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Graphene nanocomposite is an inorganic nanocomposite material, which has been widely used in the treatment of tumor at present
due to its ability of drugloading, modifiability, photothermal effect, and photodynamic effect. However, the application of graphene
nanocomposite is now limited due to the fact that the functions mentioned above are not well realized. This is mainly because
people do not have a systematic understanding of the physical and chemical properties of GO nanomolecules, so that we cannot
make full use of GO nanomolecules to make the most suitable materials for the use of medicine. Here, we are the first to discuss
the influence of the physicochemical properties of graphene nanocomposite on the various functions related to their antitumor
effects. The relationship between some important physicochemical properties of graphene nanocomposite such as diameter, shape,
and surface chemistry and their functions related to antitumor effects was obtained through analysis, which provides evidence for

the application of related materials in the future.

1. Introduction

As a deadly disease, cancer has always caused a great threat to
people’s health [1, 2]. In the past few decades, the treatment
of cancer has undergone great changes. At present, the
treatment of cancer has formed a comprehensive treatment
system combining surgery, chemotherapy, radiotherapy, and
biological targeted therapy. However, all the above treatments
have limitations. The five-year survival rate of patients with
tumor is still very low. Clinical experience has shown that,
with the exception of a few targeted drugs, most of existing
therapies cannot improve the cure rate of cancer patients [3].
Taking chemotherapy as an example, most of the current
chemotherapy drugs are nonspecific cell killers, which may
cause the resistance of tumor cells to chemotherapy drugs
and normal tissue cells damage [4-6]. Radiotherapy can
also cause the damage of normal tissue cells [7]. Therefore,
people are looking for more cancer treatment programs to
improve the existing cancer treatment system. In recent years,
nanomaterials are becoming more and more popular in anti-
tumor researches. Graphene nanocomposites are representa-
tive among nanomaterials for their unique physicochemical

properties [8]. So far, graphene-based materials have been
synthesized in various forms, such as graphane (hydro-
genated graphene), fluorographene (fluorinated graphene),
graphdiyne, porous graphene, graphene nanoribbon (GNR),
graphene oxide (GO), and reduced graphene oxide (rGO) [9].
Among them, GO and rGO are most commonly used for
the biomedical application such as anticancer drug carrier,
imaging agent delivery, and theranostics in oncology. GO is a
highly oxidized form of graphene, which is often synthesized
by the modified Hummer’s method [10]. rGO is prepared by
adding appropriate reducing agents to GO [11]. Therefore,
both GO and rGO have the basic carbon planar structure of
graphene and numerous 77-7r bonds, while water solubility
is increased due to the presence of hydrophilic groups.
At present, graphene materials are often used in the form
of graphene nanocomposites for biomedical and clinical
practice. Graphene nanocomposites with the basic structure
of GO have some special effects of common nanomaterials,
such as small size effect, which enables the materials not
only to have an excellent photothermal effect to convert
infrared light energy into heat energy effectively due to
the special effects mentioned above and the presence of a
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FIGURE 1: The idea of this article.

large number of aromatic ring structure [12-16], but also to
efficiently load aromatic hydrophobic drugs via hydrophobic
interaction and -7 stacking [17, 18]. Graphene materials also
have antibacterial properties [19], photodynamic effect [20],
and so on. At present, it has been pointed out that the above
characteristics of nanomaterials are closely related to the
physical and chemical properties of nanomaterials [19, 21].
Our review aims to make a comprehensive summary of the
relationship between the physical and chemical properties of
graphene nanocomposites and their related characteristics in
oncotherapy, so as to provide evidence for the application of
graphene nanocomposites in the future. The overall idea of
the article is shown in Figure 1.

2. Effects of Physicochemical Properties
of Graphene Nanocomposites on Their
Antitumor Activity

2.1. Physical Properties of a Material Molecule. Graphene
nanocomposites have a variety of special properties, such as
photothermal effect, photodynamic effect, and drug loading
effect. Whether these properties can be successfully applied
to the practice of eliminating tumor cells is closely related
to the physical properties of the material molecules. At
present, we pay more attention to the physical properties of
material molecules. In the following part, some basic and
important physical properties of graphene oxide nanocom-
posites currently in use and research such as shape, size,
and surface potential will be introduced in detail, and the
influence of these physical properties on the antitumor use
of nanomaterials will be discussed.

