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ABSTRACT Tuberculosis (TB) is a serious global public health
challenge that results in significant morbidity and mortality
worldwide. TB is caused by infection with the bacilli
Mycobacterium tuberculosis (M. tuberculosis), which has evolved
a wide variety of strategies in order to thrive within its host.
Understanding the complex interactions betweenM. tuberculosis
and host immunity can inform the rational design of better
TB vaccines and therapeutics. This chapter covers innate and
adaptive immunity against M. tuberculosis infection, including
insights on bacterial immune evasion and subversion garnered
from animal models of infection and human studies. In addition,
this chapter discusses the immunology of the TB granuloma,
TB diagnostics, and TB comorbidities. Finally, this chapter
provides a broad overview of the current TB vaccine pipeline.

INTRODUCTION
Mycobacterium tuberculosis, the etiologic agent of tuber-
culosis (TB), remains a significant global public health
burden (1). In 2016, there were 10.4 million new TB
cases reported globally and nearly 1.7 million TB-related
deaths (1). Understanding the host response to M. tu-
berculosis infection is a key aspect of efforts to eradi-
cate TB through the development of effective vaccines
and immune therapeutics. M. tuberculosis is an intra-
cellular pathogen transmitted via inhalation of aerosol-
ized, bacteria-containing droplets. Innate immune cells
in the lungs, primarily macrophages, dendritic cells,
monocytes, and neutrophils, readily phagocytose M.
tuberculosis and are the earliest defenders against the
pathogen. The transformation of bacteria-containing
phagosomes into acidified, antimicrobial compartments
is a central tenet of defense against M. tuberculosis.
In this regard, the production of interferon-γ (IFN-γ),
which can activate infected myeloid cells and inhibit

bacterial replication, is a well-known antimycobacte-
rial contribution by adaptive immune cells such as CD4
and CD8 T cells. Despite pressures from host immunity,
M. tuberculosis is able to persist in the host. M. tuber-
culosis infection results in hallmark lesions called gran-
ulomas, which are initially aggregates of infected and
uninfected myeloid cells circumscribed by a lymphocytic
cuff. The granuloma is thought to prevent bacterial dis-
semination to extrapulmonary sites but can also become
a niche for long-term bacterial persistence. M. tubercu-
losis has evolved myriad strategies to evade and subvert
immune responses to persist within a host, and it is be-
coming increasingly clear that the immune response
to M. tuberculosis infection involves contributions from
a wide variety of innate and adaptive immune cells. A
clearer understanding of the complex cross talk between
M. tuberculosis and host immunity is essential for the
development of efficacious TB vaccines. Despite being
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developed nearly a century ago, Mycobacterium bovis
bacillus Calmette-Guérin (BCG), an attenuated strain of
M. bovis, remains the only licensed vaccine against TB.
Vaccination with BCG provides protection against se-
vere forms of disseminated TB in children but has vari-
able efficacy in preventing pulmonary disease in children
and adults (2–4). However, the immunological basis for
the poor efficacy of BCG remains unclear. Moreover,
long-held concepts regarding the nature of desired im-
mune responses in an ideal TB vaccine, namely, the in-
duction of antigen-specific CD4 T cells producing IFN-γ,
are being updated to reflect the expanding knowledge
of host immunity to M. tuberculosis infection gathered
from animal models and human cohort studies. Ad-
vances in imaging and single-cell technologies combined
with high-throughput approaches and systems-based
analyses are providing more information on the immune
response to M. tuberculosis infection at increasingly
higher resolutions. As our understanding of the host re-
sponse toM. tuberculosis infection grows, opportunities
to leverage knowledge of the immunology of M. tuber-
culosis infection toward improving therapeutics and
vaccines for TB are increasing.

This article will cover integral features of the innate
and adaptive immune response to M. tuberculosis in-
fection. Additionally, it will highlight recent findings on
the hallmark granuloma and novel cellular players con-
tributing to the host response to M. tuberculosis infec-
tion. Finally, it will provide an overview of the state of
TB vaccine research, including a summary of BCG-based
vaccines and the TB vaccine pipeline.

