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Novel Contributors and Mechanisms of Cellular Senescence
in Hypertension-Associated Premature Vascular Aging
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Hypertension has been described as a condition of premature vas-
cular aging, relative to actual chronological age. In fact, many
factors that contribute to the deterioration of vascular function as
we age are accelerated in hypertension. Nonetheless, the precise
mechanisms that underlie the aged phenotype of arteries from hy-
pertensive patients and animals remain elusive. Cellular senescence is
an age-related physiologic process in which cells undergo irreversible
growth arrest. Although controlled senescence negatively regulates
cell proliferation and promotes tissue regeneration, uncontrolled se-
nescence can contribute to disease pathogenesis by presenting the
senescence-associated secretory phenotype, in which molecules such

PREMATURE VASCULAR AGING IN HYPERTENSION

Our desire to reverse (or at least delay) the aging process
has long been the focus of biomedical research and home-
opathic medicine. However, whether the lifespan of an in-
dividual organism relates to the longevity of its constituent
cells, tissues, and organs is still obscure. In this sense, plants
present a unique perspective in the search for a definitive
answer to this most fundamental question. For example, de-
ciduous trees are mostly made up of dead tissues; the canopy
is renewed and discarded every year, root systems turn
over, and reproduction takes place repeatedly over decades,
centuries or even millennia.! This phenomenon is regulated
by senescence and presents a clear disconnect between the
lifespan of the whole and the parts. Given that senescence is
an important physiologic process to control cell proliferation
and rejuvenate tissues and organs in humans, this disassoci-
ation could also be present in the process of human patho-
physiology, including cardiovascular diseases.

Generally, the increase in cardiovascular events as we age is
attributable to the natural decline in organ function.? Within
the context of hypertension, age is considered a major risk
factor and the prevalence of hypertension increases with age,
irrespective of biological sex.® In hypertension however, the
decline in vascular function and aged phenotype are prema-
ture in their onset and particularly pronounced.** As a result,
vascular age determination, as opposed to chronological age

as proinflammatory cytokines, matrix metalloproteases, and reactive
oxygen species are released into tissue microenvironments. This re-
view will address and critically evaluate the current literature on the
role of cellular senescence in hypertension, with particular emphasis
on cells types that mediate and modulate vascular function and
structure.
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per se, has now been introduced into clinical guidelines for
cardiovascular disease prevention.® Nonetheless, what pre-
cisely defines vascular aging is broad and can encompass
many of the vascular maladaptations presented in hyperten-
sive patients and animals, including:

1) Hypercontractility: Defects in the regulation of vascular
smooth muscle cell calcium (e.g., increased calcium entry
and storage, impaired intracellular calcium buffering ca-
pacity, and decreased calcium extrusion) and a switch in the
abundance of endothelium-derived provasoconstrictive
factors relative to provasodilatory factors.

2) Stiffening and remodeling: Changes in vascular dis-
tensibility and cross-section area due to calcification,
actin polymerization, fibrosis, and extracellular matrix
deposition.

3) Inflammation and oxidative stress: Immune cell and non-
immune cell exacerbated generation of proinflammatory
cytokines, chemokines, adhesion molecules, and reac-
tive oxygen species (ROS) relative to proresolving factors
such as lipoxins, resolvins, and protectins.

Therefore, hypertension is a condition of vascular aging and
the factors that contribute to the deterioration of vascular
function as we age are accelerated in hypertension*® (Figure 1).
Nonetheless, identification of these age-associated factors and
their mechanisms remain elusive.
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Figure 1. Relative vascular age is accelerated in hypertension. For
any given chronological age, a hypertensive patient or animal has an
increased vascular age, compared with an age-matched normotensive
control. The definition of vascular age encompasses a broad range of
phenotypes that can refined into taxonomies such as hypercontractility,
stiffening and remodeling, and inflammation and oxidative stress.

