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Abstract

Background: High-dimensional data of discrete and skewed nature is commonly encountered in high-throughput
sequencing studies. Analyzing the network itself or the interplay between genes in this type of data continues to
present many challenges. As data visualization techniques become cumbersome for higher dimensions and
unconvincing when there is no clear separation between homogeneous subgroups within the data, cluster analysis
provides an intuitive alternative. The aim of applying mixture model-based clustering in this context is to discover
groups of co-expressed genes, which can shed light on biological functions and pathways of gene products.

Results: A mixture of multivariate Poisson-log normal (MPLN) model is developed for clustering of high-throughput
transcriptome sequencing data. Parameter estimation is carried out using a Markov chain Monte Carlo
expectation-maximization (MCMC-EM) algorithm, and information criteria are used for model selection.

Conclusions: The mixture of MPLN model is able to fit a wide range of correlation and overdispersion situations, and
is suited for modeling multivariate count data from RNA sequencing studies. All scripts used for implementing the
method can be found at https://github.com/anjalisilva/MPLNClust.

Keywords: Clustering, RNA sequencing, Discrete data, Multivariate Poisson-log normal distribution, Markov chain
Monte Carlo, Co-expression networks

Background
RNA sequencing (RNA-seq) is used to determine the tran-
scriptional dynamics of a biological system by measuring
the expression levels of thousands of genes simultaneously
[1, 2]. This technique provides counts of reads that can be
mapped back to a biological entity, such as a gene or an
exon, which is a measure of the gene’s expression under
experimental conditions. Analyzing RNA-seq data is chal-
lenged by several factors, including the nature of the data,
which is characterized by high dimensionality, skewness,
and presence of a dynamic range that may vary from zero
to over a million counts. Further, multivariate count data
from RNA-seq is generally overdispersed. Upon obtain-
ing raw counts of reads from an RNA-seq study, a typical
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bioinformatics analysis pipeline involves trimming, map-
ping, summarizing, normalizing and downstream analysis
[3]. Cluster analysis is often performed as part of down-
stream analysis to identify key features between observa-
tions.
Clustering algorithms can be classified into two broad

categories: distance-based or model-based approaches
[4]. Distance-based clustering techniques include hierar-
chical clustering and partitional clustering [4]. Distance-
based approaches utilize a distance function between
pairs of data objects and group similar objects together
into clusters. Model-based approaches involve cluster-
ing data objects using a mixture-modeling framework
[4–8]. Compared to distance-based approaches, model-
based approaches offer better interpretability because the
resulting model for each cluster directly characterizes that
cluster [4]. In model-based approaches, the conditional
probability of each data object belonging to a cluster is
calculated.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2916-0&domain=pdf
https://github.com/anjalisilva/MPLNClust
mailto: sdang@binghamton.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Silva et al. BMC Bioinformatics          (2019) 20:394 Page 2 of 11

The probability distribution function of a mixture model
is f (y|π1, . . . ,πG,ϑ1, . . . ,ϑG) =∑G

g=1 πg fg(y|ϑg), where G
is the total number of clusters, fg(·) is the distribution
function with parameters ϑg , and πg > 0 is the mixing
weight of the gth component such that

∑G
g=1 πg = 1. An

indicator variable zig is used for cluster membership, such
that zig equals 1 if the ith observation belongs to compo-
nent g and 0 otherwise. The predicted cluster member-
ships at the maximum likelihood estimates of the model
parameters are given by the maximum a posteriori prob-
ability, MAP(ẑig). The MAP(ẑig) = 1 if argmaxh{ẑih} = g
andMAP(ẑig) = 0 otherwise. Parameter estimation is typ-
ically carried out using maximum likelihood algorithms,
such as the expectation-maximization (EM) algorithm [9].
The parameter estimation methods are fitted for a range
of possible number of components and the optimal num-
ber is selected using a model selection criterion. Typically,
one component represents one cluster [8].
Clustering of gene expression data allows identifying

groups of genes with similar expression patterns, called
gene co-expression networks. Inference of gene networks
from expression data can lead to better understanding
of biological pathways that are active under experimen-
tal conditions. This information can also be used to infer
the biological function of genes with unknown or hypo-
thetical functions based on their cluster membership with
genes of known functions and pathways [10]. Over the
past few years, a number of mixture model-based cluster-
ing approaches for gene expression data from RNA-seq
studies have emerged based on the univariate Poisson and
negative binomial (NB) distributions [11–13]. Although
these distributions seem a natural fit to count data, there
can be limitations when applied in the context of RNA-seq
as outlined in the following paragraph.
The Poisson distribution is used to model discrete data,

including expression data from RNA-seq studies. How-
ever, themultivariate extension of the Poisson distribution
can be computationally expensive. As a result, the univari-
ate Poisson distribution is often utilized in clustering algo-
rithms, which leads to the assumption that samples are
independent conditionally on the components [11, 12, 14].
This assumption is unlikely to hold in real situations.
Further, the mean and variance coincide in the Poisson
distribution. As a result, the Poisson distributionmay pro-
vide a good fit to RNA-seq studies with a single biological
replicate across technical replicates [15]. However, cur-
rent RNA-seq studies often utilize more than one biolog-
ical replicate in order to estimate the biological variation
between treatment groups. In such studies, RNA-seq data
exhibit more variability than expected (called “overdisper-
sion”) and the Poisson distributionmay not provide a good
fit for the data [15, 16]. Due to the smaller variation pre-
dicted by Poisson distribution, type-I errors in the data
can be underestimated [16]. The use of NB distribution