IMMUNOPATHOGENESIS OF TB IN
HUMANS AND ANIMAL MODELS
Overview of Human TB
Disease and Comorbidities
Transmission of M. tuberculosis occurs after inhalation
of aerosolized droplets containing live bacteria into the
lungs. Successful transmission is influenced by a variety
of conditions, including proximity and duration of
contact with an individual with active TB (ATB) disease
and the immune-competency of the individual infected
with M. tuberculosis (5–7). We now appreciate that in a
clinical setting, M. tuberculosis infection presents as a
continuum of diseased/infected states ranging from
asymptomatic latent TB infection (LTBI) to ATB disease.
This complexity, combined with remarkable heteroge-
neity in lesions within a single patient, has presented
unique challenges to the eradication of TB (8). While the
majority of individuals exposed to M. tuberculosis are

able to control infection in the form of LTBI, an esti-
mated 5 to 10% of people exposed to M. tuberculosis
develop ATB, which is characterized by a persistent
cough accompanied by sputum production, weight loss,
weakness, and night sweats (9). Clinical diagnosis and
treatment of M. tuberculosis infection is complicated by
a variety of coinfections and comorbidities.

Comorbidities that modulate immune function can
exacerbate TB disease or contribute to progression of
individuals with LTBI to ATB. HIV coinfection in la-
tently infected individuals increases the risk of develop-
ing TB from a 5 to 10% lifetime risk to a 10% annual
risk, and HIV infection is the single greatest risk factor
for the development of TB (10–14). The relevance of
HIV coinfection to global TB mortality is highlighted by
the fact that more than a fifth of all TB-related deaths in
2016 were in HIV-positive individuals (1). Progressive
depletion and dysfunction of CD4 T cells following HIV
infection leads to immune suppression and negatively
impacts immunity to M. tuberculosis. Specific depletion
ofM. tuberculosis-specific CD4 T cells has been reported
in the peripheral blood (15, 16) and broncheoalveolar
lavage (BAL) samples (17, 18) of HIV-infected individ-
uals with LTBI. Several studies indicate that specific
depletion may be a consequence of enhanced HIV co-
receptor expression in CD4 T cells, particularly CCR5,
in TB patients (15, 19–24). Alternative hypotheses to ex-
plain specific depletion of M. tuberculosis-specific CD4
T cells include differential functionality of specific T
cells. In HIV coinfected LTBI, M. tuberculosis-specific
CD4 T cells are reported to secrete interleukin 2 (IL-2) in
contrast toMIP-1β (macrophage inflammatory protein 1
beta) secreted by cytomegalovirus-specific CD4 T cells
(16). Analysis of viral loads in HIV coinfected LTBI
showed an inverse correlation between viral load and
the frequency of M. tuberculosis-specific CD4 T cells
secreting IL-2 (25), suggesting that IL-2 producing M.
tuberculosis-specific CD4 T cells may be specifically
depleted in the context of HIV coinfection. Relatedly,
HIV-coinfected individuals have lower frequencies of
cytokine-producingM. tuberculosis-specific CD4 T cells
with impaired proliferative capacity compared to HIV-
uninfected individuals with LTBI (26–28), suggesting
M. tuberculosis-specific CD4 T-cell dysfunction during
HIV-infection. The relative contributions of depletion
versus dysfunction of M. tuberculosis-specific CD4 T
cells to enhanced TB risk followingHIV infection remains
unclear. Further, HIV infection may perturb protective
immunity to M. tuberculosis in other immune compart-
ments, such as CD8 T cells. For instance,M. tuberculosis-
specific CD8 T cells from individuals with LTBI are
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reported to have impaired proliferation and degranulation
in HIV-infected compared to HIV-uninfected individuals
(29). Studies have also described associations between TB
and many other conditions or activities, including smok-
ing, malnutrition, diabetes, helminth infections, chronic
lung diseases, and cancer (30, 31). Further investigations
will be required to fully understand the basis of identified
associations with other infections and morbidities.

