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Non-Abelian gauge field optics
Yuntian Chen1,2,6, Ruo-Yang Zhang3,6, Zhongfei Xiong1, Zhi Hong Hang4, Jensen Li3, Jian Qi Shen5 & C.T. Chan3

The concept of gauge field is a cornerstone of modern physics and the synthetic gauge field

has emerged as a new way to manipulate particles in many disciplines. In optics, several

schemes of Abelian synthetic gauge fields have been proposed. Here, we introduce a new

platform for realizing synthetic SU(2) non-Abelian gauge fields acting on two-dimensional

optical waves in a wide class of anisotropic materials and discover novel phenomena. We

show that a virtual non-Abelian Lorentz force arising from material anisotropy can induce

light beams to travel along Zitterbewegung trajectories even in homogeneous media. We

further design an optical non-Abelian Aharonov–Bohm system which results in the exotic

spin density interference effect. We can extract the Wilson loop of an arbitrary closed optical

path from a series of gauge fixed points in the interference fringes. Our scheme offers a new

route to study SU(2) gauge field related physics using optics.
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Gauge fields originated from classical electromagnetism,
and have become the kernel of fundamental physics after
being extended to non-Abelian by Yang and Mills1. Apart

from real gauge bosons, emergent gauge fields in either real2 or
parameter spaces3,4 have recently been widely used to elucidate
the complicated dynamics in a variety of physical systems5,
including electronic6,7, ultracold atom8–10, and photonic11–31

systems. The geometric nature32 of gauge theory makes it a
powerful tool for studying the topological phases of matter33–36.

The concept of emergent gauge fields has offered us new
insights in optics and photonics, such as the manifestation of the
gauge structure (Berry connection and curvature) in momentum
space11–16. Artificial gauge fields realized by breaking time
reversal symmetry with magnetic effects17–19 or dynamic mod-
ulation21–23 have given rise to new paradigms for controlling light
trajectories in real space. Even for time-reversal-invariant sys-
tems, a pair of virtual magnetic fields—each being the time-
reversed partner of the other—can be generated using methods,
such as coupled optical resonators20, engineering lattices with
strain24,25, or reciprocal metamaterials26–30. However, except for
a few works revealing the non-Abelian gauge structure in
momentum space13,14,16, all of these schemes of synthetic gauge
fields in real space are restricted to the Abelian type.

Recently, anisotropic metamaterials were used to manipulate
light through artificial Abelian gauge fields27–30. It was demon-
strated that the off-diagonal components of permittivity and
permeability appear as a pair of “spin-dependent” vector poten-
tials in the two-dimensional (2D) wave equation for certain
anisotropic media. Though the material parameters are subjected
to strong restriction in this scheme, the internal pseudo-spin
degree of freedom implies the possible generalization to a syn-
thetic non-Abelian gauge field theory for light by coupling the
spin-up and spin-down states.

In this work, we discover that the transport of optical waves in
a wide class of anisotropic media can be associated with an
emergent 2D non-Abelian SU(2) gauge interaction in real space,
enabling us to obtain the first scheme for realizing synthetic non-
Abelian gauge field for classical waves. Contrary to intuition, we
show that a more exotic general SU(2) gauge framework can
manifest in 2D optical dynamics, provided the restriction on the
material parameters employed in refs. 27–30 is relaxed. Our plat-
form presents broader applicability and allows the study of novel
optical phenomena not found in Abelian synthetic gauge field
systems. We illustrate our idea with two examples. The first
example is the Zitterbewegung (ZB) of light in homogeneous
non-Abelian media, which refers to the trembling motion of wave
packets37. ZB has been realized in systems possessing Dirac dis-
persion38–43, but we will see that ZB of light can arise from a
distinctly different mechanism: emergent non-Abelian Lorentz
force. In the second example, we propose for the first time a
concrete design of a genuine non-Abelian Aharonov–Bohm (AB)
system44 using two synthetic non-Abelian vortices, and reveal
that the noncommutativity of winding around the two vortices
gives rise to nontrivial interference results. In particular, we show
that there exists a series of fixed points in the interference fringes
invariant under gauge transformation, from which we can obtain
the Wilson loops of the closed path concatenated by the two
interfering optical paths. As evidenced by the examples, our
scheme offers a fresh angle to understand the dynamic effects of
light in anisotropic media, and also suggests an optical approach
to probe new physics accompanied by SU(2) gauge fields.

Results
Non-Abelian gauge fields acting on light. Our scheme focuses
on 2D propagating optical waves in nondissipative anisotropic

media characterized by the permittivity and permeability tensors:

ð1Þ

Here, all of the parameters depend on x, y; the diagonal blocks
ε
$
T , μ

$
T , εz , μz are real numbers, while the off-block-diagonal

components gi ¼ ðgi x; gi yÞ> ¼ gi xex þ gi yey (i= 1, 2) are in-
plane complex vectors whose imaginary parts could be induced
by the gyrotropic effect with in-plane gyration vectors. The only
constraint on the media is the “in-plane duality”, ε

$
T ¼ αμ

$
T ,

where α is a positive constant. For simplicity, we set α= 1 in the
following, and α ≠ 1 results can be obtained directly by redefining
ε0 ! αε0. Under this constraint, the in-plane monochromatic
wave equation of frequency ω can be written as

Ĥ ψj i ¼ 1
2
ðp̂� ÂÞ � m$�1 � ðp̂� ÂÞ � Â0 þ V0

� �
ψj i ¼ 0: ð2Þ

Here ψj i ¼ ðEz; η0HzÞ> η0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p� �
serves as a two-

component wave function, and Ĥ resembles the Hamiltonian of
a non-relativistic spin-1/2 particle traveling in SU(2) non-Abelian
gauge potentials45, where bp ¼ �i σ̂0∂iei (i= 1, 2) is the canonical

momentum operator with σ̂0 being the 2D identity matrix, m
$ ¼

ε
$�1
T detð ε$TÞ=2 represents an effective anisotropic mass, in

particular, Â ¼ A1σ̂1 þA2σ̂2 and Â0 ¼ Aa
0σ̂a (σ̂a (a= 1, 2, 3)

are Pauli matrices) can be interpreted as emergent non-Abelian
vector and scalar potentials, respectively, and V0 is an additional
Abelian scalar potential. As shown in Table 1, the emergent gauge
potentials are determined by the material parameters, especially,
the vector potential directly corresponds to the off-diagonal terms
of ε

$
and μ

$
. This correspondence can be intuitively understood

from the SU(2) gauge covariance of 2D Maxwell equations (see
the “Methods” section), and the detailed derivation of Eq. (2) is
given in the Supplementary Note 1. Thereby, in this broad class of
anisotropic media, the materials’ influence on the 2D optical
waves imitates a SU(2) gauge interaction. Furthermore, if the
background media are extended to be bi-anisotropic materials, a
complete construction of Uð2Þ ¼ SUð2ÞUð1Þ gauge fields for light
can be achieved (see Supplementary Note 1).