may alleviate some of these issues as the mean and vari-
ance differ. However, NB can fail to provide a good fit to
heavy tailed data like RNA-seq [17].
The multivariate Poisson-log normal (MPLN) distribu-

tion [18] is a multivariate log normal mixture of indepen-
dent Poisson distributions. It is a two-layer hierarchical
model, where the observed layer is a multivariate Pois-
son distribution and the hidden layer is a multivariate
Gaussian distribution [18, 19]. The MPLN distribution is
suitable for analyzing multivariate count measurements
and offers many advantages over other discrete distri-
butions [20, 21]. Importantly, the hidden layer of the
MPLN distribution is a multivariate Gaussian distribu-
tion, which allows for the specification of a covariance
structure. As a result, independence no longer needs to be
assumed between variables. The MPLN distribution can
also account for overdispersion in count data and supports
negative and positive correlations, unlike other multivari-
ate discrete distributions such as multinomial or negative
multinomial [22].
Here, a novel mixture model-based clustering method

is presented for RNA-seq using MPLN distributions. The
proposed clustering technique is explored in the context
of clustering genes. The performance of the method is
evaluated through data-driven simulations and real data.

Results
Transcriptome data analysis
To illustrate the applicability of mixtures of MPLN dis-
tributions, it is applied to a RNA-seq dataset. For com-
parison purposes, three model-based clustering methods
were also used. These include HTSCluster [11, 14],
Poisson.glm.mix [12] and MBCluster.Seq [13].
Poisson.glm.mix offers three different parameteriza-
tions for the Poisson mean, which will be termed m =
1, m = 2, and m = 3. MBCluster.Seq offers cluster-
ing via mixtures of Poisson, termed MBCluster.Seq,
Poisson, and clustering via mixtures of NB, termed
MBCluster.Seq, NB.
Typically, only a subset of differentially expressed genes

is used for cluster analysis. Normalization factors rep-
resenting library size estimate for samples for all meth-
ods were obtained using trimmed mean of M values
(TMM) [23, 24] from the calcNormFactors function
of edgeR package. Initialization is done via k-means for
HTSCluster and MBCluster.Seq. An option to spec-
ify normalization or initialization method was not avail-
able for Poisson.glm.mix, thus default settings were
used. Note, for MBCluster.Seq, G = 1 cannot be run.
In the context of real data clustering, it is not possi-

ble to compare the clustering results obtained from each
method to a ‘true’ clustering of the data as such classi-
fication does not exist. To identify if co-expressed genes
are implicated in similar biological processes, functions or
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components, an enrichment analysis was performed on
the gene clusters using the Singular Enrichment Analysis
tool available on AgriGO [25]. Singular Enrichment Anal-
ysis tool identifies enriched gene ontology (GO) terms
provided a list of gene identifiers by comparing it to
a background population or reference from which the
query list is derived [25]. A significance level of 5% is
used with Fisher statistical testing and Yekutieli multi-
test adjustment. GO defines three distinct ontologies,
called biological process, molecular function, and cellular
component.

Transcriptome data analysis: cranberry bean RNA-seq data
In the study by Freixas-Coutin et al. [26], RNA-seq was
used to monitor transcriptional dynamics in the seed
coats of darkening (D) and non-darkening (ND) cran-
berry beans (Phaseolus vulgaris L.) at three developmental
stages: early (E), intermediate (I) and mature (M). A sum-
mary of this dataset is provided in Table 1. The aim of their
study was to evaluate if the changes in the seed coat tran-
scriptome were associated with proanthocyanidin levels
as a function of seed development in cranberry beans.
For each developmental stage, 3 biological replicates were
considered for a total of 18 samples. The RNA-seq data
are available on the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) under
the BioProject PRJNA380220. The study identified 1336
differentially expressed genes, which were used for the
cluster analysis.
The raw read counts for genes were obtained from

Binary Alignment/Map files using samtools [27] and
HTSeq [28]. The median value from the 3 repli-
cates per each developmental stage was chosen. In
the first run, T1, data was clustered for a range of
G = 1, . . . , 11 using k-means initialization with 3
runs. (Note, for MBCluster.Seq, G = 1 cannot be
run.) Since model selection criteria selected G = 2
or G = 11 for HTSCluster, Poisson.glm.mix,
and MBCluster.Seq, further clustering runs were per-
formed for these methods using ranges of T2 : G =
1, . . . , 20; T3 : G = 1, . . . , 30; T4 : G = 1, . . . , 40; T5 :
G = 1, . . . , 50 and T6 : G = 1, . . . , 100. The clustering
results are summarized in Table 2. Note, more than 10
models need to be considered for applying slope heuris-
tics, dimension jump (Djump) and data-driven slope

Table 1 Summary of the cranberry bean RNA-seq dataset used
for cluster analysis

No. of
genes

Replicates
per
condition

Read count
range

5-95% Read
count range

Library size
range

Platform &
Instrument

1336 (3,3,3,3,3,3) (0–483,965) (205–3652) (937,559–
1,870,947)