Animal Models of Infection
Knowledge of the host response to M. tuberculosis in-
fection has benefited greatly from the development
of animal models of infection. The variable outcomes
of M. tuberculosis infection in humans are challenging
to model in a single animal model. Many experimen-
tal animals are susceptible to M. tuberculosis infection
and can inform us about aspects of human disease. The
mouse model for TB benefits from many advantages:
ease of manipulation and housing, availability of well-
characterized inbred strains, sophisticated techniques
for the generation of mutant strains, availability of im-
munological and other reagents, and relatively low cost.
Mice have been utilized to model host responses to
M. tuberculosis infection, to evaluate drug and vaccine
candidates, and to study the immune response to mutant
strains of mycobacteria. Experimental infection can be
delivered through multiple routes: intravenously, intra-
peritoneally, intratracheally, or via aerosolized particles.
The latter method, especially low-dose aerosol infection,
is the most physiologically relevant and has become the
preferred method. Different mouse strains have well-
characterized lung pathologies and levels of suscepti-
bility (32–36). Typically, following bacterial deposition
into the lungs, it takes approximately 2 weeks to begin
priming adaptive immune responses in the lung-draining
lymph nodes and a further 1 to 2 weeks for robust par-
ticipation in the lungs by adaptive immune cells, but
bacterial burdens continue to be maintained at a high
level in the lungs ofM. tuberculosis-infected mice. There
are limitations to what can be gleaned from mouse
models ofM. tuberculosis infection due to the differences
in lung pathology between mice and humans. Further,
true latent infection and significant immune control of
infection are difficult to establish in the mouse model,
though chemotherapeutically induced models of pauci-
bacillary disease in mice exist (37, 38). The development
of humanized mice that can recapitulate the heteroge-
neity of human lung pathology may extend the advan-
tages of the mouse model, but humanized mice are also
reported to display aberrant T-cell responses and be
unable to control bacterial burden (39, 40).

Other animal models of M. tuberculosis infection in-
clude guinea pigs, rabbits, fish, and non-human primates
(NHP). Each has distinct advantages and disadvantages
that make their use particularly suitable for different
types of research questions. Following infection, guinea
pigs exhibit pathological features, such as the organi-
zation and development of caseous necrotic granulomas,
that more accurately recapitulate the human granulo-
matous response compared to mice (41). Further, guinea
pigs are very susceptible toM. tuberculosis infection and,
thus, are a good choice for testing candidate drugs and
vaccines and studying dissemination dynamics. Simi-
larly, rabbits develop a well-organized granuloma that
can become necrotic following mycobacterial infection.
However, rabbits are resistant to M. tuberculosis, and
high numbers of bacteria during inoculation or use of
more virulent strains are needed (42–45). Nevertheless,
the rabbit model has been leveraged to study relatively
rarer forms of TB, such as cutaneous and meningeal
TB (46, 47). The usefulness of both the guinea pig and
rabbit models is hampered by the scarcity of immuno-
logic reagents relative to mice. The zebrafish model has
provided novel insights into the establishment of the
mycobacterial granuloma. Infection of transparent zeb-
rafish larvae with the natural fish pathogen Mycobac-
terium marinum leads to the establishment of well-
organized granulomas that become necrotic and can
be visually monitored (48). The primary advantage of
the zebrafish model is the transparency of the zebra-
fish larvae, which, alongside facile manipulation of
host and bacterial genetics, has been leveraged for in-
sight into early innate immune events leading to the
formation of the granuloma as well as insights into
human disease. Adaptive immunity is present in adult
zebrafish, and different populations of CD4 T cells
have recently been described (49, 50), but these ani-
mals are no longer transparent, and relevance of the
adult zebrafish immune response to human TB have yet
to be established.

The NHP model of M. tuberculosis infection reflects
much of the heterogeneity observed in human TB. In-
fection of NHPs is typically performed by aerosol or
direct bronchoscopic deposition into the lungs of rhesus
or cynomolgus macaques and, depending on the dose of
the inoculation and the strain of bacteria utilized, leads
to symptomatic ATB disease or asymptomatic infection
in which bacteria persist at low levels akin to LTBI. The
NHP model accurately recapitulates many of the hall-
mark granulomas seen in humans, including the het-
erogeneity of granulomas that can be present in the same
animal (51), and presents clinical symptoms similar to
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those seen in humans (52–57). The NHP model is
regarded as an important preclinical model for TB re-
search and is an excellent model for studying immunity
to M. tuberculosis and assessing candidate drug and
vaccine efficacies (58–63). Further, the NHP model can
be used to study reactivation in the setting of simian
immunodeficiency virus coinfection or other types of
immune modulation, such as anti-tumor necrosis-α
(anti-TNF-α) treatment, CD4 depletion, or inhibition of
indoleamine 2,3-dioxygenase (IDO) (64–71).