CELLULAR SENESCENCE IS AN AGE-ASSOCIATED
PHYSIOLOGIC PROCESS

Cellular senescence is a conserved mechanism among so-
matic cell types that induces irreversible cell-cycle arrest in
response to excessive or prolonged stress or replicative ex-
haustion. Evolutionarily, senescence is a protective mech-
anism to prevent the transmission of genomic defects to the
next generation. Moreover, controlled senescence actually
promotes tissue regeneration and function via the recruit-
ment of immune cells and clearance of senescent cells.”®
However, aged tissues or tissues from diseased animals
are not able to efficiently complete this sequence of events,
thereby resulting in the accumulation of senescent cells.”

The number of stimuli that trigger senescence is con-
stantly increasing and specific mechanisms of vascular cell
senescence in the context of hypertension or prohypertensive
stimuli will be discussed later in this review. Broadly, senes-
cent stimuli can be classified into either damage-induced
senescence (e.g., DNA damage and telomere alterations,
epigenetic depression of the cyclin-dependent kinase inhib-
itor 2A locus, ROS, oncogenic signaling/tumor suppressor
inactivation) or developmentally programmed senescence
(e.g., developmental cues, polyploidization, and cell fusion).’
These triggers generally result in the activation of p53 and
convergence on the cyclin-dependent kinase inhibitors p15,
pl6, p21, and p27. The inhibition of cyclin-dependent ki-
nase—cyclin complexes causes proliferative arrest, and the
crucial component responsible for the implementation of
senescence is the hypophosphorylated form of retinoblas-
toma (Rb) protein.!®

One specific means by which senescent cells can contribute
to the development and/or maintenance of pathophysiology
is by mediation of inflammation and oxidative stress. Upon
the onset of senescence, senescent cells develop heightened
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secretory activity known as the senescence-associated secre-
tory phenotype (SASP).!! This phenotype is characterized by
the secretion of proinflammatory cytokines and chemokines,
ROS, growth factors, proteases, plasminogen activator in-
hibitor-1, but never anti-inflammatory or proresolving
factors, into the local tissue environment.!! Although the
SASP pattern may vary according to cell type, as well as the
particular stress or damage that induces senescence,'? phys-
iologically, this proinflammatory/pro-oxidative milieu sig-
nals the recruitment of phagocytes to infiltrate tissues and
clear out the senescent cells. Thus, the mitostatic effect of
uncontrolled senescence is counterbalanced by the effects of
the SASP and this can contribute to the pathophysiology of
disease. In fact, this phenomenon is already known to occur
in endothelial cells’® and vascular smooth muscle cells';
thus, it is logical to hypothesize that senescent cells con-
tribute to vascular inflammation in hypertension (Figure 2).
Nonetheless, determining whether senescence prima-
rily drives pathophysiology or is a secondary bystander is
difficult.

Although understanding the mechanistic relationship be-
tween senescence and pathophysiology is a focus of great in-
terest, there is already evidence supporting the therapeutic
approach of targeting senescence for the treatment and re-
versal of disease.!>!® Agents that prevent the activation of
specific mechanisms of senescence, such as those involving
telomerase, DNA-damage repair machinery, cell-cycle
checkpoint kinases, and tumor suppressors, are all known to
reduce indices of pathophysiology.'>1®

CELLULAR SENESCENCE IS A WIDESPREAD PHENOTYPE IN
HYPERTENSION

Although senescence has been linked with age for many
years,!”!8 only recently was it reported that the removal of se-
nescent cells does indeed delay chronological and premature
aging, increase lifespan, and rejuvenate organ function,'2!
including the vasculature?? and kidneys.?’ Nonetheless, our
understanding of senescence in hypertension-associated
end-organ dysfunction, beyond phenotypic recognition, is
far from complete. Almost all forms of experimental hyper-
tension and hypertensive patients show cellular senescence in
various organs as an indicator of end-organ damage. To the
best of our knowledge, Table 1 presents a list of investigations
that reported senescence in an established experimental
model of hypertension or after exposure to prohypertensive
stimuli. Overall, these studies generally indicate a pressure-
dependent association between increased cellular senescence
and hypertension,?*** with angiotensin II being the predom-
inant prosenescence factor.”® Furthermore, antihypertensive
therapy has been shown to reduce indices of senescence.?*
Nonetheless, it currently unknown if removal of senescent
cells does indeed lower (or prevent) hypertension.