Illumina
HiSeq 2500

estimation (DDSE), and because G = 1 cannot be run for
MBCluster.Seq, slope heuristics could not be applied
for T1.
For the mixtures of MPLN distributions, all information

criteria selected a model with G = 4, with the excep-
tion of the AIC, which selected a G = 5 model in T1.
Recall that the AIC is known to favor more complex mod-
els with more parameters. A cross tabulation comparison
of G = 4 model with that of G = 5 did not reveal
any significant patterns, but rather random classification
results were observed. For the G = 4 model, each clus-
ter contained 71, 731, 415 and 119 genes respectively, and
the expression patterns of these models are provided in
Fig. 1. For MBCluster.Seq, NB, a model with G = 2
was selected. This is the lowest cluster size considered in
the range of clusters for this method as G = 1 cannot be
run for MBCluster.Seq. For G = 2 model, Cluster 1
contained 467 genes and Cluster 2 contained 869 genes
(expression patterns provided in Additional file 1: Figure
S1). A comparison of this model with that of G = 4, from
mixtures of MPLN distributions, did not reveal any sig-
nificant patterns. For all other methods in T1, information
criteria selected G = 11.
During T2, a model with G = 14 was selected

for MBCluster.Seq, Poisson by the BIC and ICL
(expression patterns provided in Additional file 1: Figure
S2). A comparison of this model with that of G = 4,
from mixtures of MPLN distributions, did not reveal
any significant patterns. With further runs (T3, . . . ,T6),
it was evident that the highest cluster size is selected
for HTSCluster and Poisson.glm.mix. No changes
were observed for MBCluster.Seq, NB, as the lowest
cluster size, G = 2, is selected. All information criteria
(BIC, ICL, AIC, AIC3) gave similar results, suggesting a
high degree of certainty in the assignment of genes into
clusters, i.e., that the posterior probabilities ẑig are gener-
ally close to zero or one. The results from slope heuristics
(Djump and DDSE) highly varied across T1, . . . ,T6. For
this reason, overfitting and underfittingmethods were run
for G = 1, . . . , 100, as in T6, but for 20 different times.
Results for both information criteria and slope heuristics
are provided in Table 3. The results from slope heuris-
tics highly varied across the 20 different clustering runs,
as evident by the large range in the number of models
selected.
Due to model selection issues with over and under fit-

ting, downstream analysis was only conducted using the
G = 4 model of mixtures of MPLN distributions, G = 14
model of MBCluster.Seq, Poisson, andG = 2 model
of MBCluster.Seq, NB. The GO enrichment analysis
results for all models are provided in Additional file 2.
Only 1

2 ,
3
4 , and

5
14 clusters contained enriched GO terms

inG = 2,G = 4, andG = 14models, respectively. Among
the models, clear expression patterns were evident for the
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Table 2 Number of clusters selected using different model selection criteria for the cranberry bean RNA-seq dataset for T1 to T6

Method BIC ICL AIC AIC3 Djump DDSE BIC ICL AIC AIC3 Djump DDSE

T1 : G = 1, . . . , 11 T2 : G = 1, . . . , 20

mixtures of MPLN 4 4 5 4 2 2 - - - - - -

HTSCluster 11 11 11 11 8 8 20 20 20 20 11 11

Poisson.glm.mix, m = 1 11 11 11 11 2 7 20 20 20 20 9 9

Poisson.glm.mix, m = 2 11 11 11 11 8 8 20 20 20 20 8 8

Poisson.glm.mix, m = 3 11 11 11 11 8 8 20 20 20 20 12 10

MBCluster.Seq, Poisson 11 11 11 11 - - 14 14 20 16 8 15

MBCluster.Seq, NB 2 2 2 2 - - 2 2 2 2 7 14

T3 : G = 1, . . . , 30 T4 : G = 1, . . . , 40

HTSCluster 30 30 30 30 16 16 40 40 40 40 22 22

Poisson.glm.mix, m = 1 30 30 30 30 10 10 40 40 40 40 29 29

Poisson.glm.mix, m = 2 30 30 30 30 19 20 40 40 40 40 18 18

Poisson.glm.mix, m = 3 30 30 30 30 13 13 40 40 40 40 24 24

MBCluster.Seq, NB 2 2 2 2 7 19 2 2 2 2 22 22

T5 : G = 1, . . . , 50 T6 : G = 1, . . . , 100

HTSCluster 50 50 50 50 22 22 100 100 100 100 41 76

Poisson.glm.mix, m = 1 50 50 50 50 30 30 100 100 100 100 24 34

Poisson.glm.mix, m = 2 50 50 50 50 29 29 100 100 100 100 40 40

Poisson.glm.mix, m = 3 50 50 50 50 17 17 100 100 100 100 45 45

MBCluster.Seq, NB 2 2 2 2 22 30 2 2 2 2 42 47

Fig. 1 The expression patterns for the G = 4 model for the cranberry bean RNA-seq dataset clustered using mixtures of MPLN distributions. The
expression represents the log-transformed counts. The yellow line represents the mean expression level for each cluster
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Table 3 Range of clusters selected using different model selection criteria for the cranberry bean RNA-seq dataset for T6, repeated 20
times

BIC ICL AIC AIC3

Method Range Breakdown Range Breakdown Range Breakdown Range Breakdown

HTSCluster 97–100 97(1); 99(4); 100 (15)97–100 97(1); 99(4); 100 (15)100–100100(20) 99–100 99(2); 100(18)

Poisson.glm.mix, m = 1100–100100(20) 100–100100(20) 100–100100(20) 100–100100(20)

Poisson.glm.mix, m = 299–100 99(1); 100(19) 99–100 99(1); 100(19) 99–100 99(1); 100(19)99–100 99(1); 100(19)

Poisson.glm.mix, m = 3100–100100(20) 100–100100(20) 100–100100(20) 100–100100(20)

MBCluster.Seq, NB 2–2 2(20) 2–2 2(20) 2–2 2(20) 2–2 2(20)