The emergent SU(2) gauge potential fÂμg ¼ fÂ0; Âg induces
a synthetic SU(2) gauge field acting on light:

F̂ μν ¼ i½D̂μ; D̂ν � ¼ ∂μÂν � ∂νÂμ � i½Âμ; Âν �; ð3Þ

where D̂μ ¼ σ̂0∂μ � iÂμ (μ= 0, 1, 2) is the covariant derivative.
Analogous to real electromagnetic (EM) fields, the synthetic SU

Table 1 The expressions of the synthetic SU(2) and U(1)
gauge potentials in terms of the constitutive parameters of
the non-Abelian media

SU(2) Vector potential
Â ¼ Aaσ̂a

A1 ¼ k0Re g�
� �

´ eza
A2 ¼ k0Im g�

� �
´ ez

A3 ¼ 0
Scalar potential
Â0 ¼ Aa

0σ̂a

A1
0 ¼ k0ez � ∇ ´ ε

$�1

T � Im gþ
� �� �h i

A2
0 ¼ �k0 ez � ∇ ´ ε

$�1

T � Re gþ
� �� �h i

A3
0 ¼ k20

εz�μz
2 � 2 Re gy� � ε$�1

T � gþ
� �h i

U(1) Scalar potential V0 ¼ k20 gyþ � ε$�1

T � gþ
� �

� εzþμz
2

h i
aHere k0 ¼ ω=c is the vacuum wave number, and g± ¼ ðg1 ± g�2Þ=2.
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(2) gauge field can be separated into a non-Abelian magnetic field
B̂ ¼ 1

2 ϵ
ijF̂ ijez along the z-axis and a non-Abelian in-plane electric

field Ê ¼ �F̂ 0iei, which are associated with the gauge potential as

B̂ ¼ ∇ ´ Â � iÂ ´ Â; Ê ¼ ∇Â0 þ i½Â0; Â�: ð4Þ
The second terms of B̂, Ê cannot be found in the Abelian case

since they are induced entirely by the noncommutativity of the
non-Abelian gauge potential. Indeed, a matrix-valued gauge
potential would not be regarded as (apparently) non-Abelian,
unless some of its components do not commute with each other
½Âμ; Âν�≠010. For instance, the scheme in ref. 27 is actually a
specific reduction of ours with the strict constraints on the media
that (i) g1 ¼ �g2 being real and (ii) εz ¼ μz . In this case, the
vector potential only has σ̂1 component Â ¼ A1σ̂1 and the scalar
potential Â0 vanishes. As such, ½Âi; Âj� � 0, and the gauge group
is reduced to the Abelian subgroup Uð1Þ of SUð2Þ. In general, if
Eq. (2) has any U(1) spin rotation symmetry, which means

ÛĤÛy ¼ Ĥ for Û ¼ exp iϕ~n � ~̂σ
� �

with a parameter ϕ, the gauge

potential would be reducible. Hence, only for those materials that
can imitate irreducible SU(2) gauge potentials, we call them non-
Abelian media.

The two-component wave function of light jψi behaves like a
spin-1/2 spinor with the pseudo-spin at a local point

~s ¼ hψj~̂σjψi=jψj2; ð5Þ
where the overhead arrow indicates a vector in the pseudo-spin
space, and hψj~̂σjψi gives the local spin density. The frame f~eag in
the pseudo-spin space can be chosen arbitrarily. The rotation of
the frame corresponds to a gauge transformation of spinor
jψ′i ¼ ÛðrÞjψi, where in general ÛðrÞ is a space-varying SU(2)
matrix. By substituting jψ′i into Eq. (2), one can easily check that
the wave equation is gauge covariant as long as the material is
transformed accordingly (see Supplementary Note 2), while the
synthetic gauge potentials and fields obey the gauge transforma-
tions

Â′
μ ¼ ÛÂμÛ

y þ iÛ∂μÛ
y; ð6Þ

B̂′ ¼ ÛB̂Ûy; Ê′ ¼ Û ÊÛy: ð7Þ
In addition, it is worth comparing the present idea of non-

Abelian gauge field optics (NAGFO) with the transformation
optics (TO)46–50. When TO is applied to design invisibility
cloaks, it results in anisotropic media whose permittivity and
permeability are real and equal ε

$ ¼ μ
$46,47. Due to the equivalence

of the constitutive tensor and the metric of a curved spacetime for
light, such kind of duality symmetric materials can also be used to
mimic gravitational effects49–53. In contrast to TO, NAGFO
involves a more general class of complex-valued media respecting
in-plane duality symmetry. The in-plane block ε

$
T of permittivity,

which determines the effective mass in Eq. (2), can alternatively
be equated to the metric of a virtual 2D curved space as with TO,
whereas, apart from ε

$
T , all the remaining components of ε

$
and μ

$

contribute to the synthetic SU(2) gauge potentials. Therefore,
NAGFO proposes an optical way to simulate the 2D spinor
systems under both a SU(2) gauge interaction and the influence
of a curved space. To highlight the effects stemming purely from
the non-Abelian gauge interaction, we will hereinafter concen-

trate on the simplified scenario that ε
$
T ¼ εT I

$
2 ´ 2 is isotropic and

homogeneous. As such, the virtual 2D background space is
trivialized to be flat, and the effective mass is reduced to
m ¼ εT=2.

Zitterbewegung of optical beams. The wave packet dynamics in
homogeneous media can give the most straightforward effect
distinguishing the non-Abelian media from the Abelian type. The
effective Abelian electric and magnetic fields vanish in homo-
geneous media27, whereas the non-Abelian fields persist due to
the noncommutativity of Âμ. In our case, B̂ ¼ Bσ̂3 with

B ¼ ik20ðg� ´ g��Þ, and Ê ¼ 2A3
0 A2σ̂1 �A1σ̂2
� �

. We consider the
propagation of 2D optical beams in homogeneous non-Abelian
media. In general, there are two non-degenerate branches of
plane wave eigenstates. Because the two eigenstates of a certain
direction of wave vector k are always orthogonal, their pseudo-
spins correspond to a pair of antipodal points on the Bloch
sphere. Generally speaking, the non-degenerate eigenmodes
would evolves independently along different semiclassical tra-
jectories. However, if the two eigenstates for a particular direction
of k are quasi-degenerate, in the overlapped region, their super-
posed wave can be viewed as an intact “semiclassical particle”
with an internal spin degree of freedom, whose centroid trajectory
follows the Hamilton’s canonical equations (see the “Methods”
section)

d
dτ
hbpi ¼ i ½Ĥ;bp�	 
 � 0 ) hp̂i � k; ð8Þ

d
dτ
hbri ¼ hbvi ¼ 1

m
ðk �Aahσ̂aiÞ: ð9Þ

Here bv ¼ d
dτ r̂ ¼ i½Ĥ; r̂� ¼ ðp̂� ÂÞ=m is the velocity operator, τ

represents path parameter along the beam, and hâiðr0Þ ¼R
dr?ψ

yðr0 þ r?Þâðr0 þ r?Þψðr0 þ r?Þ means the expectation
value of an operator â averaged over the transverse cross section
of a point r0 along an optical beam, differing from the local
expectation value hψjâjψiðrÞ ¼ ψyðrÞâðrÞψðrÞ. According to Eq.
(8), the canonical momentum along the beam is conserved, and is
equal to the quasi-degenerate eigen wave vector k (see Eq. (39)).
Moreover, it turns out that the in-plane projection of the total
energy flux over the transverse cross section of the beam is always
parallel to the velocity given by Eq. (9) (see proof in the section
“Methods”), therefore the canonical equations do describe the
path of energy propagation. Along the optical beam, the pseudo-
spin~s ¼ h~̂σi undergoes precession as follows:

d
dτ
~s ¼ ih½Ĥ;~̂σ �i ¼ ~Ω ´~s; ð10Þ

where ~Ω ¼ �2 Aa
0 þ 1

m k � Aa� �
~ea is the precession angular

velocity. During precession, the pseudo-spin component parallel
to ~Ω is conserved.