VASCULAR CELL SENESCENCE CAN MEDIATE THE AGING
PHENOTYPE

It is well established that a host of prohypertensive stimuli
can cause senescence of vascular cells and induce many
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Figure 2. The senescence-associated secretory phenotype from endothelial cells and vascular smooth muscle cells, as well as T cells, fibroblasts, and
perivascular adipose tissue (PVAT) synergize to cause vascular wall inflammation and dysfunction, driving the development and/or maintenance of

hypertension.

of the vascular aging phenotypes defined earlier. Table 2
presents a compilation of seminal investigations that re-
ported senescent vascular cells mediating a characteristic of
the aged phenotype. Studies that demonstrated an associa-
tion, but not causality, between a vascular aging phenotype
and senescence were not surveyed in this list due to an over-
abundance of literature.

From these investigations, it is possible to extrapolate that
senescence of vascular cells contributes to the aged pheno-
type and probably contributes to the maintenance of hyper-
tension. This collection of basic science literature supports
the observations that the onset of senescence is dependent
on relative age (as opposed to chronological age) and appears
earlier in patients with longer exposure to a cardiovascular
disease risk factors, particularly hypertension.*

BEYOND VASCULAR SENESCENCE IN HYPERTENSION

Hypertension is a complex condition that is driven by
multiorgan dysfunction. In addition to endothelial cells and
vascular smooth muscle cells of the vasculature, perivascular
adipose tissue (PVAT), the kidneys, the brain, and the im-
mune system have well-defined roles in facilitating increases
in blood pressure, and recently, gut dysbiosis has also been
revealed to contribute. Therefore, cellular senescence in these
other organs and cell types could also contribute to the patho-
genesis of hypertension-associated premature vascular aging.

Perivascular adipose tissue

Analogous to the SASP, PVAT is well known to secrete a
variety of factors ranging from adipokines, gaseous molecules,
and angiotensin 1-7 to ROS, proinflammatory cytokines, and
angiotensin IL.”* Given the close proximity of PVAT to cells of

the vasculature, paracrine cross-talk can easily occur, and this
can influence vascular function. Generally, PVAT from healthy
animals secretes anticontractile factors,”® whereas PVAT from
hypertensive animals not only loses this anticontractile phe-
notype,” but it also generates of hyper-contractile factors.””*
Nonetheless, the mechanisms underlying this phenotypic
switch are still being revealed. Recently, it was observed
that adipose tissue senescence, via mineralocorticoid re-
ceptor activation, contributed to increased arterial contractile
responses.”* This illustrates that senescent PVAT can mediate
premature vascular aging by promoting hypercontractility.

Kidneys

As indicated in Table 1, renal senescence is present in
aldosterone, angiotensin II, and deoxycorticosterone ac-
etate models of hypertension, as well as human hyperten-
sive patients. Uncontrolled senescence would not only affect
renal function, but also probably contribute to the high fre-
quency of end-stage renal disease in the elderly adults.?*1%

Brain

Most of the literature on cellular senescence in the brain
has focused on its ability to mediate neurodegeneration.'*102
Hypertension has also been established to cause and con-
tribute to neurodegeneration.!*1% Therefore, it is plausible
that the 2 phenomena are not mutually exclusive and that
increased neuronal senescence in hypertension could be an
underlying factor. Furthermore, while it is unlikely that se-
nescent neurons drive increases sympathetic tone, we hy-
pothesize that the SASP of other senescent brain cells (e.g.,
glial cells or neural stem cells) could propagate inflamma-
tion in surrounding (non-senescent) tissues that could then
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Table 1. Investigations that reported senescence using established experimental models of hypertension or prohypertensive stimuli