Djump

Method Range Breakdown

HTSCluster 36–76 36(1); 38(1); 43(1); 44(3); 46(1); 47(1); 49(2); 50(2); 51(3); 54(2); 63(1); 68(1); 76(1)

Poisson.glm.mix, m = 121–74 21(1); 24(1); 29(1); 35(1); 37(1); 38(1); 40(1); 42(1); 44(1); 45(1); 47(1); 49(1); 56(1); 60(1); 63(2); 64(1); 66(1); 68(1); 74(1)

Poisson.glm.mix, m = 220–68 20(1); 28(3); 33(1); 35(1); 38(1); 40(1); 44(1); 47(2); 49(1); 50(1); 53(1); 55(2); 60(2); 63(1); 68(1)

Poisson.glm.mix, m = 323–77 23(1); 33(1); 35(2); 39(1); 40(1); 41(1); 42(1); 45(2); 47(1); 50(2); 52(1); 55(1); 56(1); 65(1); 67(1); 69(1); 77(1)

MBCluster.Seq, NB 28–66 28(2); 29(1); 38(1); 39(1); 42(4); 46(1); 47(1); 51(1); 52(1); 55(1); 57(1); 58(1); 59(1); 64(1); 65(1); 66(1)

DDSE

Method Range Breakdown

HTSCluster 22–63 22(1); 29(2); 36(1); 37(1); 38(1); 41(1); 43(1); 44(3); 46(1); 47(1); 49(2); 50(1); 51(2); 54(1); 63(1)

Poisson.glm.mix, m = 133–77 33(1); 34(1); 43(1); 46(1); 47(1); 49(1); 50(1); 52(1); 54(1); 56(1); 59(2); 60(1); 63(2); 65(1); 66(1); 67(1); 70(1); 77(1);

Poisson.glm.mix, m = 233–87 33(1); 40(1); 47(1); 49(1); 53(1); 54(1); 55(1); 59(1); 60(3); 63(1); 66(1); 68(1); 70(1); 71(1); 74(2); 83(1); 87(1)

Poisson.glm.mix, m = 336–71 36(1); 40(1); 42(2); 44(1); 45(1); 46(2); 47(1); 48(1); 49(1); 50(2); 52(1); 56(1); 61(1); 64(1); 65(1); 69(1); 71(1)

MBCluster.Seq, NB 44–70 44(1); 46(2); 47(3); 51(1); 53(1); 54(1); 55(2); 56(1); 57(3); 58(1); 59(1); 62(2); 70(1)

G = 14 model, and this can be attributed to the fact that
there are more clusters present in this model. However,
only 5 of the 14 clusters exhibited significant GO terms.
Further analysis was only conducted on the G = 4

model of the mixtures of MPLN distributions, because
comparing the cluster composition of genes across dif-
ferent methods, with respect to biological context, is
beyond the scope of this article. For the G = 4 model,
Cluster 1 genes were highly expressed in intermediate
developmental stage, compared to other developmental
stages, regardless of the variety (see Figure 1). The GO
enrichment analysis identified genes belonging to patho-
genesis, multi-organism process and nutrient reservoir
activity (see Additional file 2). For Cluster 2, no GO terms
exhibited enrichment and the expression of genes might
be better represented by two or more distinct clusters.
Cluster 3 genes showed higher expression in early devel-

opmental stage, compared to other developmental stages,
regardless of the variety. Here, genes belonged to oxi-
doreductase activity, enzyme activity, binding and dehy-
drogenase activity. Finally, Cluster 4 genes were more
highly expressed in the darkening variety relative to the
non-darkening variety. The GO enrichment analysis iden-
tified Cluster 4 genes as containing biosynthetic genes.
Further examination identified that many of these genes

were annotated as flavonoid/proanthocyanidin biosynthe-
sis genes in the P. vulgaris genome. Polyphenols, such
as proanthocyanidins, are synthesized by the phenyl-
propanoid pathway and are found on seed coats (Rein-
precht et al. 2013). Proanthocyanidins have been shown to
convert from colorless to visible pigments during oxida-
tion [29]. Beans with regular darkening of seed coat color
is known to have higher levels of polyphenols compared
to beans with slow darkening [29, 30].

Simulation data analysis: mixtures of MPLN distributions
To simulate data that mimics real data, the library sizes
and count ranges in simulated datasets were ensured to
be within the same 5–95% ranges as those observed for
real data. For the simulation study, three different set-
tings were considered. In simulations 1 and 2, 50 datasets
with one underlying cluster and 50 datasets with two
underlying clusters were generated, respectively. In simu-
lation 3, 30 datasets with three underlying clusters were
generated. All datasets had n = 1000 observations and
d = 6 samples generated using mixtures of MPLN dis-
tributions. The covariance matrices for each setting were
generated using the genPositiveDefMat function in
clusterGeneration package, with a range specified
for variances of the covariance matrix [31].
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Comparative studies were conducted to evaluate the
ability to recover the true underlying number of clus-
ters. For this purpose, the following model-based meth-
ods were used: HTSCluster, Poisson.glm.mix and
MBCluster.Seq. Initialization of zig for all methods was
done using the k-means algorithm with 3 runs. For simu-
lation 1, π1 = 1 and a clustering range ofG = 1, . . . , 3 was
considered. For simulation 2, π1 = 0.79 and a clustering
range of G = 1, . . . , 3 was considered. For simulation 3,
π1 = 0.3 and π2 = 0.5, and a clustering range of
G = 2, . . . , 4 was considered. In addition to model-based
methods, three distance-basedmethods were also used: k-
means [32], partitioning around medoids [33] and hierar-
chical clustering. These were only applied to simulation 2

and simulation 3. Further, a graph-based method employ-
ing Louvain algorithm [34] was also used. The parameter
estimation results for themixtures ofMPLN algorithm are
provided in Additional file 3. The clustering results for all
methods are summarized in Table 4.
The adjusted Rand index (ARI) values obtained for

mixtures of MPLN were equal to or very close to one,
indicating that the algorithm is able to assign observations
to the proper clusters, i.e., the clusters that were origi-
nally used to generate the simulation datasets. Note, for
MBCluster.Seq, G = 1 cannot be run, and the corre-
sponding row of results has been left blank on Table 4.
Although a range of clusters G = 1, 2, 3 was selected
for Poisson.glm.mix, m = 3 in simulation 1, an ARI

