicated concentration of
P450 3A4 (dialyzed before use to remove glycerol). Color schemes match the indicated P450 3A4 concentrations used for mixing. C, plot of single-exponential
rates (A) (fitted using KinTek Explorer) versus midazolam concentration. D, plot of single-exponential rates (from B) (fitted with KinTek Explorer) versus P450 3A4
concentration. E, combined data points from C and D (varying P450 3A4,F; varying midazolam, �). The decreased signal/noise ratio with the higher P450 3A4
concentration used in B is due to the use of a 4-mm path length cell to reduce the absorbance of the Soret band.
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In the review of the manuscript, one of the referees suggested
that a possible explanation for the need to use biexponential fits
for the substrate-binding traces was the existence of two non-
interconverting enzyme conformations. We tried to fit some of
the binding data with two E � S % ES equilibria. The model
began to fit, but the amplitude was problematic and, as might be
expected from the magnitude of the values of the slow exponen-
tial phases of binding (see several of the other figures, e.g. Figs.
5–9), the kon rate constants needed to be �104 M�1 s�1, which
is unrealistic for a simple diffusion-limited reaction (see below)
and would require the introduction of additional steps. Also, a
model with two noninterconverting forms of the enzyme, in
which one form bound the substrate but was spectrally silent,
could not fit the data.

In our analysis, E�S (Fig. 2) has the H2O ligand at least par-
tially removed and the heme iron atom at least partially in the
high-spin state, giving the final spectra (1, 11–15), except in the
case of P450 2E1 (Fig. 6). However, in principle it might be
possible for the conformational equilibrium (E interconverting
with E�) to be the result of a low-/high-spin equilibrium, i.e. in
the absence of substrate both low- and high-spin iron might be
present and only the high-spin form would bind the substrate.
However, if this were the case then a P450 should exist in a
mixed-spin state population (in the absence of ligand). This has
been observed with some P450s, e.g. P450 2E1 (61), and P450
1A2 is isolated essentially only in the high-spin configuration
(62) and cannot be used in binding studies of the type done here
(31). However, this cannot be a general explanation for the
kinetic observations presented here and elsewhere (52),
because the analysis of P450 17A1 binding is consistent with a
ratio of 0.4 – 0.7 (52) of two conformations, using the estimated
forward and reverse rates of conformational change (termed kr
and k�r in the nomenclature of Vogt and Di Cera (37)). When
we analyzed our preparation of (unliganded) P450 17A1 using
second-derivative analysis (63), the preparation was �95% low-
spin (Fig. S4). Also, analysis of the data for P450 3A4 (Fig. 10),
with the approach of Vogt and Di Cera (37), gives k�r � 1.1 s�1

and (kr � k�r) � 1.6 s�1, so kr/k�r � 0.5/1.1 � �0.5. However,
our second derivative analysis showed that the preparation was
�95% low-spin (Fig. S4) and this finding would not be consis-
tent with the kr/k�r ratios or the rate constants used in the
modeling.

The fits presented here are intended to employ the most min-
imal mechanisms and are admittedly less than perfect, with the
goal of trying to identify main features. In the application of
FitSpace software (KinTek Explorer) (64), the estimated rate
constants could not be concluded to be highly constrained (data
not shown) due to the lack of independent data sets to restrain
the modeling. Another caveat of this work is that we have not

extensively considered a large number of the substrates for the
“drug-metabolizing” human P450s (e.g. P450s 2D6, 3A4, 2E1),
which have many substrates.

The most generally appropriate value of a kon rate constant
for an enzyme is uncertain. Although diffusion-limited val-
ues have been considered by some to be in the range of 108–
109 M�1 s�1 (65), others have suggested lower values (105–
107 M�1 s�1) (66) in the absence of intermolecular forces (e.g.
charge). The values we used are in this range. Lower rates
(e.g. �103–104 M�1 s�1 (20)) are often reported for surface
plasmon resonance studies, but these are very compromised
by surface artifacts (67).