Experimental model of hypertension Tissuelcell type Reference
Aldosterone Kidney 26
VSMCs o
Angiotensin Il Aorta 2
Endothelial cells 28
EPCs 30-35
Endothelial cells &
Kidney 2
Myocardium BE
VSMCs 25,39-41,
Dahl Salt-sensitive rats Aorta 42
Myocardium 43,44
VSMCs 45
Deoxycorticosterone acetate rats Coronary arteries 2
Kidney 2
Myocardium 2
Human patient samples Endothelial cells 46
EPCs 47
Kidney 24,48
Leukocytes 48
VSMCs 28,49,50
Nitric oxide inhibition Aorta o
EPCs o2
Endothelial cells SRl
Spontaneously hypertensive rats Aorta 55,56
EPCs 35,47,57,58
Microvascular endothelial cells 59
Myocardium 60
Miscellaneous Senescence inducer
Activated Ras VSMCs &
Hydrogen peroxide Endothelial cells L8
Indoxyl sulfate VSMCs &
Tert-butyl hydroperoxide or L-buthionine-[S,R]-sulphoximine Endothelial cells &
Tumor necrosis factor a Endothelial cells £

Abbreviations: EPC, endothelial progenitor cell; VSMC, vascular smooth muscle cell.

mediate neurogenic hypertension. Beyond neurons, it has
been observed that angiotensin II induces senescence in
astrocytes via ROS.1% The downstream effects of astrocyte se-
nescence on hypertension could be far reaching given their
multifunctional role in brain homeostasis (e.g., blood-brain
barrier integrity, extracellular ion balance, and inflammation).

T cells

Uncontrolled immune system activation, including
monocytes/macrophages,' natural killer cells,'’” dendritic
cells, 8 T cells,'® and y-0 T cells,'? has been well ascribed in
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the pathogenesis of hypertension. In particular, T cells have
been the focus of a great deal of research.''’ Nonetheless,
what precisely activates T cells to mediate inflammation
and further increases in blood pressure has yet to be fully
elucidated. It has been observed that immunosenescent
(CD28™!" and CD57*) cytotoxic T cells are increased in
patients with hypertension.!'? An outstanding question that
remained from this study was whether senescent T cells pre-
sent a heightened production of cytokine and chemokines
(SASP), beyond their normal proinflammatory capacity.
Moreover, whether these other immune cells involved in
the development and/or maintenance of hypertension (i.e.,
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Table 2. Seminal investigations that reported senescence mediated a phenotype of vascular aging

Vascular age phenotype

Tissuel/cell type

Model

Reference

Hypercontractility

Other

Stiffening and remodeling Actin polymerization

Calcification

Fibrosis

ECM deposition

Inflammation and Cytokines and chemokines

oxidative stress

Cell adhesion

Impaired resolution

ROS

Endothelial vasoactive factors Aorta

Mesenteric

resistance arteries

Endothelial cells

Endothelial cells

Senescence-accelerated mice

Senescence-accelerated mice +
Western diet

Replicative senescence

Telomere inhibition-induced senescence

66,67

68

69

70

Endothelial cells Replicative senescence =73
PVAT Obese (db/db) mice 4
Endothelial cells Replicative senescence &
Endothelial cells Replicative senescence WY
VSMCs Replicative senescence 2
Aorta Hypercholesterolemic mice 22
VSMCs Replicative senescence =3
Aortic valves Senescence-accelerated mice L2
Fibroblasts Replicative senescence or ionizing Gl
radiation-induced senescence
Endothelial cells Replicative senescence TR
Endothelial cells Replicative senescence 13
VSMCs Activated Ras-induced senescence 61
VSMCs Replicative senescence and bleomycin- 14
induced senescence
Endothelial cells Replicative senescence 87
Endothelial cells Replicative senescence 69
Endothelial cells Telomere inhibition 70
Fibroblasts Bleomycin or ionizing radiation 88
Myofibroblasts Bleomycin 89
Endothelial cells Replicative senescence 90
91,92