In terms of Eqs. (8–10), we arrive at the Newton-type equation
of motion where a virtual non-Abelian Lorentz force10,45

associated with the non-Abelian fields emerges

m d2

dτ2 hr̂i ¼ 1
2 hv̂ ´ B̂ þ B̂ ´ v̂i þ hÊi

¼ ĥjσ̂3i ´B þ E
ahσ̂ai;

ð11Þ

Here,bjσ̂3 ¼ 1
2 bvσ̂3 þ σ̂3bvð Þ ¼ 1

mbpσ̂3 represents the σ̂3-component
of the linear spin current operator54, thus the non-Abelian
Lorentz force can also be regarded as a spin-induced force with a
magnetic part acting on the spin current and an electric part
acting on the average spin over the transverse cross sections of the
beam. In particular, the magnetic part of the force, f σ̂3 ¼ hbjσ̂3i ´B,
duplicates the “spin transverse force” in electronics which acts on
an electronic spin current exerted by a vertical electric field54.
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The integration of either the canonical equations or Eq. (11)
yields the intensity centroid trajectory of the beam

hbri ¼ 1
m k �Aas0a þ 1

Ω2 FaϵabcΩ
bs0

c
h i

τ

� Fa

mΩ2 ðcosðτΩÞ � 1Þδac þ sinðτΩÞ
Ω ϵabcΩ

b
h i

s0
c;

ð12Þ

where Fa ¼ ð~Ω ´ ÂÞa ¼ Ea þ k ´Ba=m, Ω ¼ j~Ωj, ~s0 represents
the initial spin, ϵabc is the Levi–Civita symbol, and the initial
position of the beam is assumed at hbri0 ¼ 0. The first line of the
equation refers to a straight path, while the second line shows that
the beam oscillates around the equilibrium path periodically. As a
result, the emergent non-Abelian Lorentz force may lead to wavy
trajectories for optical beams propagating in the non-Abelian
media. This phenomenon resembles the ZB effect of Dirac
particles37. According to Eq. (12), the trembling motion of light
depends not only on the non-Abelian gauge fields but also on the
initial spin~s0 of the beam. If the initial state is purely one of the
eigenmodes with the wave vector in k direction, i.e.,~s0 is along
~ΩðkÞ, the trembling term in Eq. (12) will vanish. This implies the
present ZB effect stems from the interference of the two quasi-
degenerate eigenmodes just as electronic ZB is caused by the
superposition of positive and negative energy components (see
Supplementary Note 3).

In recent years, ZB has been investigated for spin–orbit
coupled atoms38,39 and photons40–43. However, unlike most
schemes of ZB for light realized in periodic systems40–42, our
result shows that light can travel along curved paths even if the
background medium is homogeneous. At first glance, this
counterintuitive curved trajectory seems to violate the momen-
tum conservation in translation invariant systems. However, it is
well known that the kinetic momentum associated with centroid
movement can be different from the canonical momentum for a
particle traveling in a background vector potential. This
conclusion is also valid for our situation. As shown in Eqs. (8)
and (9), the semiclassical canonical momentum hbpi is always
conserved in homogeneous media, while the kinetic momentum
mhbvi deviates from hbpi and can change along the path by virtue
of the synthetic non-Abelian potential Â. A more rigorous
analysis shows that the conserved quantity protected by space
translational symmetry in generic non-Abelian media is the time-
averaged Minkowski-type momentum

R
d3x Re D� ´Bð Þ, while the

centroid motion corresponds to the Abraham-type momentumR
d3x Re E� ´Hð Þ=c2.

Example I: ZB induced by non-Abelian magnetic field.
According to the theory, the ZB effect for monochromatic beams
can be generated by either non-Abelian magnetic fields or non-
Abelian electric fields. In Fig. 1a–e, we first show an example of
ZB induced solely by a non-Abelian magnetic field. To realize
nonzero B̂ but vanishing Ê, we let the medium satisfy εz ¼ μz ,
g1 ¼ �g�2 ¼ ð�iA2

y=k0;A1
x=k0Þ>, then the synthetic SU(2) mag-

netic field in this medium is given by B̂ ¼ 2A1
xA2

yez σ̂3. The iso-
frequency surfaces of eigenmodes are illustrated in Fig. 1a. Along
the kx direction, the two eigenstates are j!i ¼ ð1; 1Þ>= ffiffiffi

2
p

and
j i ¼ ð1;�1Þ>= ffiffiffi

2
p

with the wave vectors

k ± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εTεz � ðA2

yÞ2
q

±A1
x

h i
ex , and their pseudo-spins are

polarized along the σ̂1-axis, as labeled on the Bloch sphere in

Fig. 1c. As long as jA1
xj � k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εTεz � ðA2

yÞ2
q

, the quasi-

degenerate approximation is valid for beams incident from x
direction. In this case, the precession angular velocity is
~Ω ¼ �4kA1

x=εT~e1, so the pseudo-spin will precess about the

σ̂1-axis. For the initial spin~s0 ¼ ðcosθ0; sinθ0cosϕ0; sinθ0sinϕ0Þ>
at an angle θ0 from σ̂1-axis, we can obtain the centroid trajectory
of the beam by eliminating the ray parameter τ in Eq. (12),

yðxÞ ¼ YZB sinðkZBðx � x0Þ � ϕ0Þ þ sinϕ0
� �

; ð13Þ
where x, y are the coordinates of centroid. The ZB amplitude

YZB ¼
�A2

y sinθ0
2kA1

x

¼ �A2
y sinθ0

2A1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εTεz � ðA2

yÞ2
q ð14Þ

is proportional to sinθ0, so ZB reaches the maximum when the
initial spin~s0 is perpendicular to ~Ω, corresponding to the equal-
weighted superposition of the two eigenmodes. Meanwhile, the
ZB wave number

kZB ¼
2kA1

x

k�A1
xcosθ0

� 2A1
x ¼ kþ � k� ð15Þ

is equal to the difference of the two eigen wave vectors, showing
that ZB originates from the beating between the two eigenstates.
Yet we should emphasize the phase beating is not a sufficient
condition to realize ZB, and the ZB amplitude cannot be obtained
without the knowledge of the non-Abelian dynamics. For
instance, if A2

y ¼ 0 in the present medium, the beat of the two
states persists, however, as the medium is relegated to the
Abelian-type with B̂ ¼ 0, ZB just disappears.