In previous work with P450 3A4 we concluded that an
induced-fit mechanism was an appropriate explanation for the
multiphasic binding kinetics (33). This work was done before
the theoretical framework for distinguishing mechanisms by
concentration dependence of kinetics was published (37, 53).
One argument against conformational-selection is that
observed rates of binding are different and P450 3A4 ligands
varied considerably (32, 33). However, it is possible that more
than two conformational states may be involved (Fig. 2), and for
instance, we might be using E, E�, and E	 in different cases with
E	 being only a minor component or in slow equilibrium with
the other forms (for binding certain ligands). The argument for
induced-fit that we advanced in our 2007 report on P450 3A4
(33) was based on the results of a double-mixing experiment
with indinavir followed by testosterone (Fig. 7 of Ref. 33). This
experiment is complicated, in that the absorbance change (A390
increase) seen with binding testosterone is in the opposite
direction of that seen with indinavir (A405 decrease) and at that
time we did not resolve the spectra. We did observe a slow
decrease in the amplitude of the testosterone response as a
function of the time elapsed after indinavir was incubated
(before the addition of testosterone). Also, as pointed out in the
report (33), a conformational-selection model does not neces-
sarily exclude silent steps. Furthermore, our more recent work
with the dye/substrate Nile Red showed transient absorbance-
silent (but fluorescent) changes with P450 17A1, an enzyme for
which a conformational-selection mechanism was demon-
strated (52).

Pearson et al. (20) also studied ketoconazole binding to P450
3A4 (Fig. S3), as well as itraconazole. As pointed out here, keto-
conazole is both an inhibitor and a substrate, and the same
applies to itraconazole. Pearson et al. (20) developed a model in
which free P450 3A4 could bind ketoconazole in either of two
modes. This possibility certainly cannot be ruled out and is not
inconsistent with our own conclusions, except that the surface
plasmon resonance method used (20) yielded kon rate constants
of only 1– 4 � 104 M�1 s�1, which are inconsistent with our own
values in solution experiments. As pointed out earlier, surface
plasmon resonance experiments involve bound molecules and
are subject to surface artifacts (67).

Recently Montemiglio and co-workers (68) used a double-
mixing approach to conclude that a bacterial P450, P450 OleP,
utilizes a conformational-selection mechanism in binding
6-deoxyerythronolide B. As in the case of our earlier results
(33), it is not clear that this particular mixing experiment proves
conformational-selection. In the P450 3A4 experiment (33) the

Table 2
Classification of human P450s in terms of binding modes

Simple 2-state Conformational selection Uncertain

2A6 17A1 (7)a 2E1
27C1 2D6

2C8
3A4 (7)a

4A11
21A2

a Number of substrates analyzed.
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binding of indinavir was very tight (Kd 0.3 �M) and the P450
3A4 and indinavir concentrations were both 8 �M, so that
essentially all indinavir would be complexed with the P450 if it
bound before testosterone (33). In the P450 OleP study (68), the
Kd was 5 �M and the 6-deoxyerythyronolide B and clotrimazole
concentrations were 100 and 5–25 �M, respectively, so that
there was competition for binding of these two ligands to P450
OleP. Nevertheless, the bulk of the other kinetic work by Mon-
temiglio and co-workers (68) presents valid evidence for the
involvement of conformational-selection for P450 OleP bind-
ing of 6-deoxyerythronolide B, and we do not dispute the over-
all conclusion.

The studies with the bacterial P450s OleP (68) and EryK (69)
both implicate conformational-selection in the binding of sub-
strates. In both cases the proteins are monomeric. We have not
directly assessed the oligomeric state of any of our human
P450s (except for P450 17A1, for which only about one-half is
monomeric as judged by size exclusion chromatography (52)),
and oligomerization is a general mode for mammalian P450s
when they have been analyzed (70, 71). Changes in oligomeri-
zation, either in the degree of oligomerization or rearrange-
ment within an oligomer, could be part of the process of con-
formational-selection and cannot be ruled out (72).

Bacterial P450cam (P450 101A1) is probably the most exten-
sively characterized P450, from a biophysical standpoint (55). It
is a monomeric enzyme and was the first P450 to be crystallized;
numerous crystal structures of the enzyme at various steps in
the catalytic cycle, with several ligands, are now available. There
has been some controversy about the roles of open and closed
forms in catalysis, particularly in the complexes with its acces-
sory electron transfer partner putidaredoxin (73, 74). This
seemingly simple P450 is also complex due to the issue of mul-
tiple ligand occupancy (74 –77). Furthermore, conversion of
high-spin iron back to low-spin occurs upon binding of the
second molecule of camphor (substrate) (75, 77). Relevant to
the present work is the multiplicity of X-ray crystal structures
of ligand-free P450cam existing in both closed (78) and open
(79) forms. NMR spectroscopy and molecular dynamic work
also lead to the conclusion that ferric P450cam exists in an
ensemble of conformations in the substrate-free form (80).
However, we are not aware that any kinetic binding studies
have been published on the binding of substrate as it relates to
this phenomenon. We are also not aware if the presence of
bound putidaredoxin affects the binding of any substrates to
P450cam.

