Skip to main content
. 2018 Sep 12;37(30):4652–4664. doi: 10.1002/sim.7943

Table 2.

Some specimen distributions to illustrate the impact of varying CV on the relative efficiency. Each distribution has mean 1 and is fully specified once the CV is given. The final column shows the greatest value of the CV2 for which the distribution is available (given that z i ≥ 0 necessarily). The Least Favorable Distribution minimizes Ψ(α) for all α≥ 0 over all such distributions with nonnegative support

Support Probabilities Range CV2 Max CV2
Three‐point
symmetrical distributions
(b) Uniform (p = ⅓) {a, 1, 2 – a} {p, 1 – 2p, p} 2(1 – a) 2p(1 – a)2 0.6667
(c) Unimodal (p = ¼) 0.5000
(d) Bimodal (p = 2 / 5) 0.8000
Three‐point
skew distributions
(e) Positive skew {1 −S/3, 1 + S/6, 1 + 2S/3} {½, ⅓, 1 / 6} S 5S2/36 1.2500
(f) Negative skew {1 −2S/3, 1 −S/6, 1 + S/3} {1 / 6, ⅓, ½} S 5S2/36 0.3125
Least Favorable Distribution (LFD) {0, 1 + c 2}
c21+c211+c2
1 + c 2 c 2