2.1.1. The Shape of GO Nanoparticles. The shape of nanometer
molecule is not a parameter that can be measured, but its
influence on nanometer material molecule is self-evident.
The European Union’s new guidelines on nanomaterials state
that shape is one of the key parameters in the definition of
“nanoform” [22]. The US EPA is also considering shape as a
condition for the registration and identification of nanoforms
of special chemical substances [23]. All of the above illustrate
the importance of shape as a parameter for nanomolecules,

and graphene nanocomposite materials are no exception. The
molecular structure of graphene nanocomposites is lamellar
[24], which is considered by the authors as an advantage
in terms of morphological parameters. It is not difficult to
conclude from the basic physics that, compared with the
spherical structure of fullerenes and the tubular structure of
carbon nanotube materials, the “flake structure” of graphene
can provide a larger specific surface area, which can make
interactions between the surface of the molecule and its
surroundings stronger [25]. Studies have shown that the
interaction between NPs and biological units is strongly
dependent on the shape of NPs [26, 27]. For example, the
binding of NPs to the receptor as a ligand molecule is highly
dependent on the shape of NPs [28]. Nanoscale shapes have
also been shown to affect cellular absorption. Currently, there
is a lack of concrete researches on the relationship between
the specific morphology of graphene oxide nanocomposite
molecules and their phagocytosis, which may be a complex
problem because the relationship between the shape and
cellular absorption of nanoparticles is “complex and diverse”.
For example, experimental results have shown that the
endocytosis of Au nanomaterials coated with transferrin is
worse than that of spherical nanomaterials (two sizes:74 nm
and 14nm) [27, 29]. On the contrary, it has also been
reported that in human melanoma cells (A375), compared
with shorter silica nanorods (aspect ratio 2) and spherical
silica nanoparticles (aspect ratio 1), elongated silica nanorods
with aspect ratio 4 have higher internalization rate [30].
The effect of the shape of the nanoparticles on their action
is illustrated in Figure 2. In the existing researches on
GO nanocomposites, researchers pay more attention to the
thickness and size of nanomaterial molecules and seldom
discuss shape parameters such as aspect ratio. However,
the above examples have demonstrated the importance of
the specific shape of material molecules for their biological
effects, so it is very necessary to obtain appropriate shape
parameters for the use of nanomaterial molecules. In the
future, it may be an important research direction to explore
appropriate shape parameters through specific experiments.

2.1.2. The Size of a Material Molecule. The molecular size of
GO nanocomposites is one of the most important physical
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FIGURE 2: The effect of the shape of the nanoparticles on their action.

properties. Many unique properties of nanomaterials are
determined by their molecular size. Because the size or diam-
eter of nanomolecule is in the nanometer, the nanomolecule
has a high surface area ratio and quantum size effect, so that
the properties of nanomolecule have a significant difference
compared with other common materials [31]. Many intrinsic
physical properties of nanomaterials are affected by molecu-
lar size, such as superparamagnetism, plasmonic properties,
and fluorescence properties [32-34]. By definition, GO with
a lateral size range of 20 to 100 nanometers is known as
nano-GO [4]. In some of the current experiments, the diam-
eter of nano-GO used by the researchers is 50 nm-100nm
[35]. However, we also found that in some experiments
the researchers used materials with a molecular diameter
of more than 100nm [36, 37]. The photothermal effect of
nanomolecule is related to the size of molecule. From the
analysis of our existing experimental data, we can roughly
infer that the photothermal effect of the material becomes
worse with the increase of molecular diameter. The reason
may be that with the increase of the molecular diameter
of the material, the specific surface area decreases, and the
actual light-receiving area of the material decreases, thus
leading to the deterioration of the photothermal effect of
the material. According to Roper’s report, the calculation
formula of photothermal conversion efficiency can support
the conclusion above [38, 39].
_ hS (Tmax B Tsurr) B Qdis

= I(1-107%) M

However, the specific relationship still needs further experi-
mental exploration. In one study, Medintz and his colleagues
confirmed that smaller gold nanoparticles (about 10 nm) were
more likely to enter cells [40]. It has also been pointed out
that uniform and appropriate nanomaterials less than 100 nm
(especially 50-80nm) are more suitable for drug delivery
[41]. However, nanomolecules should not be too small in
diameter since the amount of drugs they can carry is much
smaller, which is not positive for treatments. Therefore, the
molecular size of GO nanocomposites plays an important
role in their functional realization. Adjusting the diameter
of nanomolecules can give full play to the antitumor effect.
The point here is that repeated oxidation can reduce the
size of nanomolecules [42], which may have certain guiding
significance to our future experiments.