Endothelial cells

Pulmonary artery
endothelial cells

Replicative senescence

Replicative senescence

93

Abbreviations: ECM, extracellular matrix; PVAT, perivascular adipose tissue; ROS, reactive oxygen species; VSMC, vascular smooth muscle cell.

monocytes/macrophages, dendritic cells, or y-8 T cells) pre-
sent a senescent phenotype has not been reported. On the
other hand, it has been observed that senescent natural killer
cells can promote vascular remodeling and angiogenesis,!!
thus demonstrating the evolutionarily conserved function of
senescence on vascular homeostasis.”®

Gut

Gut dysbiosis has recently come to prominence as
a novel mediator of organs important for the con-
trol of blood pressure.!’* Therefore, it is obvious that
hypertension-associated dysbiosis is associated with
hypertension-associated premature vascular aging.®
Importantly however, alterations in the composition and
diversity of microbiota via gut senescence have been re-
vealed as a mechanistic cause of disease.!'> We hypothesize
that this gut senescence mechanism also exists in hyper-
tension, accelerating the decline in vascular function.

Supporting this idea are the observations that longevity
in mice is promoted by a probiotic-induced suppression
of colonic senescence''® and that decreased gut microbial
diversity promotes a physiologic decline in organ function
that cannot be solely attributed to chronological aging per
se.!'” Nonetheless, direct evidence of a gut senescence-
vascular axis in hypertension remains to be confirmed.

NOVEL MECHANISMS UNDERLYING VASCULAR
SENESCENCE IN HYPERTENSION

In hypertension, cells of the vasculature are continually
exposed to stress and damage from autocrine, paracrine,
and endocrine sources. Therefore, novel mechanisms of
senescence in hypertension are vast. Nonetheless, we wish
to highlight autophagy, endoplasmic reticulum stress and
proteotoxicity, and telomere uncapping as 3 potentially
novel prosenescence mechanisms of particular relevance to
the hypertension field.
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Autophagy is the evolutionarily conserved catabolic pro-
cess essential for both maintaining homeostasis via the
removal of damaged proteins and organelles and to pro-
vide micronutrients during times of stress.!'® Importantly,
autophagy has also been implicated as a modulator of lon-
gevity,!* and it is also known that its induction can ex-
tend lifespan.!?® Therefore, it is tempting to suggest that a
decline in autophagy contributes to aged phenotype of
the vasculature associated with hypertension. This notion
is supported by studies that showed an upregulation of
autophagy reversed several phenotypes of vascular aging in
old mice!?"'?2 and our own studies observing that spontane-
ously hypertensive rats have decreased autophagic activity
in resistance arteries.!*® Precisely how autophagy induc-
tion reduces the aged vascular phenotype is the focus of
intense research,'?*-12¢ and only one original investigation
has demonstrated that upregulation of autophagy decreases
vasculature senescence.!?” Right now our understanding is
centered on the premise that the accumulation of dysfunc-
tional and decaying organelles and misfolded proteins leads
to a state of oxidative stress that subsequently quenches ni-
tric oxide bioavailabilty!?"!2? (Figure 3) and also uncouples
endothelial nitric oxide synthase.!?® Nonetheless, given the
close association of autophagy with metabolism and en-
ergy homeostasis, we hypothesize that upregulation of
autophagy imparts influence on metabolic sensors (e.g.,
AKT and AMPK) and thereby can modulate vascular func-
tion through these mechanisms.

Although organelle recycling and protein misfolding is
an inevitable consequence of normal cellular function, the
unfolded protein response and multiple proteostasis systems
are devoted to the refolding, repair, or clearance of dam-
aged proteins, including autophagy.!” However, when the
unfolded protein response and proteostasis systems do not
function effectively, dysfunctional organelles accumulate
and misfolded proteins are vulnerable to aggregation.!* In
hypertension, our group has previously revealed that allevi-
ation of endoplasmic reticulum stress and the unfolded pro-
tein response lowers blood pressure and improves vascular
function and structure in hypertensive rats.!*"!*> However,

Healthy endothelial cell
10) croetng

Lysosome with

|
Au\tlc;;;?;gic @ acid hydrolases
!