We have performed the full-wave simulation of a Gaussian
beam propagating in this medium using COMSOL Multiphysics.
The beam is emitted along x-direction and the angle between its
initial spin and σ̂1-axis is set as θ0 ¼ 0:43π. Figure 1b shows the
k-space Fourier amplitude of the simulated wave function ψ, the
two peaks in the spectrum manifest that the beam is mainly
comprised of the two eigenstates |→〉 and j i. The numerical
time-averaged energy densities plotted in Fig. 1d show clearly a
transverse tremor along the beam. As shown in Fig. 1e, the
centroid trajectory extracted from the full-wave result agrees
perfectly with the analytical expression in Eq. (13). And according
to the numerical data of the pseudo-spins in one ZB period
shown in Fig. 1c, the spin precession about the σ̂1-axis is also
demonstrated.

Example II: ZB induced by non-Abelian electric field. In the
previous example, the non-Abelian medium contains both
gyroelectric and gyromagnetic components. In fact, the synthetic
non-Abelian gauge fields as well as ZB can be simply realized with
reciprocal media without gyrotropy. Here, we elaborate on syn-
thesizing non-Abelian electric field with a biaxial non-magnetic
material and the ZB effect in it.

We consider a non-magnetic material with the biaxial

permittivity eε$=ε0 ¼ diagðε1; ε2; ε3Þ ε1<ε2<ε3ð Þ along the principal
axis and the permeability μ=μ0 ¼ 1. If the second principal axis of
ε
$
is fixed along the y-axis, while the first principal axis is rotated

by an angle φ with respect to the x-axis such that cos2φ ε1 þ
sin2φ ε3 ¼ ε2 jφj<π=2ð Þ as shown in Fig. 1f, the permittivity
tensor in the xyz coordinate system is given by

ð16Þ

with εz ¼ ε1 þ ε3 � ε2 and g ¼ sgnðφÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðε2 � ε1Þðε3 � ε2Þ
p

. Since
the in-plane duality condition is satisfied as εT ¼ ε2μT (μT ¼ 1),
by rescaling the vacuum permittivity ε′0 ¼ ε2ε0, we obtain the
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synthetic gauge potentials

Â ¼ � k0 g
2
ffiffiffiffi
ε2
p ey σ̂1; Â0 ¼ k20

ε1ε3 � ε22
2ε2

σ̂3; ð17Þ

and a uniform non-Abelian electric field polarized along the
second principal axis

Ê ¼ k30
g ðε1ε3 � ε22Þ

2 ε3=22

ey σ̂2: ð18Þ

The two eigenstates in the x-direction are j"i ¼ ð1; 0Þ> and
j#i ¼ ð0; 1Þ> corresponding to the two poles along the σ̂3-axis on
the Bloch sphere (see Fig. 1h), the eigen wave vectors are k" ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε1ε3=ε2
p

k0 ex and k# ¼ ffiffiffiffi
ε2
p

k0 ex respectively. Providing that
j ffiffiffiffiffiffiffiffiε1ε3
p

=ε2 � 1j is small enough, the centroid trajectory of a beam
mainly consisting of these two states satisfies

yðxÞ ¼ YZB sinðkZBðx � x0Þ þ ϕ0Þ � sinϕ0
� �

; ð19Þ
where θ0, ϕ0 are the Euler angles of the initial spin

~s0 ¼ ðsinθ0cosϕ0; sinθ0sinϕ0; cosθ0Þ>, the ZB amplitude is

YZB ¼
A1

y sinθ0
A3

0

¼
ffiffiffiffi
ε2
p

g sinθ0
k0ðε22 � ε1ε3Þ

; ð20Þ

and the ZB wave number

kZB ¼
k20ðε2 � ε1ε3=ε2Þ

2k
¼ k2# � k2"

2k
� k# � k" ð21Þ

is still determined by the beating of the two eigenstates. In the
full-wave simulation of Fig. 1i, we obtained a trembling beam
(also see Fig. 1g for its Fourier spectrum) where the decay of
intensity along the beam is due to the beam divergence, the
extracted centroid trajectory faithfully reproduces the analytic
prediction of Eq. (19), shown by Fig. 1j. In Fig. 1h, the numerical
spin trajectory on the Bloch sphere also verifies that the pseudo-
spin precesses about the σ̂3-axis.

In principle, the ZB effect induced by non-Abelian electric
field can be observed in any natural and artificial biaxial non-
magnetic materials. Here, we designed a simple metamaterial
structure with the unit cell shown in Fig. 2a for realizing ZB in
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Fig. 1 Zitterbewegung effect in homogeneous non-Abelian media. a–e ZB induced by a synthetic non-Abelian magnetic field in a gyrotropic medium with
the parameters ε

$
T ¼ μ

$
T ¼ 1:5 I

$
2´ 2, εz ¼ μz ¼ 1:5, g1 ¼ �g�2 ¼ ð0:3i;�0:07Þ>. This medium produces a synthetic SU(2) magnetic field along z direction,

B̂ ¼ �k20 0:042ezσ̂3, with a null SU(2) electric field Ê ¼ 0. f–j ZB induced by a synthetic non-Abelian electric field in a biaxial non-magnetic medium with
the parameters ε1 ¼ 1:65, ε2 ¼ 2:45, ε3 ¼ 3, and μ=μ0 ¼ 1. The synthetic SUð2Þ electric field, Ê ¼ �k30 0:08919 ey σ̂2, is along the y-aixs, while the SU(2)
magnetic field vanishes B̂ ¼ 0. a, f The isofrequency surfaces and their xy cross sections (red and blue curves) of both cases. The green arrows in f are the
three principal axes 1, 2, 3 of permittivity tensor. b, g Fourier spectra in k-space of the beams in the two media. In each case, the two peaks in the spectrum
correspond to the two eigenmodes with wave vectors in the x direction. And the average wave vectors k are marked by the black arrows. c, h The spin
precession along each beam on the Bloch sphere. The colored dots are the numerical data within one ZB period. d, i Full-wave simulated intensity
distributions, where the beam waists equal 4:4λ0 and 6:2λ0, respectively (λ0 ¼ 2π=k0 is the wavelength in vacuum). e, j Numerical (black circles) and
analytical (red curves) trajectories of the intensity centroid
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microwave regime. The copper strips on printed circuit board
(PCB) layers support strong and anisotropic electric dipole
resonances along principal axes labeled as 1, 2. Consequently,
all the three principal values εi ði ¼ 1; 2; 3Þ of the effective
permittivity are different, and their dispersions obtained by S-
parameter retrieval approach55 are plotted in Fig. 2b. According
to our theory, the ZB beams should travel in the xy plane whose
orientation is determined by εi and thus is frequency-
dependent. As an example, we compared in Fig. 2c the
isofrequency contours in xy-plane of the real structure and
that of the homogenized medium at 12 GHz. Their perfect
consistency confirms the retrieval result. To test the ZB effect in
the metamaterial, we numerically simulated the ZB beams with
a constant waist of 0.2 m propagating along x-direction in the
retrieved media at some discrete frequencies and extracted the
ZB amplitudes YZB and ZB wave numbers kZB. We find good
agreement with the theoretical predictions given by Eqs. (20)
and (21) as shown in Fig. 2d. Notably, both of the ZB amplitude
and period tend to infinity at a singular frequency
f ¼ 16:68GHz, due to the fact that ε1ε3 ¼ ε22 is accidentally
satisfied at the frequency such that the material is reduced to
Abelian type with Ê ¼ 0, and the beam splits into two
branches30. We have also analyzed the finite width effect of
the beam in the z-direction, and the analysis demonstrates that
the 2D theory works well in the region where the two
eigenmodes do not split away along the z-axis (see Supple-
mentary Note 4).

