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Hypertension has been described as a condition of premature vas-
cular aging, relative to actual chronological age. In fact, many 
factors that contribute to the deterioration of vascular function as 
we age are accelerated in hypertension. Nonetheless, the precise 
mechanisms that underlie the aged phenotype of arteries from hy-
pertensive patients and animals remain elusive. Cellular senescence is 
an age-related physiologic process in which cells undergo irreversible 
growth arrest. Although controlled senescence negatively regulates 
cell proliferation and promotes tissue regeneration, uncontrolled se-
nescence can contribute to disease pathogenesis by presenting the 
senescence-associated secretory phenotype, in which molecules such 

as proinflammatory cytokines, matrix metalloproteases, and reactive 
oxygen species are released into tissue microenvironments. This re-
view will address and critically evaluate the current literature on the 
role of cellular senescence in hypertension, with particular emphasis 
on cells types that mediate and modulate vascular function and 
structure.
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PREMATURE VASCULAR AGING IN HYPERTENSION

Our desire to reverse (or at least delay) the aging process 
has long been the focus of biomedical research and home-
opathic medicine. However, whether the lifespan of an in-
dividual organism relates to the longevity of its constituent 
cells, tissues, and organs is still obscure. In this sense, plants 
present a unique perspective in the search for a definitive 
answer to this most fundamental question. For example, de-
ciduous trees are mostly made up of dead tissues; the canopy 
is renewed and discarded every year, root systems turn 
over, and reproduction takes place repeatedly over decades, 
centuries or even millennia.1 This phenomenon is regulated 
by senescence and presents a clear disconnect between the 
lifespan of the whole and the parts. Given that senescence is 
an important physiologic process to control cell proliferation 
and rejuvenate tissues and organs in humans, this disassoci-
ation could also be present in the process of human patho-
physiology, including cardiovascular diseases.

Generally, the increase in cardiovascular events as we age is 
attributable to the natural decline in organ function.2 Within 
the context of hypertension, age is considered a major risk 
factor and the prevalence of hypertension increases with age, 
irrespective of biological sex.3 In hypertension however, the 
decline in vascular function and aged phenotype are prema-
ture in their onset and particularly pronounced.4,5 As a result, 
vascular age determination, as opposed to chronological age 

per se, has now been introduced into clinical guidelines for 
cardiovascular disease prevention.6 Nonetheless, what pre-
cisely defines vascular aging is broad and can encompass 
many of the vascular maladaptations presented in hyperten-
sive patients and animals, including:

1) Hypercontractility: Defects in the regulation of vascular 
smooth muscle cell calcium (e.g., increased calcium entry 
and storage, impaired intracellular calcium buffering ca-
pacity, and decreased calcium extrusion) and a switch in the 
abundance of endothelium-derived provasoconstrictive 
factors relative to provasodilatory factors.

2) Stiffening and remodeling: Changes in vascular dis-
tensibility and cross-section area due to calcification, 
actin polymerization, fibrosis, and extracellular matrix 
deposition.

3) Inflammation and oxidative stress: Immune cell and non-
immune cell exacerbated generation of proinflammatory 
cytokines, chemokines, adhesion molecules, and reac-
tive oxygen species (ROS) relative to proresolving factors 
such as lipoxins, resolvins, and protectins.

Therefore, hypertension is a condition of vascular aging and 
the factors that contribute to the deterioration of vascular 
function as we age are accelerated in hypertension4,5 (Figure 1).  
Nonetheless, identification of these age-associated factors and 
their mechanisms remain elusive.
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CELLULAR SENESCENCE IS AN AGE-ASSOCIATED 
PHYSIOLOGIC PROCESS