The diameter of nanometer molecule can also affect its
photodynamic effect. The application of photodynamic effect
in antitumor therapy is a new way of thinking which is differ-
ent from photothermal therapy [43]. Photodynamic therapy
is a photochemical reaction produced by photosensitizers
under specific light excitation and then could produce highly
active singlet oxygen, which stimulates downstream signaling
pathways and changes the biological behavior of cells. So far,
traditional PSs such as methyl blue and rose bengal have been
widely applied for PDT [44, 45]. However, the photodynamic
efficiency of current photosensitizers is limited for the oxygen
reliance, the light penetration depth in tissues, and so on [46,
47], which forces us to develop new photodynamic materials.
In this context, GO nanomaterials are increasingly used in
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photodynamic therapy [48]. Photodynamic therapy can be
better achieved through nanomolecules, mainly because of
their controllable shape, size, and many unique functions
[49-53]. As mentioned above, nanomaterials have large
specific surface areas due to their proper shape and size.
Studies have shown that nanomolecules with large specific
surface areas can carry more photosensitive molecules into
tumor tissues [54].

Besides, the molecular size of nanomaterials not only
plays an important role in the functional realization of
nanomaterials, but also influences the toxicity of nanoma-
terials and the body’s immune response to nanoparticles.
Studies have shown that the toxicity of GO nanomolecules is
related to their molecular size [55]. Schinwald et al. reported
that large diameter GO molecules can cause inflammation
in humans [56]. A study by Kiew et al. has shown that
controlling the molecular size of about 150 nm can prevent
macrophage recognition [57]. Therefore, it is necessary to
determine the size of molecules in the research, and the most
common method is the electron microscope. The importance
of appropriate nanoparticle size is shown in Figure 3.

It should be pointed out that there are still some problems
in determining the shape and size of GO nanoparticles. For
example, proteins immediately attach themselves to nanoma-
terials after they come into contact with them, creating the
so-called protein corona around the nanomaterials [58, 59].
The interaction of the nanoprotein or the formation of the
protein corona in the serum or in any other protein solution
will have a significant effect on the shape, size, and many
other properties of the nanomaterials [60-63]. It is not only
nanomolecules that are easy to combine with proteins, but
also other biological macromolecules such as DNA, which
produces a series of changes in shape and size and gives many
biological functions [64]. Nanomolecules can also absorb
small molecules, such as glucose and amino acids, which may

be the substrate for some chemical reactions or the “key” to
some reactions. When combined with these small molecules,
the nanomolecules can form a “bridge” shape that facilitates
certain chemical reactions [65]. Nanomolecules themselves
are also agglomerative; the agglomeration of nanomolecules
depends not only on their own van der Waals force and
other properties but also on the dispersion medium [66]. For
example, many nanomaterials are more likely to aggregate
in electrolyte solutions, and we found this with GO in our
experiments. After the phenomenon of protein adsorption or
agglomeration, the actual particle size of the nanomolecule
has changed, and its physical and chemical properties will
be greatly affected. At present, some researches are devoted
to solving the agglomeration problem of nanomolecules
[67], but only in the aspect of engineering application. The
problems mentioned above can occur with GO nanoparticles,
so further exploration is needed to solve these problems in the
aspect of medicine.