Non-Abelian Aharonov–Bohm system for light. ZB discussed in
the previous section can be viewed as the interference between
two eigenmodes, each of which evolves with Abelian dynamics. In
this sense, ZB is an apparent non-Abelian effect. Next, we will
introduce the genuine non-Abelian AB effect, which cannot be
reduced to Abelian subsystems.

The AB effect covers a group of phenomena associated with the
path-dependent phase factors for particles traveling in a field-free
region, but with irremovable gauge potential Âμ, the discovery of
which confirmed the physical reality of gauge potentials and the
nonlocality of gauge interactions56,57. The AB effect was first
generalized to non-Abelian by Wu and Yang32, who showed that
the scattering of nucleons (isospinors) around a non-Abelian flux
tube (vortex) can generate peculiar phenomena. However, their
governing Hamiltonian can be globally diagonalized into two
decoupled Abelian subsystems under a proper gauge58, and all
relevant phenomena can be interpreted from the superposition of
the two subsystems. Hence, Wu and Yang’s proposal is now
viewed as an apparent non-Abelian effect10,44. According to a
rigorous definition44, a genuine non-Abelian AB system requires
its holonomy group HolðÂÞ to be non-Abelian (see the
“Methods” section and Supplementary Note 5). As such, there
should exist such loops based at a fixed point that their non-
Abelian AB phase factors (holonomies) are noncommutable, i.e. if
a particle travels along two such loops in opposite sequences, the
obtained AB phase factors would be different. This implies that at
least two vortices exist in a genuine non-Abelian system44.
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Fig. 2 Design of a biaxial metamaterial. a Unit cell of the simple cubic structure with lattice constants d= 5 mm, where a FR4 PCB slab (light blue) with
thickness 0.2 mm and relative permittivity εpcb ¼ 3:3 fills the coronal plane, and a copper structure of thickness 0.035mm is printed on the PCB slab with
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Indeed, we can use anisotropic and gyrotropic materials (see
Table 1) to synthesize two vortices of SU(2) vector potential Â ¼
A1σ̂1 þA2σ̂2 Â0 ¼ 0

� �
with vanishing field B̂ ¼ 0 in the whole

space except for two small domains, taken as point singularities
for simplicity. Here, we provide the synopsis of our scheme, and
more details are given in Supplementary Note 6 (also see
Supplementary Note 8 for an alternative design). As illustrated in
Fig. 3a, we demand Â ¼ A1σ̂1 A2 ¼ 0

� �
in the upper half-space,

while Â ¼ A2σ̂2 A1 ¼ 0
� �

in the lower half-space. We also
require that A1, A2 smoothly tend to zero in the middle region
without overlap. In the vicinity of the upper (lower) singularity,
A1 A2� �

forms an irrotational vortex carrying the flux Φ1 (Φ2)

(see Supplementary Eq. (44) for the concrete expression of Â
fulfilling these requirements). For a closed loop with a fixed base-
point, its non-Abelian holonomy is invariant against continuous
deformation of the path within the B̂ ¼ 0 region. As a
consequence, for the two homotopy classes of loops [c1] and
[c2] (where [ci] denote the path homotopy classes; see the
“Methods” section), based at x0 and encircling the upper (for [c1])

or lower (for [c2]) vortex once, their holonomies are Ûi ¼
Û½ci�½x0� ¼ exp iΦiσ̂i½ � (i= 1, 2,) respectively. As Û1 and Û2 do not
commute with each other, this double-vortex system is a genuine
non-Abelian AB system.

In order to realize the vector potential shown in Fig. 3a, the
background media are set up as g1 ¼ �g�2 (i.e. gþ ¼ 0) and εT ¼
εz ¼ μT ¼ μz ¼ const: to guarantee Â0 � 0 and V0 ¼ const:
Also, we use reciprocal anisotropic materials with purely real off-
block-diagonal components g1 ¼ �g2 to build the vector
potential Â ¼ A1σ̂1 in the upper half plane but gyrotropic
materials with purely imaginary g1 ¼ g2 to build Â ¼ A2σ̂2 in the
lower half plane (see Supplementary Note 6 for details). As a
result, we have designed a genuine non-Abelian AB system for
light. Then, we will show how the genuine non-Abelian nature of
the system can be detected from interference effects.

Non-Abelian AB interference. Consider two coherent light
beams with the same initial spin~s0 propagating separately along
the two folded paths γI and γII, and finally superposing on the
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Fig. 3 Genuine non-Abelian AB effect for light. a Sketch of the non-Abelian AB system with two optical paths γI , γII interfering on the screen, where the
background light blue (red) arrows denote the σ̂1 (σ̂2) component A1 ðA2Þ of the non-Abelian vector potential. b γI (γII) can be divided into a closed loop cI
(cII) and a common path γ0. c, d cI and cII can, respectively, deform continuously into a closed path that winds around the two vortices successively but in
opposite sequences. e Snapshot of the simulated field intensity for the proposed non-Abelian optical interferometer with incident spinor ð1; i1=5Þ> for both
beams and the vortex fluxes Φ1 ¼ �2π=3, Φ2 ¼ �π=3. f Spin evolution on the Bloch sphere along two beams γI , γII, which share the same initial spin~s0 but
achieve different final spins~sI and~sII. g Spin density interference corresponding to e, where each arrow denotes the local pseudo-spin density jψj2~s at a
point on the screen. All of the local spins~sðyÞ are perpendicular to Δ~s ¼~sI �~sII , and thus fall on the green circle in f. The corresponding intensity
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screen (Fig. 3a). For the trivial situation of Â ¼ 0, the two beams
are uniformly polarized along the whole paths, thus their final
states are given by jψiðyÞi ¼ aðyÞeiθiðyÞjs0i (i ¼ I; II), where aðyÞ
is the envelope of both beams on the screen, js0i is the normalized
initial spinor at x0, and θiðyÞ denote the dynamic phases which
have included the initial phases. The dynamic phase difference,
ΔθðyÞ ¼ θIðyÞ � θIIðyÞ, determines the interference pattern:
jψI þ ψIIj2ðyÞ ¼ 2aðyÞ½1þ cosðΔθðyÞÞ�.

