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Abstract
Glomerular arteriolar vasoconstriction and tubulointerstitial injury are observed before glomerular damage occurs in models of
hypertension. High interstitial ATP concentrations, caused by the increase in arterial pressure, alter renal mechanisms involved in
the long-term control of blood pressure, autoregulation of glomerular filtration rate and blood flow, tubuloglomerular feedback
(TGF) responses, and sodium excretion. Elevated ATP concentrations and augmented expression of P2X receptors have been
demonstrated under a genetic background or induction of hypertension with vasoconstrictor peptides. In addition to the alter-
ations of the microcirculation in the hypertensive kidney, the vascular actions of elevated intrarenal angiotensin II levels may be
mitigated by the administration of broad purinergic P2 antagonists or specific P2Y12, P2X1, and P2X7 receptor antagonists.
Furthermore, the prevention of tubulointerstitial infiltration with immunosuppressor compounds reduces the development of salt-
sensitive hypertension, indicating that tubulointerstitial inflammation is essential for the development and maintenance of
hypertension. Inflammatory cells also express abundant purinergic receptors, and their activation by ATP induces cytokine
and growth factor release that in turn contributes to augment tubulointerstitial inflammation. Collectively, the evidence suggests
a pathophysiological activation of purinergic P2 receptors in angiotensin-dependent hypertension. Coexistent increases in
intrarenal angiotensin II and activates Ang II AT1 receptors, which interacts with over-activated purinergic receptors in a complex
manner, suggesting convergence of their post-receptor signaling processes.
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Introduction

Renal injury in the setting of hypertension is thought to be
due, at least partially, to inappropriate renal hemodynamic
changes, which initially damage afferent arterioles and the
glomeruli, and eventually lead to tubulointerstitial

inflammation [1]. However, the inflammatory process pre-
cedes the glomerular injury [2], and it is currently recognized
as an early response leading to the development and persis-
tence of hypertension [3]. The infiltration of leukocytes, lym-
phocytes, and macrophages, along with smooth muscle cell
proliferation in afferent arterioles and myofibroblast-like cells
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in the tubulointerstitium induce renal dysfunction and sodium
and water retention, leading to salt-sensitive hypertension
[3–6]. Accumulating evidence indicates that activation of
purinergic receptors plays an important role in the pathophys-
iology of salt-sensitive hypertension by maintaining the pro-
duction of vasoactive mediators [7, 8], exacerbating
tubulointerstitial inflammation [9], and by impairing pressure
natriuresis [5].

Mechanisms of elevation of interstitial ATP

Sheer stress, particularly on endothelial cells, is an important
mediator of ATP release which increases intracellular calcium
concentrations [10, 11] by causing an influx of extracellular
calcium through P2X receptors and, where present, voltage
gated Ca++ channels [12, 13]. In elegant studies, Yamamoto
el al. [10] developed a chemiluminescence image method that
allowed the visualization of ATP release on the surface of
human cells from the pulmonary artery. When sheer stress
was induced, ATP was released from the entire surface of
the cell, and the ATP signals were higher at the edges of the
cells, which were rich in caveolin-1.

Under physiological conditions, there is a direct asso-
ciation between increases of renal perfusion pressure and
the autoregulatory associated rise of renal vascular resis-
tance with an augmentation of renal interstitial fluid ATP
concentrations [14]. In this context, high ATP concentra-
tions result from the stimulation of endothelial cells by
sheer stress, via activation of P2X4 receptors, along with
the tubuloglomerular feedback-mediated release of ATP
from the macula densa cells [15–17]. This association
suggests a relationship between high blood pressure and
sustained augmentation of interstitial ATP concentrations
[14 ] . Howeve r, t he in f l ammato ry ce l l s in the
tubulointestitium induce non-specific release of ATP in
response to cell injury and lymphocytes and macro-
phages’ release of cytokines and chemoattractant factors
that exacerbate the inflammatory process [18–20]. Under
this milieu, the elevated interstitial ATP concentrations
coincide with increased expression and atypical distribu-
tion of purinergic receptors [21]. The mechanisms in-
volved in the change of expression and localization of
the purinergic receptors remains unclear [22], but these
changes occur when tissues are under the influence of
hypoxia and inflammation.