Cellular senescence is a conserved mechanism among so-
matic cell types that induces irreversible cell-cycle arrest in 
response to excessive or prolonged stress or replicative ex-
haustion. Evolutionarily, senescence is a protective mech-
anism to prevent the transmission of genomic defects to the 
next generation. Moreover, controlled senescence actually 
promotes tissue regeneration and function via the recruit-
ment of immune cells and clearance of senescent cells.7,8 
However, aged tissues or tissues from diseased animals 
are not able to efficiently complete this sequence of events, 
thereby resulting in the accumulation of senescent cells.7

The number of stimuli that trigger senescence is con-
stantly increasing and specific mechanisms of vascular cell 
senescence in the context of hypertension or prohypertensive 
stimuli will be discussed later in this review. Broadly, senes-
cent stimuli can be classified into either damage-induced 
senescence (e.g., DNA damage and telomere alterations, 
epigenetic depression of the cyclin-dependent kinase inhib-
itor 2A locus, ROS, oncogenic signaling/tumor suppressor 
inactivation) or developmentally programmed senescence 
(e.g., developmental cues, polyploidization, and cell fusion).9 
These triggers generally result in the activation of p53 and 
convergence on the cyclin-dependent kinase inhibitors p15, 
p16, p21, and p27. The inhibition of cyclin-dependent ki-
nase–cyclin complexes causes proliferative arrest, and the 
crucial component responsible for the implementation of 
senescence is the hypophosphorylated form of retinoblas-
toma (Rb) protein.10

One specific means by which senescent cells can contribute 
to the development and/or maintenance of pathophysiology 
is by mediation of inflammation and oxidative stress. Upon 
the onset of senescence, senescent cells develop heightened 

secretory activity known as the senescence-associated secre-
tory phenotype (SASP).11 This phenotype is characterized by 
the secretion of proinflammatory cytokines and chemokines, 
ROS, growth factors, proteases, plasminogen activator in-
hibitor-1, but never anti-inflammatory or proresolving 
factors, into the local tissue environment.11 Although the 
SASP pattern may vary according to cell type, as well as the 
particular stress or damage that induces senescence,12 phys-
iologically, this proinflammatory/pro-oxidative milieu sig-
nals the recruitment of phagocytes to infiltrate tissues and 
clear out the senescent cells. Thus, the mitostatic effect of 
uncontrolled senescence is counterbalanced by the effects of 
the SASP and this can contribute to the pathophysiology of 
disease. In fact, this phenomenon is already known to occur 
in endothelial cells13 and vascular smooth muscle cells14; 
thus, it is logical to hypothesize that senescent cells con-
tribute to vascular inflammation in hypertension (Figure 2).  
Nonetheless, determining whether senescence prima-
rily drives pathophysiology or is a secondary bystander is 
difficult.

Although understanding the mechanistic relationship be-
tween senescence and pathophysiology is a focus of great in-
terest, there is already evidence supporting the therapeutic 
approach of targeting senescence for the treatment and re-
versal of disease.15,16 Agents that prevent the activation of 
specific mechanisms of senescence, such as those involving 
telomerase, DNA-damage repair machinery, cell-cycle 
checkpoint kinases, and tumor suppressors, are all known to 
reduce indices of pathophysiology.15,16

CELLULAR SENESCENCE IS A WIDESPREAD PHENOTYPE IN 
HYPERTENSION

Although senescence has been linked with age for many 
years,17,18 only recently was it reported that the removal of se-
nescent cells does indeed delay chronological and premature 
aging, increase lifespan, and rejuvenate organ function,19–21 
including the vasculature22 and kidneys.20 Nonetheless, our 
understanding of senescence in hypertension-associated 
end-organ dysfunction, beyond phenotypic recognition, is 
far from complete. Almost all forms of experimental hyper-
tension and hypertensive patients show cellular senescence in 
various organs as an indicator of end-organ damage. To the 
best of our knowledge, Table 1 presents a list of investigations 
that reported senescence in an established experimental 
model of hypertension or after exposure to prohypertensive 
stimuli. Overall, these studies generally indicate a pressure-
dependent association between increased cellular senescence 
and hypertension,23,24 with angiotensin II being the predom-
inant prosenescence factor.25 Furthermore, antihypertensive 
therapy has been shown to reduce indices of senescence.24 
Nonetheless, it currently unknown if removal of senescent 
cells does indeed lower (or prevent) hypertension.