Efficient autophagic
degradation

ﬁj Preautophagosomal
Q
ﬁ@ structure

Autophagic

the proteotoxicity that occurs as a consequence of endo-
plasmic reticulum stress is only beginning to emerge in hy-
pertension’**!** and nothing is currently known about its
contribution to vascular senescence in hypertension.

Telomeres are protective structures present at the ends of
chromosomes important for preventing genome instability.
It is well established that cellular senescence can be triggered
by telomere shortening,'*® and a number of reviews have fo-
cused on the contribution of telomere shortening to vascular
cell senescence and cardiovascular disease,**!% including
hypertension.!*® However, there is increasing evidence that
the exposure of chromosome ends, or “telomere uncapping,”
is more pathophysiologically relevant.!*® This is supported
with evidence demonstrating that vascular telomere
uncapping and senescence are linked to hypertension inde-
pendently of mean telomere length, and telomere uncapping
is associated with hypertension to a greater degree than
mean telomere length.'*® Furthermore, it has been observed
that telomeric repeat-binding factor 2 (a protein that plays a
central role in telomere maintenance and protection against
end-to-end fusion of chromosomes) deletion leads to telo-
mere uncapping, increased senescence signaling, elevated
blood pressure, and impaired endothelium-dependent vas-
odilation.'! Overall, these investigations reveal that arterial
telomere uncapping is an important inducer of senescence
within the context of hypertension-associated prema-
ture vascular aging and telomere uncapping contributes to
the development and maintenance of high blood pressure.
Nonetheless, telomere uncapping does not necessarily apply
to other organ systems involved in the pathogenesis of
hypertension.

CONCLUSION

Age is not considered to be a modifiable risk factor for car-
diovascular disease such as physical inactivity, dietary excess,
or smoking. Unfortunately though, it outranks all those, as
a predictor of clinical events.'** Age is a major risk factor for
hypertension,® and premature aging (relative actual chron-
ological age) is commonly observed in the vasculature of

“Aged” endothelial cell

Senescence

l K ™ Lysosome with -|_
[ @ diminished acid o
vesicle v hydrolases Nitric oxide

Impaired autophagic ___y°
degradation

dsvs

Figure 3. Autophagy is able to prevent the aged phenotype in endothelial cells. Efficient degradation of dysfunctional organelles and misfolded pro-
tein aggregates prevents their accumulation and the induction of oxidative stress, which subsequently reduces nitric oxide bioavailability. Inefficient
recycling of cellular waste occurs in both chronological aging and premature aging associated with cardiovascular diseases. Abbreviations: ROS, reactive

oxygen species; SASP, senescence-associated secretory phenotype.
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Figure 4. Our current understanding of senescence in hypertension-
associated vascular aging, beyond phenotypic recognition, is far from
complete. Most of the literature indicates a pressure-dependent associa-
tion between increased cellular senescence and hypertension. However,
there are no current studies demonstrating whether senescence can
mediate increases in blood pressure, nor if removal of senescent cells
(senolytic therapy) can lower blood pressure and improve vascular func-
tion in arteries from hypertensive animals.

hypertensive animals.*® Nonetheless, the factors and molec-
ular mechanism underlying this phenotype remain elusive.
Senescence is age-associated phenomenon important for
homeostasis.” However, if senescence becomes excessive and
uncontrolled, it could contribute to the genesis and/or main-
tenance of hypertension via acceleration of relative vascular
age.*® Enhancing our understanding of cellular senescence,
beyond phenotypic recognition, could further refine the vas-
cular age determination as a prognostic and diagnostic index
of cardiovascular disease risk, as well as offer an alternative
therapeutic target to hypertensive patients resistant to all
currently available treatments (Figure 4).
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