Table 4 Number of clusters selected (average ARI, standard deviation) for each simulation setting using mixtures of MPLN distributions

Setting Method BIC ICL AIC AIC3 None

1 mixtures of MPLN 1 (1.00, 0.00) 1 (1.00, 0.00) 1 (1.00, 0.00) 1 (1.00, 0.00) -

HTSCluster 3 (0.00, 0.00) 3 (0.00, 0.00) 3 (0.00, 0.00) 3 (0.00, 0.00) -

Poisson.glm.mix, m = 1 3 (0.00, 0.00) 3 (0.00, 0.00) 3 (0.00, 0.00) 3 (0.00, 0.00) -

Poisson.glm.mix, m = 2 3 (0.00, 0.00) 3 (0.00, 0.00) 3 (0.00, 0.00) 3 (0.00, 0.00) -

Poisson.glm.mix, m = 3 1-3 (1.00, 0.00) 1-3 (1.00, 0.00) 1-3 (1.00, 0.00) 1-3 (1.00, 0.00) -

MBCluster.Seq, Poisson - - - - -

MBCluster.Seq, NB - - - - -

Louvain - - - - 3-5 (0.00, 0.00)

2 mixtures of MPLN 2 (1.00, 0.00) 2 (1.00, 0.00) 2 (1.00, 0.00) 2 (1.00, 0.00) -

HTSCluster 3 (-0.01, 0.01) 3 (-0.01, 0.01) 3 (-0.01, 0.01) 3 (-0.01, 0.01) -

Poisson.glm.mix, m = 1 3 (0.09, 0.04) 3 (0.09, 0.04) 3 (0.09, 0.04) 3 (0.09, 0.04) -

Poisson.glm.mix, m = 2 3 (0.00, 0.02) 3 (0.00, 0.02) 3 (0.00, 0.02) 3 (0.00, 0.02) -

Poisson.glm.mix, m = 3 1-3 (0.00, 0.01) 1-3 (0.00, 0.01) 1-3 (0.00, 0.01) 1-3 (0.00, 0.01) -

MBCluster.Seq, Poisson 3 (0.00, 0.01) 3 (0.00, 0.01) 3 (0.00, 0.01) 3 (0.00, 0.01) -

MBCluster.Seq, NB 2 (-0.01, 0.06) 2 (-0.01, 0.06) 2 (-0.01, 0.06) 2 (-0.01, 0.06) -

Kmeans - - - - 2 (-0.06, 0.03)

Medoids - - - - 2 (0.70, 0.03)

Hierarchical - - - - 2 (-0.00, 0.008)

Louvain - - - - 3-8 (0.014, 0.01)

3 mixtures of MPLN 3 (0.99, 0.01) 3 (0.99, 0.01) 3 (0.99, 0.01) 3 (0.99, 0.01) -

HTSCluster 4 (0.02, 0.02) 4 (0.02, 0.02) 4 (0.02, 0.02) 4 (0.02, 0.02) -

Poisson.glm.mix, m = 1 4 (0.15, 0.03) 4 (0.15, 0.03) 4 (0.15, 0.03) 4 (0.15, 0.03) -

Poisson.glm.mix, m = 2 4 (0.04, 0.02) 4 (0.04, 0.02) 4 (0.04, 0.02) 4 (0.04, 0.02) -

Poisson.glm.mix, m = 3 2-4 (0.02, 0.01) 2-4 (0.02, 0.01) 2-4 (0.02, 0.01) 2-4 (0.02, 0.01) -

MBCluster.Seq, Poisson 4 (0.02, 0.01) 4 (0.02, 0.01) 4 (0.02, 0.01) 4 (0.02, 0.01) -

MBCluster.Seq, NB 2 (0.00, 0.01) 2 (0.00, 0.01) 2 (0.00, 0.01) 2 (0.00, 0.01) -

Kmeans - - - - 3 (0.03, 0.11)

Medoids - - - - 3 (0.42, 0.07)

Hierarchical - - - - 3 (-0.00, 0.07)

Louvain - - - - 5-7 (0.015, 0.01)
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value of one was obtained because all runs resulted in only
one cluster (others were empty clusters). Distance-based
methods and the graph-based method resulted in low ARI
values.

Simulation data analysis: mixtures of negative binomial
distributions
In this simulation, 50 datasets with two underlying clus-
ters were generated. All datasets had n = 200 observa-
tions and d = 6 samples generated using mixtures of
negative binomial distributions. Comparative studies were
conducted as specified earlier. Initialization of zig for all
methods was done using the k-means algorithm with 3
runs. Here, π1 = 0.79 and a clustering range of G =
1, . . . , 3 was considered. The clustering results are sum-
marized in Table 5. The ARI values obtained for mixtures
of MPLN were equal to or very close to one, indicat-
ing that the algorithm is able to assign observations to
the proper clusters. Low ARI values were observed for
all other model-based clustering methods and the graph-
basedmethod. Interestingly, application of distance-based
methods resulted in high ARI values.