Macula densa cells release ATP via a large conductance
anion channel located in the basolateral membrane in response
to increased NaCl concentration and other solutes in the tubu-
lar fluid [15]. In addition, connexins 37 and 40 allow ATP
release via gap junctions in the juxtaglomerular apparatus
[23], both could be associated with acute increases of ATP
concentrations in the renal interstitial fluid in a setting of
sustained high perfusion pressure [14, 16].

Purinergic receptors in hypertension

The activation of P2 receptors by increased concentrations of
ATP [24] has been demonstrated in the genesis and mainte-
nance of salt-sensitive hypertension [25] and angiotensin II
(Ang II)-induced hypertension [21, 24], which in turn contrib-
ute to salt-sensitive hypertension [4, 26–29]. Higher expres-
sion of P2X7 receptors has been demonstrated in the glomer-
uli of hypertensive renin transgenic rats [30], as well as in
Dahl salt-sensitive rats [25]. In addition, overexpression of
P2X1, P2Y1, P2X4, and P2X7 receptors was described in
the intrarenal arteries and afferent arterioles of angiotensin
II-infused hypertensive rats [21]. Purinergic P2 receptors are
essential for the regulation of several intrarenal mechanisms
that impact long-term control of blood pressure [31–33], such
as pressure natriuresis [29, 34–37], autoregulation of glomer-
ular filtration rate and blood flow [28, 38–41], and regulation
of sodium excretion [29, 36, 39]. Studies using Ang II-
induced hypertensive rats [9, 21, 24] have provided more ev-
idence supporting the importance of P2 receptors in the kid-
neys of hypertensive models and their possible interaction
with Ang II AT1 receptors [21, 28]. The glomerular microcir-
culation in this model is characterized by high afferent and
efferent arterial resistances, elevation of glomerular capillary
pressure, and reductions of glomerular blood flow and filtra-
tion coefficient, resulting in a diminished single-nephron glo-
merular filtration rate [21, 31]. While short-term elevations of
ATP levels in renal interstitium help to protect the intrarenal
microvasculature from pressure-induced injury and
hyperfiltration [14, 40, 41], the persistent intrarenal release
of nucleotides activates inflammatory pathways and
inflammasome NLRP3 and exerts proliferative responses in
vascular smooth muscle cells [42, 43] and interstitial cells,
resulting in hypertrophy and hyperplasia of renal arterioles
[7, 24]. Furthermore, ATP-mediated activation of the renal
interstitial inflammasome [44] would be a key step in the
initiation of the proliferative reaction and fibrosis that develop
during sustained hypertension. Such conditions are associated
with tubulointerstitial infiltration of lymphocytes and macro-
phages [45–47], glomerular mesangial cell proliferation [24],
myofibroblast expression, capillary rarefaction, and afferent
arteriolar hypertrophy [47]. It is likely that these abnormalities
are mediated by coexistent activation of Ang II AT1 receptors
and purinergic P2X receptors in a pathophysiological condi-
tion such as hypertension [21, 24, 47, 48].

In the hemodynamic pattern observed in the setting of Ang
II-dependent hypertension, the acute infusion of a broad P2
antagonist, such as PPADS (specific for P2X and P2Y recep-
tors), restored afferent and efferent resistances, glomerular
plasma flow, ultrafiltration coefficient, and single-nephron
glomerular filtration rate (SNGFR) to near normal values
[31]. In the same context, co-administration of PPADS or a
P2Y12 antagonist (clopidogrel), during the Ang II infusion,
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prevented the characteristic tubulointerstitial lesions and affer-
ent arteriolar hypertrophy [24]. PPADS and the P2Y12 antag-
onist inhibited clearly the effects of P2 and P2Y12 receptors
on renal hemodynamics [24, 31] and prevented renal injury
while renin activity and hypertension remained unchanged
[24]. Thus, the blockade of P2X or P2Y receptors have ben-
eficial effects in the glomerular microcirculation and reduce
renal damage [49] induced by chronic infusion of Ang II
without changes in systemic blood pressure [21].

