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Information about sensations, actions,
outcomes, and their associations is often
unknown, imprecise, or subject to change.
Bayesian theories of learning suggest that
to minimize uncertainty and maintain
adaptive control, the brain optimally
combines new sensory input with past ex-
perience, to infer (form beliefs about) the
causes and consequences of sensations
and actions (Stephan and Mathys, 2014).
The degree to which beliefs are updated to
support exploitation of past knowledge or
sensitivity to new sensory information de-
pends on the strength of that information
and associated confidence.
Hallucinations (false perceptions) and
delusions (persistent false beliefs; i.e., pos-
itive symptoms) are core symptoms of
schizophrenia and are accompanied by
chronic impairments in motivational/
affective (negative symptoms) and cogni-
tive domains (Fig. 1; American Psychiat-
ric Association, 2013). Using a Bayesian
framework, it is theorized that positive
symptoms in schizophrenia might arise
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from impaired belief updating (Stephan
and Mathys, 2014). Some hypothesize
that these impairments are because of
overexcitation at the sensory level such
that irrelevant or noisy sensory input im-
properly enters awareness and influences
beliefs (for review, see Valton et al., 2017).
Others posit that atypical belief updating
is because of higher-level metacognitive
impairments leading to imbalance in con-
fidence associated with new sensory input
and past experiences (Frith and Friston,
2013; Valton et al., 2017). Recently, Ad-
ams et al. (2018), proposed a Bayesian
“attractor-like” model that parsimoni-
ously accounts for both types of inferen-
tial error.

Prefrontal attractor networks are a
class of biologically plausible and mecha-
nistic models of cognitive phenomena,
including working memory and decision-
making (for review, see Rolls et al., 2008).
Repeated experience with stimuli leads
to learning via adjustment of synaptic
weights. Over time, this results in the for-
mation of relatively low-energy, recurring
firing patterns (stable states) that are more
readily activated by input that matches
pre-existing weights. Adams et al. (2018)
posit that impaired belief updating in
schizophrenia results from unstable at-
tractor networks. They hypothesized that
cortical networks in schizophrenia are
prone to disruption from either internal

or external “noise”, and thus rather than
forming stable recurrent states, the net-
works are more prone to jumping be-
tween states. Increased susceptibility to
noise, in turn, decreases the likelithood of
stabilization toward any one state (Rolls et
al., 2008).

To test for differences in belief updat-
ing, Adams et al. (2018) used data from a
version of the “Beads” task collected in
two independent samples of patients and
controls. Participants were shown two
urns with a combination of red and blue
beads; one had more red beads while the
other had more blue beads. The urns were
then hidden, and beads were sequentially
drawn from one of the urns (with replace-
ment). Participants rated the subjective
probability that each presented bead was
drawn from one of the urns (continuous
rating from 0 to 100 in Dataset 1 and
Likert rating from 1 to 7 in Dataset 2).
Patients in Dataset 1 suffered from delu-
sions, but not all were diagnosed with
schizophrenia (a minority had bipolar/
schizoaffective disorders). To test the
specificity of findings to positive symp-
toms, Dataset 1 also included a non-
psychotic clinical control group (with
mood/anxiety disorders) from the same
inpatient unit, in addition to a healthy
control group. Data for all groups in Da-
taset 1 were collected at two time points
(before and after remission). Dataset 2 in-
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Left, An original diagram of the term “schizophrenia” ina word cloud created with text from the “Signs and Symptoms” section of a website published by the National Institute of Mental

Health (2016)on schizophrenia. Word cloud created using weh-based tool on www.WordClouds.com. Right, Examples of symptoms that fall within positive, negative, and cognitive symptom
domains in schizophrenia (Rolls et al., 2008; American Psychiatric Association, 2013). Positive symptoms are thoughts, behaviors, or sensory perceptions that are atypically present in patients and
outside of the sociocultural norms. Negative symptoms are thoughts, emotions, or behaviors that are absent/impaired in patients but typical of most individuals. Cognitive symptoms are undesirable
changesin various cognitive domains, including memory, attention, and reasoning. For these symptoms to be of clinical relevance, they need to be persistent (at least T month or more) and interfere
with several life domains (e.g., social relationships, work, self-care, etc.).

cluded data from a medically stable pa-
tient and healthy control group for one
time point. All patients in Dataset 2 met
diagnostic criteria for schizophrenia,
but it was unknown whether they suf-
fered primarily from hallucinations, de-
lusions, or a heterogeneous mixture of
these symptoms.