Discussion
A model-based clustering technique for RNA-seq data
has been introduced. The approach utilizes a mixture
of MPLN distributions, which has not previously been
used for model-based clustering of RNA-seq data. The
transcriptome data analysis showed the applicability of
mixture model-based clustering methods on RNA-seq
data. Information criteria selected the highest cluster size
considered in the range of clusters for HTSCluster
and Poisson.glm.mix. For MBCluster.Seq, NB, the
lowest cluster size considered in the range of clusters was
selected. This could potentially imply that these mixtures
of Poisson and NB models are not providing a good fit

to the data. However, further research is needed in this
direction, including the search for other model selection
criteria. The GO enrichment analysis (p-value < 0.05)
identified enriched terms in 75% of the clusters result-
ing from mixtures of MPLN distributions, whereas only
50% of clusters from MBCluster.Seq, NB and 36% of
the clusters from MBCluster.Seq, Poisson contained
enriched GO terms.
Using simulated data from mixtures of MPLN distribu-

tions, it was illustrated that the algorithm for mixtures
of MPLN distributions is effective and returned favorable
clustering results. It was observed that other model-based
methods from the current literature failed to identify the
true number of underlying clusters a majority of the time.
Clustering trends similar to those observed for transcrip-
tome data analysis were observed for other model-based
methods during the simulation data analysis. Distance-
based methods failed to assign observations to proper
clusters, as evident by the low ARI values. The graph-
based method, Louvain, also failed to identify the true
number of underlying clusters.
Using simulated data from mixtures of negative bino-

mial distributions, it was illustrated that the algorithm
for mixtures of MPLN distributions is effective and
returned favorable clustering results. The distance-based
methods also assigned observations to proper clusters
resulting high ARI values. It was observed that other
model-based methods from the current literature, as well
as the graph-based method, failed to identify the true
number of underlying clusters a majority of the time.
Although the correct numbers of clusters were selected
by MBCluster.Seq, proper cluster assignment has not
taken place as evident by the low ARI values. Note that
although MBCluster.Seq, NB is based on negative
binomial distributions, it has low ARI (approx. 0). This
could be because the implementation of the approach

Table 5 Number of clusters selected (average ARI, standard deviation) for the simulation setting using mixtures of negative binomial
distributions

Method BIC ICL AIC AIC3 None

mixtures of MPLN 2 (1.00, 0.00) 2 (1.00, 0.00) 2-3 (0.99, 0.02) 2-3 (0.99, 0.02) -

HTSCluster 2-3 (0.008, 0.02) 1 (0.00, 0.00) 3 (0.008, 0.02) 3 (0.008, 0.02) -

Poisson.glm.mix, m = 1 1-3 (0.002, 0.02) 1 (0.00, 0.00) 3 (0.001, 0.01) 3 (0.001, 0.01) -

Poisson.glm.mix, m = 2 2-3 (0.005, 0.02) 1 (0.00, 0.00) 2-3 (0.006, 0.02) 3 (0.006, 0.02) -

Poisson.glm.mix, m = 3 1-3 (0.007, 0.02) 1 (0.00, 0.00) 3 (0.004, 0.02) 3 (0.004, 0.02) -

MBCluster.Seq, Poisson 2 (0.005, 0.02) 2 (0.005, 0.02) 2 (0.005, 0.02) 2 (0.005, 0.02) -

MBCluster.Seq, NB 2 (0.005, 0.01) 2 (0.005, 0.01) 2 (0.005, 0.01) 2 (0.005, 0.01) -

Kmeans - - - - 2 (1.00, 0.00)

Medoids - - - - 2 (1.00, 0.00)

Hierarchical - - - - 2 (1.00, 0.00)

Louvain - - - - 7-9 (-0.0006, 0.005)
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by [35] available in R package MBCluster.Seq at the
moment only performs clustering based on the expres-
sion profiles. Si et al. [35] mention that clustering could
be done according to both the overall expression lev-
els and the expression profiles by some modification to
the parameters, but the implementation of the approach
was not available in the R package. Additionally, across
all studies (both real and simulated) it is evident that
G = 2 is selected via information criteria, when
MBCluster.Seq, NB is used for clustering.
Overall, the transcriptome data analysis together with

simulation studies show superior performance of mix-
tures of MPLN distributions, compared to other methods
presented.

Conclusions
The mixture model-based clustering method based on
MPLN distributions is an excellent tool for analysis of
RNA-seq data. The MPLN distribution is able to describe
a wide range of correlation and overdispersion situations,
and is ideal for modeling RNA-seq data, which is gen-
erally overdispersed. Importantly, the hidden layer of the
MPLN distribution is a multivariate Gaussian distribu-
tion, which accounts for the covariance structure of the
data. As a result, independence does not need to be
assumed between variables in clustering applications.
The scripts used to implement this approach are pub-

licly available and reusable such that they can be sim-
ply modified and utilized in any RNA-seq data analy-
sis pipeline. Further, the vector of library size estimates
for samples can be relaxed and the proposed clustering
approach can be applied to any discrete dataset. A direc-
tion for future work would be to investigate subspace clus-
tering methods to overcome the curse of dimensionality
as high-dimensional RNA-seq datasets become frequently
available.