Adverse effects of purinergic receptors
in the microcirculation in hypertension

Activation of P2X receptors has deleterious effects on the
renal circulation [35]. Among the P2X receptors, P2X1,
P2X4, P2X7, or P2X7/P2X4 trimers [50] have pro-
inflammatory activity [25, 51–53]; P2X7 is the most active
receptor in the release of cytokines such as IL1β, IL18,
TNFα, and MPC-1 [49, 52] which may have vasoactive prop-
erties that modify the glomerular microcirculation.

In Ang II-induced hypertension, Ang II concentrations
are high in the renal cortex, since the kidney captures the
circulating Ang II infused via a miniosmotic pump and
increases endogenous Ang II production [54]. Under these
conditions, acute blockade of P2X1 and P2X7 allowed
evaluation of the alterations in glomerular microcirculation
induced by Ang II [20]. The specific blockade of P2X1
(NF449) [55] and P2X7 (A438079) [56] returned the arte-
riolar resistances, plasma flow, Kf, and SNGFR to near
normal levels [21], (Fig. 1). The P2X1 [57, 58] and P2X7
receptors are located in the vascular smooth muscle cells of
renal vessels and are overexpressed in the AngII hyperten-
sive rats [21]; although vasodilation was induced by both
antagonists, they blocked different receptors on the same
vessels. In addition, the inhibition of P2X7 receptors in-
creased renal perfusion in the Ang II hypertensive rat [28]
and P2X7 deficiency reduced the renal injury in experi-
mental glomerulonephritis [59]. These findings support
an important post-receptor convergence between Ang II
and P2X receptor signaling pathways in the setting of hy-
pertension. The finding that both AT1 and P2X receptors
are activated simultaneously raises the issue of interactive
post receptor signaling which deserves to be studied fur-
ther (Fig. 2).

Pathways of AT1R and purinergic P2R post-receptor
convergence

The AT1 and P2X receptors represent a point of convergence
downstream of many signaling pathways for vasoconstriction
including PIP2-PLC-IP3 pathway, RhoA/ROCK-dependent
pathway, and voltage-dependent calcium channels (VDCC).
P2XR activation stimulates IP3 receptors in smooth muscle

cells and releases calcium from the endoplasmic reticulum
[60, 61]. Studies in the triple IP3 receptor knockout mice
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Fig. 1 Renal hemodynamics in rats that received 14 days of Angiotensin
II (Ang II) (435 ng/kg/min) during an acute infusion of P2X1 antagonist
(NF449) and a P2X7 antagonist (A438079). Only the groups that re-
ceived Ang II and the AngII + antagonists are shown. The dash line
represents the normal values obtained in a Sham rat + vehicle. As ob-
served, the groups that received the antagonists of P2X1 or P2X7 showed
a significant decrease of afferent and efferent arteriolar resistances (*<
from 0.05 to 0.01) the leads to a significant increase in renal plasma flow;
as a consequence of these changes, the single-nephron glomerular filtra-
tion rate returned to near normal values, similar to that of the Sham rat.
These data clearly demonstrate that in theAng II-dependent hypertension,
the renal vasoconstriction induced by Ang II is associated with an impor-
tant P2X1 and P2X7 receptor-mediated contribution. In addition, these
findings suggest a convergence of their post-receptor signaling pathways
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demonstrated that aortic contraction induced by Ang II is de-
creased due to the lack of IP3 receptor-activation, [62]. In
diabetic rats overexpressing P2X7 in several tissues [30, 63,
64], mesenteric contraction induced by ATP was completely
abolished by losartan [64]; these findings suggest the close
intracellular signaling crosstalk between both pathways.
These concepts are supported by studies in sensorial neurons,
in which xestoporin C (IP3 receptor antagonist), strongly
inhibited the BzATP-triggered [Ca2+]i [65], suggesting the
importance of IP3R receptors in the actions of BzATP (pref-
erentially stimulating P2X7R). Further studies from the same
neurons demonstrated that PPADS, (a broad purinergic antag-
onist) blocks the ATP-evoked intracellular Ca2+ release in-
duced by IP3R receptors [66].