Another issue to consider is the complexity of other P450
reactions. For instance, the reduction of ferric P450 by
NADPH-P450 reductase is often biphasic (but not always) (6).
Complex explanations have been presented to account for this
including membrane organization (81), flavin electron transfer
(82), and spin state (83), although the latter cannot be general,
e.g. case of P450 1A2 (6). One possibility is that ensembles of
conformational forms of both free and substrate-bound P450
exist in equilibrium and are reduced at different rates, just as
different ensembles bind ligands at different rates.

One point of discussion is that models for conformational-
selection are generally restricted to two entities but that is prob-
ably not the limit, e.g. see Benkovic et al. (84). Multiple confor-

mations may be relevant and, as mentioned earlier, be
responsible for variations in the rates of binding of P450 3A4
(32, 33), even if the rates of conversion in the unliganded state
are independent of the ligand. Realistically it is not useful to
include more than two species in most efforts at kinetic mod-
eling, in the absence of evidence that more conformations exist,
due to the complexity. Another complicating issue is that we
have built our models (Fig. 2) with the assumption that only one
form of the enzyme can bind the substrate, but we cannot
rule out the possibility that two (or more) forms both bind sub-
strate (even yielding the expected spectral changes) and only
one is poised for productive catalysis (20).

Another issue is that accessory proteins might modify the
ligand binding behavior of a P450 (or other enzyme). In this
regard, Scott (85) has reported that the presence of the iron-
sulfur protein partner adrenodoxin enhances the binding of the
substrate 11-deoxycosrticostereone to P450 11B2 by 7-fold,
and we have repeated this finding.4 All microsomal P450s bind
NADPH-P450 reductase and some also bind cytochrome b5.
With human P450 17A1, which is known to interact with cyto-
chrome b5 (86), we found that cytochrome b5 did not modify
the binding of the substrate 17�-hydroxypregnenolone (52).
No effect of NADPH-P450 reductase was seen in binding of
substrates to P450s 1A2, 2A6, 2D6, and 3A4 (87). However, we
have not systematically examined other P450s in this regard or
for the effect of binding NADPH-P450 reductase or cyto-
chrome b5 on the binding of substrates.

We have analyzed P450s with multiple substrates (Table 2)
and concluded that conformational-selection was the domi-
nant model in each case, as we did with P450 17A1 and seven
steroids (52). In the case of P450 3A4 we analyzed data with four
ligands (Figs. 9 and 10 and Figs. S1, S2, and S3). With P450 3A4
the patterns were rather consistent, but only in the case of the
substrate midazolam did we extend the analysis to definitively
corroborate conformational-selection (Fig. 10). To some extent
the question of an induced-fit mechanism versus conforma-
tional-selection could be dependent upon the ligand. Although
the phenomenon of conformational-selection should be inde-
pendent of the ligand, the possibility exists that with a particu-
lar ligand an induced-fit phenomenon might be operative to the
extent of overwhelming the overall nature of the observed
kinetics. Another possibility, already mentioned, is the exist-
ence of more than two conformations and the preference of
some to bind to a particular ligand.

Although we have done some analysis with nine human
P450s in this and previous work (7, 30, 52), there are 48 other
human P450s and we cannot comment on their behavior. With
some of the mammalian P450s, the binding of substrates does
not induce spectral changes (18, 62). Moreover, the weaker
spectral changes seen with some of the P450-ligand associa-
tions are more difficult to analyze (e.g. Figs. 4, 7, and 8) and
probably preclude detailed analysis of the type done in Fig. 10
by varying the protein concentration (53).

In conclusion, we analyzed a number of human P450s that we
had interest in and were available in our laboratory. Some of the

4 M. J. Reddish and F. P. Guengerich, unpublished results.
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analyses were more difficult because of the weak spectral
changes observed upon binding, but these did show the
decrease in binding rates with increasing ligand concentration
that is characteristic of conformational-selection (53). P450
3A4 binding rates increased with substrate concentrations but
the detailed kinetic analysis with midazolam binding revealed a
conformation selection mechanism due to the discordance of
second-order rates of binding (Fig. 10E) (53). We conclude that
many of the human P450s appear to bind their substrates via a
conformational-selection mode.

Experimental procedures

Chemicals

Except for the synthesized chemical (see below), all others
were purchased from Sigma and used without further
purification.