To test whether attractor-like dynam-
ics accounted for individual differences in
belief updating, the authors (Adams et al.,
2018) defined six biologically plausible
Bayesian learning models [hierarchical
Gaussian filter (HGF); Mathys et al.,
2011]. HGF models allow for individual-
level estimation of higher-level influences
(e.g., how past experiences shape sensory
expectations) and lower-level inferences
(e.g., how sensory input/prediction errors
influence beliefs) on learning (Mathys et
al., 2011). They subsequently used Bayes-
ian model selection (Rigoux et al., 2014)
to determine which model best fit data in
each dataset and each group (i.e., patient
and control) separately. Two of these
models estimated a “belief-instability” pa-
rameter, which at high values produced
simulated behavior consistent with as-
sumptions of unstable attractor states
(i.e., greater switching between states and
reduced likelihood of stabilizing in any

one state). For further details on parame-
ters included/estimated in alternative
models, refer to Adams et al. (2018), their
Table 3.

To estimate individual-level parame-
ters, the authors generated a model of the
task (i.e., perceptual model), followed by a
model of how trial-by-trial predictions
mapped onto current behavior (i.e., re-
sponse model). The model that best-fit
data for all groups in both datasets esti-
mated the following parameters from the
perceptual model: general learning rate
(trial-to-trial variance in beliefs about
urn), initial belief variance, and belief in-
stability (strength of belief update to new
sensory input when individual is uncer-
tain versus confident in their predictions).
To account for alternative sources of noise
(e.g., random neuronal firing not cap-
tured by environmental variability), the
authors also estimated a response stochas-
ticity parameter for all response models
(inverse variance in trial-to-trial mapping
of predictions to responses).

Statistical tests in Dataset 1 revealed
that both patients suffering from delu-
sions and clinical controls showed greater
belief instability and response stochas-
ticity than healthy controls, with no dif-
ference between patients and clinical

controls. After remission, patients suffer-
ing from delusions still had greater belief
instability and response stochasticity than
controls, but clinical controls did not. Re-
sults were replicated in Dataset 2, with
higher belief instability and response sto-
chasticity in patients with schizophrenia
than controls. In Dataset 2, initial belief
variance was different between patients
and controls, but this difference was no
longer statistically significant after com-
paring patients with a subset of control
participants better matched on age and
sex. Belief instability and response sto-
chasticity parameters were moderately
and reliably correlated in both datasets
and in simulations, suggesting that higher
belief instability was associated with a
weaker link between expectations and
responses.

Behavioral findings reported by Ad-
ams et al. (2018) largely replicated existing
literature on probabilistic decision-
making and learning in schizophrenia
(Peters and Garety, 2006; Corlett et al.,
2009; Averbeck et al., 2011; Jardri et al.,
2017). Compared with controls, patients
with schizophrenia overweighted unex-
pected evidence, underweighted expected
evidence, and were more confident when
sensory evidence was limited (i.e., jumped
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to conclusions). Computational model-
ing results provided support for unstable
attractor-like dynamics as a plausible mech-
anism for this range of belief-updating im-
pairments. Specifically, at high uncertainty,
patients with schizophrenia were more
likely to switch beliefs upon observing
new sensory input (high belief instability)
and were less likely to stabilize beliefs to-
ward either urn as evidence increased
(high response stochasticity). Importantly,
this model parsimoniously accounted for
both metacognitive and sensory interpreta-
tions of these inferential impairments. The
authors also partially ruled out other possi-
ble explanations (e.g., no differences on ini-
tial belief variance or general learning rate),
suggesting that unstable attractor-like dy-
namics accounted for behavioral differences
between patients and controls.

Existing literature has largely assumed
that belief updating impairments in
schizophrenia are specific markers of
acute positive symptoms or vulnerability
to delusions (Garety and Freeman, 2013).
For example, Woodward et al. (2009)
showed that in patients with schizophrenia,
decreases in delusion-related symptoms
from precognitive to postcognitive behav-
ioral therapy corresponded with increased
evidence gathering (less jumping to con-
clusions). Notably, this effect was not de-
pendent on working memory demands or
the reward value of a correct response,
leading the authors to conclude their
specificity to delusion-related symptoms
(Woodward et al., 2009; Garety and Free-
man, 2013). Adams et al. (2018) did not
test for within-group differences in belief
instability or response stochasticity pa-
rameters before and after remission in
Dataset 1, and only correlated symptoms
before remission with parameter esti-
mates from that time point. This makes it
difficult to determine whether parameters
of the unstable attractor-like model reflect
change that is linked to specific symptom
domains. In fact, results of the study (Ad-
ams et al., 2018) raise questions about
whether impairments in belief-updating
and unstable attractor dynamics, uni-
quely underlie positive symptoms (i.e.,
hallucinations and/or delusions). The au-
thors (Adams et al., 2018) reported that
before remission, clinical controls were
just as impaired as actively psychotic pa-
tients in belief instability and response
stochasticity parameters. Clinical controls
were older, had higher IQ, higher affective
symptoms (low mood/high anxiety mea-
sured via Manchester scale), and lower
scores on the Proneness to Delusions In-
ventory (PDI) compared with patients

with schizophrenia before remission.
These findings suggest that parameters of
the unstable attractor-like model may
capture pathological burden more gener-
ally, rather than symptoms of specific do-
mains per se. Accordingly, Lincoln et al.
(2010), found that correlations between
delusion-related symptoms and impair-
ments in belief-updating in patients with
schizophrenia were mediated by IQ and
negative symptom severity in separate
analyses. Further research is necessary to
determine the domain-specific impact of
unstable attractor-like dynamics and as-
sociated model parameters, and how dif-
ferent treatments may influence these
parameters.