In the presence of the two non-Abelian vortices of Â, the two
optical paths are unchanged thanks to the null gauge field.
However, the gauge potential drives the pseudo-spins to rotate
along the paths, and the two final states convert to

jψiðyÞi ¼ aðyÞÛγi
eiθiðyÞjs0i; ði ¼ I; IIÞ ð22Þ

where an additional non-Abelian AB phase factor Ûγi
¼

Pexp i
R
γi
Â � dr

h i
appears in each state. The optical path of each

beam can be regarded as a concatenation of a closed loop ci and a
common path γ0, i.e.,γi ¼ γ0 	 ci (i ¼ I; II), as illustrated in
Fig. 3b. The closed loop cI can be further deformed continuously
into two successive loops c2 	 c�11 , which winds around the upper
vortex (clockwise) first and subsequently the lower vortex
(anticlockwise) (Fig. 3c). Likewise, cII is homotopic to c�11 	 c2,
namely cII winds around the lower vortex first before it does the
upper vortex (Fig. 3d). Because of the noncommutativity of the
sequences of winding around the two vortices, the AB phase
factors of the two beams are different:

ÛγI
¼ Ûγ0

Û2Û
�1
1 ≠ÛγII

¼ Ûγ0
Û�11 Û2: ð23Þ

Consequently, the two beams will end up with distinct spins~sI
and~sII on the screen (Fig. 3f), and they will interfere with each
other in a nontrivial way. The term spin density interference was
coined for this phenomenon and it can be calculated as follows:

hψIðyÞ þ ψIIðyÞj~̂σjψIðyÞ þ ψIIðyÞi ¼ jψj2ðyÞ~sðyÞ: ð24Þ
Here, the angular bracket denotes the spinor inner product at a

local position y on the screen, the obtained result describes the
spin density distribution on the screen. The spin density can be
further decomposed into two parts: the intensity interference
jψj2ðyÞ and the spin orientation interference~sðyÞ. The intensity
interference part can be derived as

ψj j2ðyÞ ¼ 2 aðyÞ2 þ RehψIIjψIiðyÞ
� �

¼ 2aðyÞ2 1þ Re eiΔθðyÞhs0j Û½c0� js0i
� �h i

¼ 2aðyÞ2 1þ b cos ΔθðyÞ þ δθð Þ½ �;
ð25Þ

where Û½c0� ¼ Û�1γII
ÛγI
¼ Û�12 Û1Û2Û

�1
1 is the non-Abelian hol-

onomy of the closed path c0 ¼ γ�1II 	 γI. The nontrivial expecta-
tion value of the holonomy of c0, hs0j Û ½c0�js0i ¼ beiδθ≠1, leads to a
phase shift δθ and a change of the relative amplitude b (≤1) in
comparison with the interference result of Â ¼ 0. In the mean
time, the interfering spin orientation~sðyÞ turns out to be always
perpendicular to Δ~s ¼~sI �~sII, namely lying on the green great
circle of ~sðyÞ � Δ~s � 0 in Fig. 3f, and fluctuates around it (see
Supplementary Note 7).

We have performed a full-wave simulation of this non-Abelian
AB interference as shown in Fig. 3e. In the simulation, the
envelope aðyÞ of each beam is set to be Gaussian type with a
central amplitude að0Þ ¼ 1=

ffiffiffi
2
p

. The spin density interference is
shown in Fig. 3g, with the intensity interference jψj2ðyÞ in Fig. 3h,
and the spin orientation given by Euler angles in Fig. 3i, j. In
Fig. 3h–j, the blue circles are the simulated results, which are

fairly consistent with the theoretical results (red curves) obtained
from Eq. (24).

To demonstrate that the non-Abelian feature of the above
design is indeed genuine, we consider a control experiment with
an almost identical system except that the vector potential is
Â / σ̂1 in the whole space. In this case, Ûi ¼ exp½iΦiσ̂1� (i= 1, 2)
commute with each other, and their winding around the two
vortices in opposite sequences gives the same AB phase factor
ÛγI
¼ ÛγII

¼ exp iðΦ2 �Φ1Þσ̂1½ �. Thus, the interfering spin den-
sity is uniformly orientated, and there is no phase shift δθ � 0ð Þ
and amplitude contraction b � 1ð Þ compared with the case of
Â ¼ 0 (see green lines in Fig. 3h–j).

Measurement of Wilson loops. In Abelian AB systems, the AB
phase factor (holonomy) of a closed loop only depends on the
flux inside the loop but independent of the choice of gauge.
However, in non-Abelian systems, the holonomy Û ½c�½x0� of a

closed path c based at x0 varies as Û ′
½c�½x0� ¼ Ûðx0ÞÛ½c�½x0�Ûyðx0Þ,

under a gauge transformation Â′ ¼ ÛÂÛy þ iÛ∇TÛ
y. Never-

theless, the trace of holonomy is an important gauge invariant
observable, called the Wilson loop of the closed path c:

WðcÞ ¼ Tr Pexp i
I

c
Â � dr

� �
 �
¼ Tr Û½c� ¼ Tr Û ′

½c�: ð26Þ

In what follows, we show how to extract the Wilson loop of an
arbitrary closed path via interferometry.

In order to obtain the Wilson loop of a homotopy class [c] in a
non-Abelian AB system, we consider the interference of two
beams along any two paths γ1 and γ2 as long as γ�12 	 γ1 ¼ c
forms a closed loop in the class [c] as sketched in Fig. 4a. As we
deduced in Eq. (25), the holonomy of c, together with the initial
spinor js0i, determines the phase shift and the relative amplitude
through the term hs0j Û½c� js0i ¼ b eiδθ. In fact, its real part depends
solely on the Wilson loop of c (see proof in the “Methods”
section):

WðcÞ ¼ 2Rehs0j Û½c�js0i ¼ 2b cos δθ: ð27Þ

Thus, at certain positions yn satisfying ΔθðynÞ ¼ nπ (n belongs
to integers), the intensities only depend on the Wilson loop of c
and hence are fixed under gauge transformation:

ψj j2ðynÞ � aðynÞ2 2þ ð�1ÞnWðcÞ½ �; ð28Þ
where the two beams are supposed to share the same envelope
aðyÞ on the screen, and the locations yn correspond to the crests
and troughs in the interference fringes of Â ¼ 0. These particular
points in the intensity fringes are termed the gauge fixed points
for the closed path c. Since the change of incident spin at x0 is
equivalent to a global gauge transformation, the interference
fringes for different incident spins should intersect at the gauge
fixed points.

Using the above method, we examine the two optical paths γI,
γII in Fig. 3a to extract the Wilson loop of
c0 ¼ γ�1II 	 γI ’ c�12 	 c1 	 c2 	 c�11 . Figure 4b shows the intensity
interference curves corresponding to four different incident spins.
Indeed, they intersect exactly at the gauge fixed points (red targets
in Fig. 4b) whose locations yn coincide with the crests and troughs
of the interference fringe pattern for Â ¼ 0. By fitting the even
and odd subsequences of the gauge fixed points, we obtain two
curves aðyÞ2 2 ±Wðc0Þ½ � corresponding to the two red dashed lines
in Fig. 4b. Thus, the Wilson loopW(c0) can be identified from the
difference of the two dashed curves.
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Discussion
We have shown that the dynamics of 2D optical waves in a broad
class of anisotropic media can be understood through an emer-
gent SU(2) gauge interaction in real space. We predicted that the
Zitterbewegung effect of light can be realized even in homo-
geneous anisotropic media, and we proposed a biaxial metama-
terial to achieve synthetic non-Abelian electric field and ZB in
microwave regime. We have also designed a genuine non-Abelian
AB system with two synthetic non-Abelian vortices, and sug-
gested a spin density interferometry to demonstrate the non-
commutative feature of non-Abelian holonomies. Our scheme
opens the door to the colorful non-Abelian world for light. In
addition to inspiring new ideas to manipulate the flow and
polarization of light, the scheme offers an optical platform to
study physical effects relevant to SU(2) gauge fields, such as
synthetic spin–orbit coupling59 and topological band structures
in periodic non-Abelian gauge fields60–63. Furthermore, since the
SU(2) gauge field description is valid for photons down to
quantum scale, this approach might be applicable to the design of
geometric gates for realizing non-Abelian holonomic quantum
computation64,65 with photons.