Methods
Mixtures of MPLN Distributions
The sequencing depth can differ between samples in an
RNA-seq study. Therefore, the assumption of equal means
across conditions is unlikely to hold. To account for the
differences in library sizes across each sample j, a fixed,
known constant, sj, representing the normalized library
sizes is added to the mean of the Poisson distribution.
Thus, for genes i ∈ {1, . . . , n} and samples j ∈ {1, . . . , d},
the MPLN distribution is modified to give

Yij|θij ∼ P(exp{θij + log sj})
(θi1, . . . , θid)′ ∼ Nd(μ,�).

A G-component mixture of MPLN distributions can be
written

f (y;�) =
G∑

g=1
πg fY(y|μg ,�g)

=
G∑

g=1
πg

∫

Rd

⎛

⎝
d∏

j=1
f (yij|θijg , sj)

⎞

⎠ f(θ ig |μg ,�g) dθ ig ,

where � = (π1, . . . ,πG,μ1, . . . ,μG,�1, . . . ,�G) denotes
all model parameters and fY(y;μg ,�g) denotes the dis-
tribution of the gth component with parameters μg and
�g . The unconditional moments of the MPLN distribu-
tion can be obtained via conditional expectation results
and standard properties of the Poisson and log normal
distributions. For a G-component mixture of MPLN dis-
tributions, the mean of Yj is E(Yj) = exp

{
μjg + 1

2σjjg
} def=

mjg and the variance isVar(Yj) = mjg +m2
jg(exp{σjjg}−1).

Here, σjjg represents the diagonal elements of �g , for j =
1, . . . , d. Now, Var(Yj) ≥ E(Yj) so there is overdispersion
for the marginal distribution with respect to the Poisson
distribution.

Parameter Estimation
To estimate the parameters, a maximum likelihood esti-
mation procedure based on the EM algorithm is used. In
the context of clustering, the unknown cluster member-
ship variable is denoted by Zi such that Zig = 1 if an
observation i belongs to group g and Zig = 0 otherwise,
for i = 1, . . . , n; g = 1, . . . ,G. The complete-data con-
sist of (y, z, θ ), the observed and missing data. Here, z is a
realization of Z. The complete-data log-likelihood for the
MPLN mixture model is

lc(�)=
n∑

i=1

G∑

g=1
zig logπg

⎛

⎝
d∑

j=1
f (yij|θijg , sj)

⎞

⎠ f (θ ig |μg ,�g)

=
G∑

g=1
ng logπg −

n∑

i=1

G∑

g=1

d∑

j=1
zig exp{θijg + log sj}

+
n∑

i=1

G∑

i=g
zig(θ ig + log s)y′

i

−
n∑

i=1

G∑

g=1

d∑

j=1
zig log yij!−nd

2
log 2π− 1

2

G∑

g=1
ng log |�g |

− 1
2

n∑

i=1

G∑

g=1
zig(θ ig − μg)�

−1

g (θ ig − μg)
′,

where ng = ∑n
i=1 z

(t)
ig . The conditional expectation of

complete-data log-likelihood given observed data (Q) is

Q(�) = E [lc(�)] = E
[
log

(
πg f (y|θ g , s)f (θ g |ϑg)

)]
.
(1)
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Here, ϑg = (μg ,�g), for g = 1, . . . ,G. Because the first
term of (1) does not depend on parameters ϑg , Q can be
written

Q(ϑg |ϑ (t)
g ) = E

[
log f (θ g |Y ,ϑg)|Y = y

] + c(y), (2)

where c is independent of ϑg . The density of the term
f (θ g |y,ϑg) in (2) is

f (θ g |y,ϑg) = f (y|θ g)f (θ g ,ϑg)

f (y,ϑg)
= f (y|θ g)f (θ g ,ϑg)

∫
θ g
f (y|θ g)f (θ g ,ϑg)dθ g

.

(3)

Due to the integral present in (3), evaluation of f (y,ϑg)
is difficult. Therefore, the E-step cannot be solved ana-
lytically. Here, an extension of the EM algorithm, called
Monte Carlo EM (MCEM) [36], can be used to approxi-
mate the Q function. MCEM involves simulating at each
iteration t and for each observation yi a random sam-
ple of size B, i.e., θ

(1)
ig , . . . , θ (B)

ig , from the distribution
f (θ g |y,ϑg) to find a Monte Carlo approximation to the
conditional expectation of complete-data log-likelihood
given observed data. Here, each iteration from theMCEM
simulation is represented using k, where k = 1, . . . ,B. As
the values from initial iterations are discarded from fur-
ther analysis to minimize bias, the number of iterations
used for parameter estimation is N, where N < B. Thus, a
Monte Carlo approximation forQ in (2) is

Q(ϑg |ϑ (t)
g ) =

G∑

g=1

n∑

i=1
Qig(ϑg |ϑ (t)

g ),

Qig(ϑg |ϑ (t)
g ) � 1

N

N∑

k=1
log f (θ (k)

ig |yi,ϑg) + c(yi).

However, another layer of complexity is added as the
distribution of f (θ g |y,ϑg) is unknown. Therefore, an alter-
native MCEM based on Markov chains, Markov chain
Monte Carlo expectation-maximization (MCMC-EM) is
proposed. MCMC-EM is implemented via Stan, which
is a probabilistic programming language written in C++.
The R interface of Stan is available via RStan.