2.1.3. Surface Potential of a Material Molecule. Surface poten-
tial is an important physical quantity of nanomolecules. We
can detect the surface potential of nanomolecules through the
measurement of surface zeta potential. Zeta potential of GO
nanomolecules is one of the physical quantities frequently
measured in experiments. One reason that zeta potential is
particularly significant is that it could affect the dispersion
of graphene oxide nanomolecules. Some studies indicate that
particles with zeta potential between -30 and + 30mv tend
to condense, which is most obvious when the solution is at
an isoelectric point, when zeta potential of nanomolecule
is Omv [68]. Currently, in the preparation of GO, the sta-
bility of nanomolecular solution of GO is often enhanced
by adsorption of polymer molecules on the surface. The
surface properties of modified polymer molecules changed,
and the surface potential changed accordingly, so that the
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FIGURE 4: The structure of GO. In the picture, the black spheres
represent carbon atoms, the red spheres represent oxygen atoms, and
the green spheres represent hydrogen atoms.

modified polymer molecules could not be easily polymerized
into macromolecules. Polymer adsorption is an effective
surface modification method to improve the stability of drug
suspensions [69]. The surface of GO nanomolecules is often
modified with PEG or other macromolecules, and zeta poten-
tial is also mostly located outside the above condensation
range. Measuring the zeta potential of the material molecule
also helps to determine the isoelectric point of the material
molecule, which is also a very important physical quantity of
the material molecule. Therefore, it is necessary to measure
the zeta potential of the material molecule 70, 71].

There are also many other physical properties of na-
nomolecules, such as superparamagnetism, porosity, and
dust content. These physical quantities also have a great
influence on the properties of nanomolecules, but these
physical properties do not play a critical role in drug loading,
photothermal effect, and photodynamic effect. Therefore,
the authors believe that it is not necessary to measure the
characterization of nanomolecules in detail in experiments.
At present, most researches on nanomaterials have not
reported many other properties of nanomaterials. With the
in-depth studies of nanomolecules, more physical properties
may be paid attention to in the future.

2.2. Chemical Properties of a Material Molecule. The chemical
properties of GO nanomolecules that we focus on are the
surface chemical properties. The rich chemical properties of
GO provide us with more opportunities for modification and
drug delivery. As we all know, functionalized nanographene
can be used as a drug carrier to deliver anticancer chemother-
apy drugs and gene therapy for tumors in vitro [17, 72-74].
Meanwhile, graphene phototherapy for tumors has shown
promise in many in vivo and in vitro studies, such as
photothermal therapy [9] and photodynamic therapy [75].
However, before the graphene nanoparticles are used in
the process of tumor treatment, we must modify functional
groups on the surface of the material molecular. The first
is the oxidation of graphene nanomolecules using oxidants
such as potassium permanganate. Currently, the synthesized
GO contains a large number of oxygen-containing functional
groups, such as hydroxyl groups, aldehyde groups, and
carboxyl groups, in its base plane and edges [76, 77]. The
specific molecular structure of GO is shown in Figure 4.

The presence of these functional groups can transfer
negative surface charges and inhibit irreversible lamination
in solution [78], which enables the GO nanomolecules
to have good hydrophilicity and water solubility [79], so
that the GO nanomolecules are more compatible with the
biological system, are absorbed and transported in the body
efficiently, and achieve the purpose of treating diseases. In
addition, the presence of these oxygen-containing functional
groups facilitates further surface modification, providing
possible sites for connecting other molecules [80], such as
amidation [81]. However, with the number and types of
surface groups increased, the electron cloud distribution
of original graphene nanomolecules will change and the
atoms of molecule will no longer be in a plane; as a result,
many original functions related to large m- bonds, such
as drug carrying capacity, are probably affected. There-
fore, it can be seen that the biological functions of GO
nanoparticles are inseparable from their inherent surface
chemical properties. These surface modifiers also play an
important role in the photodynamics of GO nanoparticles
[82].

However, graphene oxide nanomolecules are not suit-
able for biomedical applications if only due to their own
chemical properties. Therefore, we often modify graphene
nanomolecules with some molecules, such as chitosan, PEG,
and albumin. The addition of these molecules will have a cer-
tain impact on the chemical properties of GO nanomolecules.
Some representative modifying molecules are discussed in
detail in the following subsections.