VASCULAR CELL SENESCENCE CAN MEDIATE THE AGING 
PHENOTYPE

It is well established that a host of prohypertensive stimuli 
can cause senescence of vascular cells and induce many 

Figure 1. Relative vascular age is accelerated in hypertension. For 
any given chronological age, a hypertensive patient or animal has an 
increased vascular age, compared with an age-matched normotensive 
control. The definition of vascular age encompasses a broad range of 
phenotypes that can refined into taxonomies such as hypercontractility, 
stiffening and remodeling, and inflammation and oxidative stress.
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of the vascular aging phenotypes defined earlier. Table 2 
presents a compilation of seminal investigations that re-
ported senescent vascular cells mediating a characteristic of 
the aged phenotype. Studies that demonstrated an associa-
tion, but not causality, between a vascular aging phenotype 
and senescence were not surveyed in this list due to an over-
abundance of literature.

From these investigations, it is possible to extrapolate that 
senescence of vascular cells contributes to the aged pheno-
type and probably contributes to the maintenance of hyper-
tension. This collection of basic science literature supports 
the observations that the onset of senescence is dependent 
on relative age (as opposed to chronological age) and appears 
earlier in patients with longer exposure to a cardiovascular 
disease risk factors, particularly hypertension.46

BEYOND VASCULAR SENESCENCE IN HYPERTENSION

Hypertension is a complex condition that is driven by 
multiorgan dysfunction. In addition to endothelial cells and 
vascular smooth muscle cells of the vasculature, perivascular 
adipose tissue (PVAT), the kidneys, the brain, and the im-
mune system have well-defined roles in facilitating increases 
in blood pressure, and recently, gut dysbiosis has also been 
revealed to contribute. Therefore, cellular senescence in these 
other organs and cell types could also contribute to the patho-
genesis of hypertension-associated premature vascular aging.

Perivascular adipose tissue

Analogous to the SASP, PVAT is well known to secrete a 
variety of factors ranging from adipokines, gaseous molecules, 
and angiotensin 1–7 to ROS, proinflammatory cytokines, and 
angiotensin II.94 Given the close proximity of PVAT to cells of 

the vasculature, paracrine cross-talk can easily occur, and this 
can influence vascular function. Generally, PVAT from healthy 
animals secretes anticontractile factors,95 whereas PVAT from 
hypertensive animals not only loses this anticontractile phe-
notype,96 but it also generates of hyper-contractile factors.97,98 
Nonetheless, the mechanisms underlying this phenotypic 
switch are still being revealed. Recently, it was observed 
that adipose tissue senescence, via mineralocorticoid re-
ceptor activation, contributed to increased arterial contractile 
responses.74 This illustrates that senescent PVAT can mediate 
premature vascular aging by promoting hypercontractility.

Kidneys

As indicated in Table 1, renal senescence is present in 
aldosterone, angiotensin II, and deoxycorticosterone ac-
etate models of hypertension, as well as human hyperten-
sive patients. Uncontrolled senescence would not only affect 
renal function, but also probably contribute to the high fre-
quency of end-stage renal disease in the elderly adults.99,100

Brain

Most of the literature on cellular senescence in the brain 
has focused on its ability to mediate neurodegeneration.101,102 
Hypertension has also been established to cause and con-
tribute to neurodegeneration.103,104 Therefore, it is plausible 
that the 2 phenomena are not mutually exclusive and that 
increased neuronal senescence in hypertension could be an 
underlying factor. Furthermore, while it is unlikely that se-
nescent neurons drive increases sympathetic tone, we hy-
pothesize that the SASP of other senescent brain cells (e.g., 
glial cells or neural stem cells) could propagate inflamma-
tion in surrounding (non-senescent) tissues that could then 