Bayesian Inference With Stan
Bayesian approaches to mixture modeling offer the flexi-
bility of sampling from computationally complex models
using MCMC algorithms. For the mixtures of MPLN
distributions, the random sample θ

(1)
ig , . . . , θ (B)

ig is simu-
lated via the RStan package. RStan carries out sampling
from the posterior distribution via No-U-Turn Sampler
(NUTS). The prior on θ ig is a multivariate Gaussian dis-
tribution and the likelihood follows a Poisson distribution.
Within RStan, the warmup argument is set to half the
number of total iterations, as recommended [37]. The

warmup samples are used to tune the sampler and are
discarded from further analysis.
Using MCMC-EM, the expected value of θ ig and group

membership variable Zig , respectively, are updated in E-
step as follows

E(θ ig |yi) � 1
N

N∑

k=1
θ

(k)
ig � θ

(t)
ig ,

E(Zig |yi, θ ig , s) =
πg f

(
yi|θ (t)

ig , s
)
f
(
θ ig |μ(t)

g ,�(t)
g

)

∑G
h=1 π

(t)
h f (yi|θ (t)

ih , s)f (θ ih|μ(t)
h ,�(t)

h )
=: z(t)ig .

During the M-step, the updates of the parameters are
obtained as follows

π(t+1)
g =

∑n
i=1 z

(t)
ig

n
, μ(t+1)

g =
∑n

i=1 z
(t)
ig E(θ ig)

∑n
i=1 z

(t)
ig

,

�(t+1)
g =

∑n
i=1 z

(t)
ig E

((
θ ig − μ

(t+1)
g

) (
θ ig − μ

(t+1)
g

)′)

∑n
i=1 z

(t)
ig

.

Convergence
To determine whether the MCMC chains have converged
to the posterior distribution, two diagnostic criteria are
used. One is the potential scale reduction factor [38] and
the other is the effective number of samples [39]. The
algorithm for mixtures of MPLN distributions is set to
check if the RStan generated chains have a potential scale
reduction factor less than 1.1 and an effective number of
samples value greater than 100 [37]. If both criteria are
met, the algorithm proceeds. Otherwise, the chain length
is set to increase by 100 iterations and sampling is redone.
A total of 3 chains are run at once, as recommended
[37]. The Monte Carlo sample size should be increased
with the MCMC-EM iteration count due to persistent
Monte Carlo error [40], which can contribute to slow or
no convergence. For the algorithm for mixtures of MPLN
distributions, the number of RStan iterations is set to
start with a modest number of 1000 and is increased with
each MCMC-EM iteration as the algorithm proceeds. To
check if the likelihood has reached its maximum, the
Heidelberger and Welch’s convergence diagnostic [41] is
applied to all log-likelihood values after each MCMC-EM
iteration, using a significance level of 0.05. The diagnos-
tic is implemented via the heidel.diag function in
coda package [42]. If not converged, further MCMC-EM
iterations are performed until convergence is reached.

Initialization
For initialization of parameters μg and �g , the mean and
cov functions in R are applied to the input dataset, respec-
tively, and log of the resulting values are used. For initial-
ization of ẑig , two algorithms are provided: k-means and
random. For k-means initialization, k-means clustering is
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performed on the dataset and the resulting group mem-
berships are used for the initialization of ẑig . The mixtures
of MPLN algorithm is then run for 10 iterations and the
resulting ẑig values are used as starting values. For random
initialization, random values are chosen for ẑig ∈[ 0, 1]
such that

∑n
i=1 ẑig = 1 for all i. The mixtures of MPLN

algorithm is then run for 10 iterations and resulting ẑig
values are used as starting values. If multiple initializa-
tion runs are considered, the ẑig values corresponding to
the run with the highest log-likelihood value are used for
downstream analysis. The value of the fixed, known con-
stant that accounts for the differences in library sizes, s, is
calculated using the calcNormFactors function from
the edgeR package [43].

Parallel Implementation
Coarse grain parallelization has been developed in the
context of model-based clustering of Gaussian mixtures
[44].When a range of clusters are considered for a dataset,
i.e., Gmin:Gmax, each cluster size, G, is independent and
there is no dependency between them. Therefore, each G
can be run in parallel, each one on a different processor.
Here, the algorithm for mixtures of MPLN distributions is
parallelized using parallel package [45] and foreach
package [46]. Parallelization reduced the running time of
the datasets (results not shown) and all analyses were done
using the parallelized code.

Model selection
The Bayesian information criterion (BIC) [47] remains the
most popular criterion for model-based clustering appli-
cations [8]. For this analysis, four model selection criteria
were used: the Akaike information criterion (AIC) [48],

AIC = −2 logL(ϑ̂ |y) + 2K ;

the BIC,

BIC = −2 logL(ϑ̂ |y) + K log(n);

a variation on the AIC used by [49],

AIC3 = −2 logL(ϑ̂ |y) + 3K ;

and the integrated completed likelihood (ICL) of [50],

ICL ≈ BIC + 2
n∑

i=1

G∑

g=1
MAP{ẑig} log ẑig .

The L(ϑ̂ |y) represents maximized log-likelihood, ϑ̂ is the
maximum likelihood estimate of the model parameters ϑ ,
n is the number of observations, andMAP{ẑig} is the max-
imum a posteriori classification given ẑig . K represents the
number of free parameters in themodel, calculated asK =
(G−1)+ (Gd)+Gd(d+1)/2, forG clusters. These model
selection criteria differ in terms of how they penalize the
log-likelihood. Rau et al. [14] make use of an alternative

approach to model selection using slope heuristics
[51, 52]. Following their work, Djump andDDSE, available
via capushe package, were also used.More than 10mod-
els need to be considered for applying slope heuristics.
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