The evidence mentioned above suggest that the IP3 recep-
tors have a common pathway shared during activation of AT1
and P2X receptors [61], which may explain why P2X antag-
onists are able to block the effects of Ang II in hypertensive
rats. In this regard, P2X receptors also mediate IP3 receptor-
dependent Ca2+ release by an intrinsic mechanism involving
phospholipase C, since phospholipase inhibition also de-
creases calcium release to a similar degree than those induced
byα,β,meATP production [67]. In addition, Gómez et al. [68]
proposed that Ang II induces cell damage via RhoA/ROCK-
dependent pathway, since the blockade of this pathway
prevented the increase of membrane permeability of
mesangial cells [68] and in vascular smooth muscle cells
[67] (Fig. 3). Rho-kinase inhibition prevented the Ang II-

Fig. 2 Proposed mechanism for the effect of the Ang II infusion during
14 days and the P2X1 and P2X7 induced vasoconstriction. Ang II
produces systemic hypertension and a rise of interstitial fluid
concentrations of ATP as well as Ang II. Renal vasoconstriction is
induced by both, a direct effect of Ang II and as a result of the
regulatory response to hypertension. Glomerular hemodynamics shows
an increase in afferent and efferent resistances (AR, ER) which leads to a
decrease of renal blood flow (GBF) and a reduced filtration coefficient
(KF); all these changes result in a fall of the single-nephron glomerular
filtration rate (SNGFR). The dotted lines represent the values in Sham rats
+ vehicle for comparison. These alterations induce renal ischemia leading
to an overexpression of P2X receptors in the smooth muscle cells of the

intrarenal arterioles. Concomitantly, tubulointerstitial inflammatory cell
infiltration results and intrarenal ATP is elevated leading to activation of
P2X receptors in the intrarenal arteries and on the surface of the inflam-
matory cells. Collectively, these changes results in cytokines, growth and
chemoattractant factors production, which exacerbate the inflammatory
infiltration and intensify renal vasoconstriction. Oxidative stress, in-
creases of adenosine (ADO), decreases in nitric oxide (NO), increases
in local production of Ang II, and stimulation of the sympathetic tone
(SNS) occur. These alterations modify sodium excretion and impair na-
triuresis, resulting in decreased Na+ excretion relative to the expected for
the elevation of blood pressure
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mediated augmentation o angiotensinogen in cultured
preglomerular vascular smooth muscle cells [68]. Inscho
et al. [69] used the juxtamedulla nephron preparation to dem-
onstrate that Rho-kinase-modulated autoregulatory adjust-
ments in renal microvascular resistance since Rho-kinase in-
hibition blunted afferent arteriolar responses to Ang II and
P2X1R agonists. Thus RhoA/ROCK-dependent pathway
may be an important point of convergence signaling.

In renal vascular smooth muscle cell, ATP activates
P2X1R-induced Ca++ entry via VDCC which then evokes
further IP3 receptor-mediated Ca2+ release from sarcoplasmic
reticulum [61]. Also, Ang II induced Ca2+ release from sarco-
plasmic reticulum and enhanced Ca2+ channel currents via
AT1R [70]. These data indicate that both, AT1R and P2XR,
share the voltage-dependent calcium channels (VDCC) sig-
naling pathway to elevate intracellular Ca2+ concentration.
Moreover, since the action of ATP to increase intracellular

calcium seems to be greater than the actions induced by Ang
II [68], it is reasonable to assume that ATP antagonists may
prevent the vasoconstriction induced by Ang II. However, this
crosstalk needs to be clarified with further studies at the cel-
lular level.