Relatedly, response stochasticity was
the only parameter significantly associ-
ated with symptom/cognitive measures,
specifically correlating with PDI scores
across the whole sample in Dataset 1
(before remission), and with negative
symptoms and IQ in patients with schizo-
phrenia in Dataset 2 (Adams et al., 2018).
In addition to demographic and symptom
heterogeneity between datasets, these
inconsistent findings might suggest that
select positive, negative, and cognitive
symptoms share underlying computa-
tional and neurobiological mechanisms
associated with response stochasticity. Se-
verity in these symptom domains and dif-
ficulty forming biases consistent with past
experience have been associated with al-
tered prefrontal and striatal activity and
connectivity (Gold et al., 2008; Simon et
al., 2010; Arrondo et al., 2015). Recent
work by Kurtz-David et al. (2019) showed
that in healthy adults, severity of trial-by-
trial inconsistency between expectations
and responses was associated with greater
activity in the ventromedial prefrontal
and anterior cingulate cortex, but not the
ventral striatum. These early findings sug-
gest that noise in select prefrontal regions
might represent trait-level risk for patho-
logical behavior. However, the degree to
which noise in prefrontal regions corre-
lates with specific symptom domains may
depend on context-dependent changes in
neuromodulatory activity in other cor-
tical/subcortical regions (e.g., because
of chronic/acute stress, environmental
changes, or medication; Keedy et al., 2009;
Stephan and Mathys, 2014; Swardfager et
al., 2016; Miiller, 2018).

Adamsetal. (2018) did not directly ad-
dress the underlying neural mechanisms
of unstable attractor-like dynamics but
suggested that imbalance of cortical and
mesolimbic NMDA/dopamine may be in-
volved (Rolls et al., 2008; Adams et al.,
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2018). Although disruption in NMDA
and dopamine signaling has long been
thought to contribute to schizophrenia,
less prominent computational models of
neuromodulator dynamics are gaining
traction. For example, existing models of
tonic and phasic acetylcholine-norepi-
nephrine dynamics might supplement
traditional hypotheses about unstable
attractor-like dynamics in schizophrenia
(Aston-Jones and Cohen, 2005; Yu and
Dayan, 2005; Dayan and Yu, 2006). These
neuromodulators are hypothesized to
track expected and unexpected levels of
stimulus-response-outcome uncertainty
to balance metacognitive and sensory in-
fluences on beliefs and behavior. There-
fore, imbalance and asynchrony in the
activity of these neuromodulators might
underlie belief instability and response
stochasticity in schizophrenia. Recent
work has linked these neuromodulators
and their receptors to changes in inferen-
tial processing and belief-updating and
symptom domains (Avery and Krichmar,
2017; Jepma et al., 2018). For example,
blocking «,-adrenergic receptors (o;-
ARs), which typically have excitatory ef-
fects on cell signaling, reduces positive
symptoms in patients with schizophrenia
(for review, see Maletic et al., 2017). Con-
versely, blocking a,-ARs, which typically
have inhibitory effects on cell signaling,
reduces negative symptoms and improves
cognitive functioning (Maletic et al,
2017). Cholinergic muscarinic and nico-
tinic receptors also contribute to the pre-
sentation of positive symptoms and play
an important role in associated striatal
dopamine signaling. These receptors also
modulate prefrontal and hippocampal
monoamine release during learning and
plasticity (Hasselmo, 2006; Foster et al.,
2012; Sarter et al., 2012). Attractor models
of cortical cholinergic dynamics show that
elevations of tonic acetylcholine can lead
to impairments in associative learning
and impede formation of stable attractor
states, similar to those observed in schizo-
phrenia (Kanamaru et al., 2013). This
framework, therefore, may supplement ex-
isting cognitive and neuromodulator theo-
ries of symptoms in schizophrenia by
providing a (simplified) computational and
mechanistic index of uncertainty.

In summary, Adams et al. (2018)
provided evidence for a parsimonious
computational account of belief updating
impairments in schizophrenia. Their
model mirrors the assumptions of unsta-
ble attractor-like dynamics and provides
insight into how uncertainty may shift a
person’s model of the environment. Fu-
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ture work should test the clinical utility
and specificity of belief instability and
response stochasticity parameters in track-
ing symptom change or capturing pheno-
typic/mechanistic heterogeneity. The range
of possible neurobiological explanations of
unstable attractor dynamics, and the speci-
ficity of this effect on positive symptoms, are
not explicitly addressed by this study or the
HGF model. Future research should directly
test the plausibility of proposed mecha-
nisms and their relationships with compu-
tationally derived parameters in vivo.
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