Methods
Notations. In this paper, vectors in real space and in pseudo-spin space are
indicated, respectively, by bold letters and letters with an overhead arrow “→”.
Letters with an overhead bidirectional arrow “↔” denote two-order tensors in real
space. Symbols with an overhead hat “∧” denote operators acting on the spinor
wave functions. We use Greek letters, e.g. μ; ν, to denote indices of (2+1)-
dimensional spacetime. Latin letters i, j denote 2D spatial coordinate indices, and
Latin letters a, b, c denote indices in pseudo-spin space. We follow the Einstein
summation convention for repeated indices. The orthonormal coordinate bases in
real space and pseudo-spin space are expressed as ei and~ea , respectively.

SU(2) gauge covariance of 2D Maxwell equations. In block-diagonalized duality
symmetric media, ε

$
=ε0 ¼ μ

$
=μ0 ¼ diagðε$T ; εzÞ, the Maxwell’s equations for 2D

waves can be rearranged as

ð29Þ

with Ψ ¼ ðET ; η0HT ;Ez ; η0HzÞ> . For an arbitrary (global) transformation Û 2
SUð2Þ acting on jψi ¼ ðEz ; η0HzÞ> , the corresponding transformation for Ψ is

defined as

~U ¼ ÛT 
 Û ¼ ðσ̂2Û σ̂2Þ 
 Û ; ð30Þ
which belongs to a 4D representation of SU(2). It turns out thatM and N defined
in Eq. (29) transform according to

ð31Þ

~UN ~Uy ¼ N : ð32Þ
Hence, the 2D Maxwell equations are invariant under this SU(2)

transformation. As the EM duality transformation R̂ 2 SOð2Þ is a special case of Û ,
the emergent SU(2) symmetry for the 2D Maxwell equations in block-diagonalized
duality symmetric materials is indeed the generalization of the original EM duality
symmetry.

If Ûðx; yÞ is dependent on the x, y coordinates, the transformation ofM
changes to

~Uðx; yÞM~Uyðx; yÞ ¼ Mþ ΔM ð33Þ
with an additional term

ð34Þ

where Aaσ̂a ¼ iÛ∇T Û
y is precisely the vector potential induced purely by the

gauge transformation, and only the components A1;A2 are supposed to exist. If we
move the term ΔM to the right side of the Maxwell equation (29), it can be
alternatively interpreted as a part of the constitutive tensor. By rotating Ψ to the
ordinary basis of EM field,

ð35Þ

we obtain explicitly the contribution of ΔM to the material tensors

ε 0

0 μ


 �
¼ U0ðN � ΔN =k0ÞUy0 ; ð36Þ

which shows that the effective SU(2) vector potential Â emerging in ΔM just
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corresponds to the off-diagonal terms of ε
$
, μ
$
:

g1 ¼ �g�2 ¼ ez ´ ðA1 þ iA2Þ=k0: ð37Þ
Indeed, this relation is valid for arbitrary Â ¼ A1σ̂1 þA2σ̂2 but not limited to

the pure gauge case Â ¼ iÛ∇T Û
y . Furthermore, this correspondence can be

generalized to any media satisfying in-plane duality condition ε
$
T ¼ αμ

$
T where SU

(2) scalar potential may also appear (Supplementary Note 1).

Quasi-degenerate approximation for ZB. Eq. (2) is essentially the stationary
wave equation describing spin-1/2 particles coupling to the background SU(2)
gauge fields without any approximation. However, the semiclassical trajectories of
non-degenerate eigenmodes often split away from each other. To manifest the
coupling effects of different eigenmodes in the geometric optics, the media of
concern are usually assumed to be weakly anisotropic14. Nevertheless, if the
eigenmodes are approximately degenerate in a particular direction of wave vector
but not necessarily in all directions, it turns out that an intact wave composed of
modes in the vicinity of the quasi-degenerate direction can be described adequately
by the semiclassical approach including the interaction between eigenmodes in
their interfering region66.

In homogeneous non-Abelian media, we separate the effective Hamiltonian into
two parts:

ĤðkÞ ¼ 1
2m

k2 þ ðÂÞ2
� �

þ V0

� �
σ̂0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ĥ0ðkÞ

þ �1
m

k � Â � Â0


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δĤðkÞ¼~Ω�~̂σ=2

:
ð38Þ

If only Ĥ0 is present, the isofrequency surface is a doubly degenerate sphere

with the radius k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2mV0 � ðÂÞ2

q
. When δĤðkÞ is taken into account, as long

as it is sufficiently small for a given direction ek , the two eigenstates can be regarded
as quasi-degenerate at the wave vector

k ¼ kek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2mV0 � ðÂÞ2

q
ek; ð39Þ

and we can implement the eikonal approximation to the wave function mainly
superposed by the two quasi-degenerate modes66: jψi ¼ eψðrÞexpðik � rÞ with a
slowly varying envelope eψðrÞ (i.e. ∇eψ=eψj j � k). Subsituting jψi into the wave
equation (2), we obtain the equation of eψ with accuracy up to the first order of k:

ibv � ∇eψ ¼ ĤðkÞeψ: ð40Þ
By adopting the ansatz that the velocity operator bv ¼ ∂ĤðkÞ=∂k ¼ ðk � ÂÞ=m

can be replaced by its averaged value hbvi over the transverse cross section of an
optical beam, we find that the operator bv � ∇! hbvi � ∇ ¼ d=dτ corresponds to the
total derivative with respect to the ray parameter τ along the beam. Therefore, Eq.
(40) is reformulated into a time-dependent Schrödinger equation

i
d
dτ
eψ ¼ ĤðkÞeψ: ð41Þ

Consequently, Eqs. (8-10) can be directly obtained in terms of Ehrenfest
theorem.