Figure 2. The senescence-associated secretory phenotype from endothelial cells and vascular smooth muscle cells, as well as T cells, fibroblasts, and 
perivascular adipose tissue (PVAT) synergize to cause vascular wall inflammation and dysfunction, driving the development and/or maintenance of 
hypertension.
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mediate neurogenic hypertension. Beyond neurons, it has 
been observed that angiotensin II induces senescence in 
astrocytes via ROS.105 The downstream effects of astrocyte se-
nescence on hypertension could be far reaching given their 
multifunctional role in brain homeostasis (e.g., blood–brain 
barrier integrity, extracellular ion balance, and inflammation).

T cells

Uncontrolled immune system activation, including 
monocytes/macrophages,106 natural killer cells,107 dendritic 
cells,108 T cells,109 and γ-δ T cells,110 has been well ascribed in 

the pathogenesis of hypertension. In particular, T cells have 
been the focus of a great deal of research.111 Nonetheless, 
what precisely activates T cells to mediate inflammation 
and further increases in blood pressure has yet to be fully 
elucidated. It has been observed that immunosenescent 
(CD28null and CD57+) cytotoxic T cells are increased in 
patients with hypertension.112 An outstanding question that 
remained from this study was whether senescent T cells pre-
sent a heightened production of cytokine and chemokines 
(SASP), beyond their normal proinflammatory capacity. 
Moreover, whether these other immune cells involved in 
the development and/or maintenance of hypertension (i.e., 

Table 1. Investigations that reported senescence using established experimental models of hypertension or prohypertensive stimuli

Experimental model of hypertension Tissue/cell type Reference

Aldosterone Kidney 26

VSMCs 27

Angiotensin II Aorta 28

Endothelial cells 29

EPCs 30–35

Endothelial cells 36

Kidney 24,37

Myocardium 38

VSMCs 25,39–41,

Dahl Salt-sensitive rats Aorta 42

Myocardium 43,44

VSMCs 45

Deoxycorticosterone acetate rats Coronary arteries 24

Kidney 24

Myocardium 24

Human patient samples Endothelial cells 46

EPCs 47

Kidney 24,48

Leukocytes 48

VSMCs 28,49,50

Nitric oxide inhibition Aorta 51

EPCs 52

Endothelial cells 53,54

Spontaneously hypertensive rats Aorta 55,56

EPCs 35,47,57,58

Microvascular endothelial cells 59

Myocardium 60

Miscellaneous Senescence inducer   

Activated Ras VSMCs 61

Hydrogen peroxide Endothelial cells 62,63

Indoxyl sulfate VSMCs 45

Tert-butyl hydroperoxide or l-buthionine-[S,R]-sulphoximine Endothelial cells 64

Tumor necrosis factor α Endothelial cells 65

Abbreviations: EPC, endothelial progenitor cell; VSMC, vascular smooth muscle cell.
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monocytes/macrophages, dendritic cells, or γ-δ T cells) pre-
sent a senescent phenotype has not been reported. On the 
other hand, it has been observed that senescent natural killer 
cells can promote vascular remodeling and angiogenesis,113 
thus demonstrating the evolutionarily conserved function of 
senescence on vascular homeostasis.7,8

Gut

Gut dysbiosis has recently come to prominence as 
a novel mediator of organs important for the con-
trol of blood pressure.114 Therefore, it is obvious that 
hypertension-associated dysbiosis is associated with 
hypertension-associated premature vascular aging.30 
Importantly however, alterations in the composition and 
diversity of microbiota via gut senescence have been re-
vealed as a mechanistic cause of disease.115 We hypothesize 
that this gut senescence mechanism also exists in hyper-
tension, accelerating the decline in vascular function. 