Inflammation and purinergic receptors

P2X1 receptors are located on intrarenal arteries as previously
described [57, 58], but P2X7 are overexpressed in the smooth
muscle of intrarenal arteries of Ang II-induced hypertensive
rats [21]. The stimulation of these receptors in the intrarenal
arteries and afferent arterioles by ATP explains the alterations
in glomerular hemodynamics observed in this model of hy-
pertension [21, 28].

When ATP is released from the cells through pannexin or
connexin hemichannels [23, 29], its concentration increases in

Fig. 3 Potential synergic interactions between purinergic P2X receptors
and AT1R receptors. ATP-activation of P2X receptors opens the ligand-
gated Na+/Ca2+ channel, inducing both, an increase of Ca2+ concentration
within the cytoplasm and local membrane depolarization. As a conse-
quence, the voltage-gated Ca2+ channels (VGCC) adopts its open confor-
mation that contributes to further increase the Ca2+ concentrations.
Simultaneously, the stimulation of AT1R by Ang II activates the phos-
pholipase C (PLC) and the RhoA/ROCK pathways. PLC pathway leads
to inositol-1,4,5-triphosphate (IP3) formation. IP3 in turn induces the
opening of the ligand-gated Ca2+ channels (IP3R) in the endoplasmic

reticulum. The increase of the Ca2+ concentration in the cytosol results
in a positive feedback of the ryanodine receptor (RyR). The overall effect
of the interaction of ATP and Ang II with their corresponding receptors is
a conveyance leading to an increase of Ca2+ concentration in the cytosol,
enough to induce muscular contraction with the consequent reduction of
the arteriolar diameter. On the other hand, the RhoA/ROCK pathway
leads to phosphorylation of myosin phosphatase target subunit (P-
MYPT) thus inhibiting the activity of myosin light chain phosphatase
(MLCP), with the consequent vascular smooth muscle cell (VSMC)
contractility
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the interstitial space; if the elevatedATP levels are sustained by
a continuous production and release, it becomes one of the
main promoters of inflammation associated with tissue injury
[71, 72], which occurs in ischemia, hypoxia, and necrotic or
apoptotic processes [53, 73]. Furthermore, inflammatory cells
express P2X and P2Y receptors (P2X7, P2X1, P2X4, P2Y2,
P2Y6, and P2Y12) [74, 75] and ATP functions as a chemotac-
tic signal for phagocytes by activation of purinergic receptors
in the inflammatory cells. Acute increases of extracellular ATP
induceROS production and further release ofATP [51, 75, 76].

During acute inflammation, the extracellular concentra-
tions of ATP are limited by ectoenzymes (apyrase, ATPase,
alkaline phosphatase, ectonucleotidases, etc.) that metabolize
ATP to ADP and adenosine [75, 77]. Such enzymatic activi-
ties contribute to the resolution of the inflammatory process
[71, 78, 79]. However, in Ang II-induced hypertension, a de-
crease of ecto-adenosine deaminase is associated with elevat-
ed adenosine concentrations [7], which could induce an im-
balance between A1 and A2 receptor activation that may in-
fluence the vasoconstriction induced by Ang II and ATP, since
adenosine A1 receptors induce vasoconstriction and A2 in-
duce vasodilation [7, 80]. In the kidney, A1 receptors are
activated at low concentrations of adenosine, but A2 receptors
are predominantly activated at higher concentrations and in-
duce vasodilation [80].