2.2.1. Chemical Properties of GO Nanoparticles Grafted with
PEG. It is well known that the protein “corona” is easily
attracted by nanomolecules when they enter the body due to
hydrophobic, electrostatic, and van der Waals interactions, as
well as the hydrogen bond between NPs and proteins [83-
85]. This change may increase the clearance rate of nanopar-
ticles in vivo [86, 87], may also affect the conformation
of adsorbed proteins, thus inducing new epitope exposure,
and may change the function of proteins, thus producing a
series of contrary effects [59,88]. Surface-functionalized
polymers that make nanomolecules “stealth” are a reasonable
solution [89]. So far, graphene oxide nanomolecules with
polyethylene glycol have become the “golden standard”
for surface functionalization in biomedical and engineering
applications [90]. Polyethylene glycol on the surface of
the material molecule can increase the hydrophilicity of
polyethylene glycol, prevent the adsorption of excess proteins
on the surface of the material molecule, and maintain good
biocompatibility. However, PEG is not biodegradable, and
the accumulation of pegylated drugs in the body can lead to
the production of anti-PEG antibodies, which can accelerate
the blood clearance rate and severe allergic reactions after
administration [91-94]. Figure 5 illustrates this process.
Therefore, it is necessary to explore new molecules that can
make graphene oxide nanomolecules “stealth”.

2.2.2. Chemical Properties of GO Nanomolecules Grafted
with FA-BSA. At present, antitumor chemotherapy drugs are
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FIGURE 5: GO-PEG causes unnecessary immune responses in the body.

generally cytotoxic. Taking adriamycin as an example, it has
low tumor cell selectivity and strong cardiac toxicity [95-
97]. Therefore, medical researchers hope to synthesize a cell-
targeted drug-loaded nanoparticle by biologically modifying
GO nanoparticles to be specifically identified, phagocytosed,
or absorbed by tumor cells to kill tumor cells. The use of folic
acid as a solution to this problem has become a common
idea because the folic acid receptors on tumor cells are often
overexpressed, which is much higher than in normal cells
[98]. However, the direct linking of FA on GO often leads
to physiological fluid aggregation, and the introduction of
folic acid is often accompanied by the introduction of other
stabilizers to stabilize the nanomolecules [17, 99, 100]. This
functionalization is preferably noncovalent, as noncovalent
functionalization has the advantages of reducing chemical
reactions, reducing purification steps, and maintaining the
original conjugated structure and physical properties of
GO [101, 102]. Therefore, it is very important to design a
noncovalent functional molecule of GO that can be used as
both a stabilizer to prevent the aggregation of GO and a target
to tumor cells. At present, a new active targeted drug carrier
FA-BSA/GO system has been successfully designed. Figure 6

briefly introduces the synthesis and drug loading of GO-
FA-BSA. This system adopts folic acid grafted bovine serum
albumin (FA-BSA) as stabilizer and target agent to improve
the stability and dispersion of GO in physiological fluid, and
good results have been achieved [103]. The authors believe
that this idea may provide a better direction for the design and
manufacture of antitumor graphene oxide nanomolecules
in the future. When designing the molecular carrier, the
stability of the drug and the carrier function in vivo should
be taken into account, while the inherent properties of the
drug molecule and the carrier molecule should be retained to
maximize the antitumor effect and make it precise.

There are many other molecules that can be used to mod-
ify GO nanoparticles, such as chitosan, to perform different
functions. Through chemical modification, we can subjec-
tively modify graphene oxide nanomolecules to increase their
functions, which is a highlight of graphene oxide applications.

3. Summary and Scope

With the development of medical technology, the coopera-
tion between medicine, material science, and chemistry has
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become more and more, and the interdisciplinary has become
a suitable choice to make a new breakthrough in the related
fields. The application of graphene oxide nanomolecules
in antitumor effects is a representative achievement of the
intersection of medicine, materials science, and chemistry.
GO nanoparticles are modifiable and have good photother-
mal and photodynamic effects, which provides a good
idea for targeted killing of tumors. Nowadays, graphene
oxide nanomolecules have been applied in many antitumor
researches. Scientists have carried out various chemical
modifications and physical properties control, loaded with
different antitumor drugs to kill tumor cells, and achieved
certain research results. In the process of application, we
found that determining the chemical and physical properties
of nanoparticles is a critical step. A lot of special properties
of graphene oxide nanometer carrier, such as thermal effect
and ability of carrying drugs, are all related to the physical
and chemical properties of the nanoparticles, and a multitude
of graphene oxide surface oxygen groups are left for us
to modify, so as to enrich the nature of nanoparticles. It
can be concluded that the development of graphene oxide
nanomolecular applications will be based on the under-
standing, utilization, and expansion of its rich physical and
chemical properties.
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