Supporting this idea are the observations that longevity 
in mice is promoted by a probiotic-induced suppression 
of colonic senescence116 and that decreased gut microbial 
diversity promotes a physiologic decline in organ function 
that cannot be solely attributed to chronological aging per 
se.117 Nonetheless, direct evidence of a gut senescence-
vascular axis in hypertension remains to be confirmed.

NOVEL MECHANISMS UNDERLYING VASCULAR 
SENESCENCE IN HYPERTENSION

In hypertension, cells of the vasculature are continually 
exposed to stress and damage from autocrine, paracrine, 
and endocrine sources. Therefore, novel mechanisms of 
senescence in hypertension are vast. Nonetheless, we wish 
to highlight autophagy, endoplasmic reticulum stress and 
proteotoxicity, and telomere uncapping as 3 potentially 
novel prosenescence mechanisms of particular relevance to 
the hypertension field.

Table 2. Seminal investigations that reported senescence mediated a phenotype of vascular aging

Vascular age phenotype Tissue/cell type Model Reference

Hypercontractility Endothelial vasoactive factors Aorta Senescence-accelerated mice 66,67

Mesenteric 
resistance arteries

Senescence-accelerated mice + 
Western diet

68

Endothelial cells Replicative senescence 69

Endothelial cells Telomere inhibition-induced senescence 70

Endothelial cells Replicative senescence 71–73

Other PVAT Obese (db/db) mice 74

Stiffening and remodeling Actin polymerization Endothelial cells Replicative senescence 75

Endothelial cells Replicative senescence 76,77

VSMCs Replicative senescence 78

Calcification Aorta Hypercholesterolemic mice 22

VSMCs Replicative senescence 79–81

Fibrosis Aortic valves Senescence-accelerated mice 82

Fibroblasts Replicative senescence or ionizing 
radiation-induced senescence

83,84

ECM deposition Endothelial cells Replicative senescence 76,85,86

Inflammation and 
oxidative stress

Cytokines and chemokines Endothelial cells Replicative senescence 13

VSMCs Activated Ras-induced senescence 61

VSMCs Replicative senescence and bleomycin-
induced senescence

14

Cell adhesion Endothelial cells Replicative senescence 87

Endothelial cells Replicative senescence 69

Endothelial cells Telomere inhibition 70

Impaired resolution Fibroblasts Bleomycin or ionizing radiation 88

Myofibroblasts Bleomycin 89

ROS Endothelial cells Replicative senescence 90

Endothelial cells Replicative senescence 91,92

Pulmonary artery 
endothelial cells

Replicative senescence 93

Abbreviations:  ECM, extracellular matrix; PVAT, perivascular adipose tissue; ROS, reactive oxygen species; VSMC, vascular smooth muscle cell.
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Autophagy is the evolutionarily conserved catabolic pro-
cess essential for both maintaining homeostasis via the 
removal of damaged proteins and organelles and to pro-
vide micronutrients during times of stress.118 Importantly, 
autophagy has also been implicated as a modulator of lon-
gevity,119 and it is also known that its induction can ex-
tend lifespan.120 Therefore, it is tempting to suggest that a 
decline in autophagy contributes to aged phenotype of 
the vasculature associated with hypertension. This notion 
is supported by studies that showed an upregulation of 
autophagy reversed several phenotypes of vascular aging in 
old mice121,122 and our own studies observing that spontane-
ously hypertensive rats have decreased autophagic activity 
in resistance arteries.123 Precisely how autophagy induc-
tion reduces the aged vascular phenotype is the focus of 
intense research,124–126 and only one original investigation 
has demonstrated that upregulation of autophagy decreases 
vasculature senescence.127 Right now our understanding is 
centered on the premise that the accumulation of dysfunc-
tional and decaying organelles and misfolded proteins leads 
to a state of oxidative stress that subsequently quenches ni-
tric oxide bioavailabilty121,122 (Figure 3) and also uncouples 
endothelial nitric oxide synthase.128 Nonetheless, given the 
close association of autophagy with metabolism and en-
ergy homeostasis, we hypothesize that upregulation of 
autophagy imparts influence on metabolic sensors (e.g., 
AKT and AMPK) and thereby can modulate vascular func-
tion through these mechanisms.