Relation between Poynting vector and velocity operator. The in-plane pro-
jection of the time-averaged Poynting vector �ST for monochromatic waves can be
written as

�ST ¼ 1
2 Re E�z ´HT þ E�T ´Hz

� �
¼ 1

2 Re ðE�z ;H�z Þ
0 I

$
´ I
$

� I
$

´ I
$

0

 !
ET

HT


 �" #

¼ 1
2η0

Re ðE�z ; η0H�z Þðiσ̂2εizjeiÞ
ET

η0HT


 �
j

" #
:

ð42Þ

Substituting Maxwell’s equations into Eq. (42) yields

ST ¼ 1
2η0

Rehψjðiσ̂2ϵizjeiÞ �i σ̂2 ϵjkzk0 εT
ðbp� ÂðcÞÞkjψi

¼ 1
2η0 k0

Rehψj 1
2m ðbp� ÂðcÞÞjψi

¼ 1
4μ0 ω0

hψj 1m ðk � ÂÞjψi ¼ 1
4μ0 ω0

hψjbvjψi;
ð43Þ

where ÂðcÞ ¼ k0
2 ðg1 � g2Þ ´ ez½ �σ̂1 � i ðg1 þ g2Þ ´ ez½ �σ̂2
� �

. In the third step, we
replaced bp with k according to the eikonal approximation. As a result, the total in-
plane energy flux over a transverse cross section of the optical beam is propotional
to the expectation value of the velocity operator:

hSTi ¼
1

4μ0ω0

Z
dr?hψjbvjψi ¼ 1

4μ0ω0
hbvi: ð44Þ

And it shows that the time-averaged Poynting vector ST is invariant under the
gauge transformation Eq. (30) for EM fields (Supplementary Note 2).

Holonomy and genuine non-Abelian AB system. From a geometric viewpoint,
gauge potential and field in the physical space M can be described as the con-
nection and curvature in a G-principle fiber bundle32, where the physical space
serves as the base manifold, and G denotes the gauge group, in our case G ¼ SUð2Þ.
Consider a particle (wave packet) travels in the physical space. Along its trajectory
γ, the gauge potential engenders a matrix-valued geometric phase factor

Pexp i
R
γÂμdx

μ
h i

2 G (P denotes path-ordering) on the state vector, corre-

sponding to the parallel transport of the state in the bundle space. In particular, for
a closed path c starting and ending at the same point cð0Þ ¼ cð1Þ ¼ x0, the phase
factor of c,

ÛcðÂÞ ¼ Pexp i
I

c
Âμdx

μ

� �
; ð45Þ

is called the holonomy of the closed path c with respect to the gauge Â. The
collection of the holonomies corresponding to all those closed paths based at the
same point x0 forms a subgroup of the gauge group G:

HolðÂÞ ¼ ÛcðÂÞjcð0Þ ¼ cð1Þ ¼ x0
n o

� G; ð46Þ

which is the holonomy group for the gauge Â. In the literature, a gauge system is
regarded as genuinely non-Abelian if and only if the holonomy group is a non-
Abelian group, namely the holonomies of some loops are noncommutable with
each other10,44. If the base manifold is simply a Euclidean space, the non-
commutativity of holonomies can be traced back to noncommutable gauge fields
½F̂ μν ; F̂ μ′ν′ �≠0. However, if the base manifold possesses nontrivial topology, non-
commutative holonomies can be achieved even though the gauge field vanishes
everywhere (i.e. AB systems).

For an AB system, the corresponding fiber bundle is a flat bundle, since the
curvature (field) F̂ μν ¼ 0 in the whole base manifold M (flux regions are excluded
from M). Here, the topology of the base manifold is characterized by its first
fundamental group,

π1ðMÞ ¼ f½c� jcð0Þ ¼ cð1Þ ¼ x0g; ð47Þ
which is the set of path homotopy equivalent classes [c] of closed paths based at x0.
Path homotopy is a topologically equivalent relation “’” for paths. If two paths c1,
c1 with the same fixed base-point x0 can deform into each other continuously, they
are said to be path homotopic c1 ’ c2 and to belong to the same homotopy class
[c1]. In flat bundles, the holonomies (AB phase factors) of all loops in the same
homotopy class [c] are identical: Û½c� (see proof in Supplementary Note 5). Based
on this property, two necessary conditions for genuine non-Abelian AB systems
can be obtained44:

1. The gauge group G is non-Abelian;
2. The first fundamental group π1ðMÞ is non-Abelian.

According to the second criterion, the Wu–Yang AB system is not genuinely
non-Abelian, because the fundamental group of its base manifold (a punctured
plane R

2 � 0) is an Abelian group π1ðR2 � 0Þ ¼ Z. However, for a twice-
punctured plane as shown in Fig. 3a, its fundamental group is the free group on
two generators, Z � Z (where * denotes a free product), which is non-Abelian67.
Therefore, a twice-punctured plane is a qualified prototype of a genuine non-
Abelian AB system.

Gauge fixed points. The derivation of the intensity interference given by Eq. (25)
is in fact valid for two arbitrary interfering beams γ1, γ1 with the same initial spin~s0
and final envelop aðyÞ: jψj2 ¼ 2aðyÞ½1þ ReðeiΔθðyÞhs0j Û ½c� js0iÞ�, where Û½c� is the
holonomy of the closed path c ¼ γ�12 	 γ1. Since Û½c� 2 SUð2Þ, it can be generically
expressed as

Û½c� ¼
u1 u2
�u�2 u�1


 �
; with ju1j2 þ ju2j2 ¼ 1: ð48Þ

The Wilson loop readsWðcÞ ¼ Tr Û½c� ¼ 2 Re ðu1Þ: For an arbitrary spinor state

js0i ¼ cos α2 e
�iβ=2; sin α

2 e
iβ=2

� �>
, we have

hs0j Û ½c� js0i ¼ beiδθ

¼ Reðu1Þ þ i cos α Im ðu1Þ þ sin α Im ðu2eiβÞ
� �

:
ð49Þ

Therefore, the identity in Eq. (27) is established for any js0i.
In fact, different incident spinors can interconvert through a global gauge

transformation: js′0i ¼ Û js0i. Hence, the relation in Eq. (27) is straightforward

2Rehs′0j Û ½c� js′0i ¼ 2Rehs0jÛ�1Û½c�Û js0i
¼ Tr Û�1Û½c�Û

� �
�WðcÞ:

ð50Þ

As a result, at the positions such that ΔθðynÞ ¼ nπ, i.e. at the crests and troughs
of the original interference fringes when Â ¼ 0, the intensities given in Eq. (28) are
fixed for arbitrary incident spins, yet they are only determined by the Wilson loop
W(c), provided that the dynamic phases of γ1, γ2 are unchanged.
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For the two optical path γI, γII in Fig. 3, the Wilson loop of c0 ¼ γ�1II 	 γI is
determined by the fluxes of the two vortices as Wðc0Þ ¼ 2� 4sin2Φ1sin

2Φ2.
Therefore, if sin2Φ1sin

2Φ2 ¼ 1=2, W(c0) will be reduced to zero, and the two
dashed curves in Fig. 4 will completely overlap (see Supplementary Note 7 for
details).

Simulation of non-Abelian AB interference. The full-wave results of the non-
Abelian AB interference shown in Figs. 3 and 4 are simulated using the commercial
software COMSOL Multiphysics. In order to avoid spin–flip after reflection, the
mirrors shown in Fig. 3a, e are made of an impedance-matched material, namely
εm=μm ¼ 1, with a lower refractive index than the surrounding media to achieve
total reflection at their surfaces. Meanwhile, the two mirrors on the right-hand side
in Fig. 3e are slightly concave, so that the reflected beams with reduced widths can
bypass the two singularities.

Data availability
The authors declare that all data supporting the findings of this study are available from
the corresponding authors upon reasonable request.
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