Nevertheless, the effects of chronic elevation of extracellu-
lar renal ATP in the tubulointerstitium remain incompletely
understood [3, 78]. The relevance of tubulointerstitial inflam-
mation becomes evident when the infiltration of lymphocytes
and macrophages is prevented in different models of hyper-
tension [24, 81, 82]. Administration of immunosuppressors
(i.e., mycophenolate mofetil) [5, 9, 81], antinflammatory com-
pounds, or genetic manipulation [46, 72, 83] are associated
with reduction of tubulointerstitial inflammation and de-
creased renal injury [46, 84, 85]. A common finding with
these treatments is the prevention of blood pressure elevation
[4, 86]. For instance, the interruption of co-administration of
Ang II and mycophenolate mofetil after 14 days, followed by
5 weeks high-salt diet administration, modifies glomerular
hemodynamics, particularly the increases in afferent and ef-
ferent resistances. However, the other determinants of single-
nephron glomerular filtration rate returned to near normal
levels, associated with a signif icant decrease of
tubulointertitial infiltration and prevention of salt sensitive
hypertension [9, 46, 86].

The available data provide the basis for proposing a com-
pelling pathophysiological mechanism for the development of
hypertension and sensitivity to salt. In a setting of hyperactiv-
ity of the sympathetic nervous system, stimulation of the
renin-angiotensin system as well as a genetic susceptibility
to hypertension [25, 85], an elevation of blood pressure above
the upper limit of the renal autoregulatory mechanism leads to
increases in interstitial fluid ATP concentrations and gradually

to subtle injury. The transmission of the elevated blood pres-
sure to the peritubular capillaries disrupts the capillary walls,
allowing the leak of plasma and leucocytes into the
tubulointerstitial space. Leucocytes subsequently mediate lo-
cal inflammation [19, 87], which in turn, induces microvascu-
lar and tubulointerstitial injury, as well as capillary rarefaction
[46]. These alterations produce focal ischemia, release of in-
terleukins, and upregulation of adhesion molecules followed
by more infiltration of monocytes, perpetuating the inflamma-
tory response [84, 87]. In the presence of this milieu, the
effects of elevated Ang II and ATP [24] and tubulointerstitial
inflammation are critical factors for the progression to salt-
sensitive hypertension [5, 47, 83, 88, 89], since they enhance
the sensitivity of tubuloglomerular feedback and sodium re-
tention [36, 90].

While blood pressure increases, cortical and medullary per-
fusion return to normal levels and tubular ischemia is allevi-
ated [3]. Concomitant with these changes, the increase in
blood flow stimulates nitric oxide production in the arteries,
which then improves sodium excretion [28]; the blood pres-
sure remains elevated as a result of the tubulointerstitial alter-
ations mentioned above [3], whereas the pressure-natriuresis
slope remains suppressed and [5], salt-sensitive hypertension
develops since elevated blood pressure is necessary to main-
tain normal sodium excretion and preserve Na+ homeostasis
[5, 9, 36]. Thus, tubulointerstitial injury without glomerular
damage is a common feature during the early stages of salt-
sensitive hypertension [9]. Vascular resistance initially in-
creases in response to high blood pressure and afferent arteri-
olar hypertrophy ensues. In spite of these adaptive changes,
hyperperfusion and glomerular hypertension is not completely
normalized leading to damage to the glomerular capillary net-
work with further decline in sodium excretion [91, 92].

Conclusions

Hypertension and renal vasoconstriction induce hypoxia, ox-
idative stress, autoimmunity, and inflammation, which are in-
volved in the pathophysiological mechanisms that induce salt
sensitivity. The particular combination of factors such as ele-
vated sheer stress, high interstitial ATP concentration, activa-
tion of P2 receptors, and elevated renal interstitial Ang II
collectively lead to the release of interleukins and growth fac-
tors all contributing to the development of hypertensive renal
injury. In addition, the evidence presented in this review sug-
gests that purinergic antagonists may help prevent the progres-
sion of renal damage to chronic kidney disease in hypertensive
patients.
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