Although organelle recycling and protein misfolding is 
an inevitable consequence of normal cellular function, the 
unfolded protein response and multiple proteostasis systems 
are devoted to the refolding, repair, or clearance of dam-
aged proteins, including autophagy.129 However, when the 
unfolded protein response and proteostasis systems do not 
function effectively, dysfunctional organelles accumulate 
and misfolded proteins are vulnerable to aggregation.130 In 
hypertension, our group has previously revealed that allevi-
ation of endoplasmic reticulum stress and the unfolded pro-
tein response lowers blood pressure and improves vascular 
function and structure in hypertensive rats.131,132 However, 

the proteotoxicity that occurs as a consequence of endo-
plasmic reticulum stress is only beginning to emerge in hy-
pertension133,134 and nothing is currently known about its 
contribution to vascular senescence in hypertension.

Telomeres are protective structures present at the ends of 
chromosomes important for preventing genome instability. 
It is well established that cellular senescence can be triggered 
by telomere shortening,135 and a number of reviews have fo-
cused on the contribution of telomere shortening to vascular 
cell senescence and cardiovascular disease,136,137 including 
hypertension.138 However, there is increasing evidence that 
the exposure of chromosome ends, or “telomere uncapping,” 
is more pathophysiologically relevant.139 This is supported 
with evidence demonstrating that vascular telomere 
uncapping and senescence are linked to hypertension inde-
pendently of mean telomere length, and telomere uncapping 
is associated with hypertension to a greater degree than 
mean telomere length.140 Furthermore, it has been observed 
that telomeric repeat-binding factor 2 (a protein that plays a 
central role in telomere maintenance and protection against 
end-to-end fusion of chromosomes) deletion leads to telo-
mere uncapping, increased senescence signaling, elevated 
blood pressure, and impaired endothelium-dependent vas-
odilation.141 Overall, these investigations reveal that arterial 
telomere uncapping is an important inducer of senescence 
within the context of hypertension-associated prema-
ture vascular aging and telomere uncapping contributes to 
the development and maintenance of high blood pressure. 
Nonetheless, telomere uncapping does not necessarily apply 
to other organ systems involved in the pathogenesis of 
hypertension.

CONCLUSION

Age is not considered to be a modifiable risk factor for car-
diovascular disease such as physical inactivity, dietary excess, 
or smoking. Unfortunately though, it outranks all those, as 
a predictor of clinical events.142 Age is a major risk factor for 
hypertension,3 and premature aging (relative actual chron-
ological age) is commonly observed in the vasculature of 

Figure 3. Autophagy is able to prevent the aged phenotype in endothelial cells. Efficient degradation of dysfunctional organelles and misfolded pro-
tein aggregates prevents their accumulation and the induction of oxidative stress, which subsequently reduces nitric oxide bioavailability. Inefficient 
recycling of cellular waste occurs in both chronological aging and premature aging associated with cardiovascular diseases. Abbreviations: ROS, reactive 
oxygen species; SASP, senescence-associated secretory phenotype.
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hypertensive animals.4,5 Nonetheless, the factors and molec-
ular mechanism underlying this phenotype remain elusive. 
Senescence is age-associated phenomenon important for 
homeostasis.7 However, if senescence becomes excessive and 
uncontrolled, it could contribute to the genesis and/or main-
tenance of hypertension via acceleration of relative vascular 
age.46 Enhancing our understanding of cellular senescence, 
beyond phenotypic recognition, could further refine the vas-
cular age determination as a prognostic and diagnostic index 
of cardiovascular disease risk, as well as offer an alternative 
therapeutic target to hypertensive patients resistant to all 
currently available treatments (Figure 4).
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