Hexyl isonicotinate (isonicotinic acid hexyl ester)

Hexyl isonicotinate was synthesized by the condensation of
isonicotinic acid with 1-hexanol using 1-ethyl-3-(3-dimethyl-
aminopropyl)carbodiimide and 4-dimethylaminopyridine in
(CH3)2NCHO as described (17) in 66% yield: high resolution
MS: calculated for C12H18NO2

� 208.1332, found 208.1341, �4.3
ppm. UV 	max (CH3OH) 275 nm, �275 1,780 M�1 cm�1; 1H
NMR (400 MHz, CD2Cl2), 
 0.91 (t, 3H, �CH3), 1.3–1.4 (m, 8H,
-CH2-), 4.3 (t, 2H, -OCH2�), 7.85 (dd, 2H, H-3 (ring)), 8.75 (dd,
2H, H-2 (ring)).

Enzymes

Human P450s 2C8 (88), 2D6 (89), 2E1 (61), 3A4 (90, 91),
4A11 (27), and 21A2 (29) were expressed with C-terminal
oligo-His tags (and slightly modified N-terminal amino acid
sequences to improve expression) in Escherichia coli and puri-
fied to near electrophoretic homogeneity as described previ-
ously. All of these constructs have some truncation of the N
terminus, but our work (27, 29, 61, 88 –91) and that of others in
the field all show what are expected to be full catalytic activities
(92). With regard to the effect of truncation on conformation, it
is difficult to answer completely, in that in only one case in
which a crystal structure of a full-length mammalian P450 has
been reported (93) and with all of the P450 structures the N-ter-
minal tail is unstructured and has too much motion to be seen
in the crystals (21).

Measurement of kinetics of binding

All measurements were made using an OLIS RSM-1000
stopped-flow spectrophotometer (On-Line Instrument Sys-
tems, Bogart, GA) in the rapid scanning mode with a 20 � 4
mm cell, 1.24 mm slits, and 600 line/500 nm gratings at
23 °C. In the cases where P450 heme absorbance was high
(e.g. Fig. 10B, A418 
 1), a 4-mm path length cell (4 � 4 mm)
was utilized. For collection time periods of �4 s, data were
collected at 1000 scans/s. For time periods of �4 s, 62 scans/s
were collected in the signal averaging mode. The wavelength
range was 330 –570 nm.

The general measurement mode involved mixing one syringe
containing 2– 4 �M P450 (in 100 mM potassium phosphate

buffer, pH 7.4) with an equal volume of the same buffer con-
taining varying concentrations of substrate or other ligand.

The data were saved as Excel files and most were converted to
�Amax � Amin files (usually �A390–A418, except �A430–A410
with hexyl isonicotinate binding to P450 2E1). The resulting
Excel files were corrected to �At � 0 � 0 and saved as txt files
for import into the KinTek Explorer program.

Kinetic modeling

All work was done with KinTek Explorer� software (Kin-
tek, Snowshoe PA) using an Apple iMac OSX 10.13.6 system
and Explorer Version 8.0 (2018) (54). txt files were imported
directly into the program.

The general procedure involved an initial overall analysis a
family of traces of �A versus time (varying substrate concentra-
tion), with a series of single exponential fits for each. The indi-
vidual rates were plotted versus the substrate concentration.
This analysis was followed by a series of biexponential fits of all
traces and then plotting both rates (fast and slow phases) versus
substrate concentration. From these plots a conclusion was
reached whether the system followed a single 2-state or a more
complex model, based on whether a plot of the apparent rate
versus substrate concentration was linear.

Attempts were made to globally fit the data to either an
induced-fit model (Model 1, Equations 1 and 2),

E � S^ ES �k1, k�1) (Eq. 1)

ES^ E�S* �k2, k�2) (Eq. 2)

with E, P450; S, substrate; ES, initial substrate complex; E�S,
final substrate complex and only E�S being observed (*), or to a
conformational-selection model (Model 2, Equations 3 and 4),

E ^ E� �k1, k�1) (Eq. 3)

E� � S^ E�S* �k2, k�2) (Eq. 4)

with E and E� being alternate conformational forms of P450; S
being the substrate, and E�S being the only observed P450-sub-
strate complex (*) (Fig. 2).

Individual rate constants for both forward and reverse steps
and the � (the extinction coefficient) were adjusted manually to
obtain the most general fits with the various models, whereas
attempting to hold (i) the kon rate (E � S3 ES or E� � S3 E�S)
�0.5 � 106 M�1 s�1 if possible and (ii) matching the maximum
absorbance reached at the end of the reaction.
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