INNATE IMMUNITY TO
M. TUBERCULOSIS INFECTION
The earliest encounter between host and pathogen in TB
occurs at the interface between innate immune cells and
M. tuberculosis. While innate immunity is critical for
early antimycobacterial responses, it is also important
for the progression of infection and long-term control of
M. tuberculosis by continually priming and educating
adaptive immune responses and by regulating inflam-
mation. However, innate immune cells are often niches
for bacterial replication, and M. tuberculosis utilizes
a variety of strategies that subvert innate immune re-
sponses to establish a chronic infection. Here, we will
detail key features of the innate immune response to
M. tuberculosis infection, starting from recognition of
the bacterium and phagosomal defenses within infected
macrophages to priming of adaptive immune responses
by professional antigen-presenting cells. In between, we
will highlight how neutrophils and monocytes are mo-
bilized after M. tuberculosis infection, the role that
natural killer (NK) cells play during infection, how the
balance of inflammation is regulated by the innate im-
mune system, and how cell death affects the immune
response. In each section, we will also highlight some
of the myriad strategies that M. tuberculosis utilizes to
subvert or evade the host innate immune response.

Recognition of M. tuberculosis by
Pattern Recognition Receptors
Pathogen-associated molecular patterns on M. tubercu-
losis are recognized via a variety of receptors to medi-
ate opsonic and nonopsonic bacterial uptake: C-type
lectins (e.g., mannose receptors, DC-SIGN, Dectin-1,
Dectin-2, Mincle), complement receptors (e.g., comple-
ment receptor 3), collectins (e.g., surfactant proteins A
and D, mannose-binding lectin), scavenger receptors
(e.g.,MARCO, SR-A1, CD36, SR-B1), Fc receptors (e.g.,
FcgR), glycophosphatidylinositol-anchored membrane
receptors (e.g., CD14), and Toll-like receptors (TLRs)

(e.g., TLR-2, TLR-4, TLR-9) (72–74). Mannosylated
lipoarabinomannan, phosphatidyl-inositol mannosides,
phthiocerol dimycocerosates, phenolic glycolipids (PGLs),
trehalose dimycolate, peptidoglycan, and other mycobac-
terial components are recognized by an array of cell sur-
face and intracellular receptors that mediate phagocytosis
and/or antimicrobial defenses. M. tuberculosis DNA (75,
76) or bacterial second messengers (77) can be recognized
by cytosolic pattern recognition receptors (PRRs), such
as cGAS and STING (78, 79), to induce downstream
cytokine production and autophagy. Further, nucleotide
oligomerization domain-like receptors (NLRs) are cyto-
solic PRRs that recognize M. tuberculosis pathogen-
associated molecular patterns, such as muramyl dipep-
tide, to activate a multiprotein complex termed the
inflammasome. Functional redundancies for many of the
receptors are likely to exist due to promiscuous ligand
binding by different receptors and the wide array of
available ligands on M. tuberculosis. Indeed, single or
double knockouts for canonical scavenger receptors and
C-type lectin receptors did not modulate susceptibility or
attenuate immune responses following M. tuberculosis
infection (80). However, increased susceptibility to M.
tuberculosis infection in a variety of knockout mice
demonstrate that a number of PRRs and their associated
signaling pathways also play important, nonredundant
roles in host defense against M. tuberculosis infection.

M. tuberculosis expresses a variety of known or pu-
tative TLR ligands, and TLR-2, TLR-4, and TLR-9 have
been implicated in host recognition of M. tuberculosis
(reviewed in 73, 74). Polymorphisms in specific TLRs
or TLR signaling proteins have also been strongly as-
sociated with pulmonary TB in humans and have been
shown to influence immunity against M. tuberculosis
(81–84). The contribution of individual TLRs to im-
munity against M. tuberculosis infection is variable, but
the importance of the TLR signaling pathway to anti-
mycobacterial immunity is evident in studies showing
that mice lacking the common TLR adaptor protein,
myeloid differentiation factor 88 (MyD88), quickly
succumb to M. tuberculosis infection (85, 86). Suscep-
tibility of MyD88–/– mice to M. tuberculosis infection
has been attributed to deficient expression of NOS2
(86), impaired ability to activate the IL-1β or IL-1 re-
ceptor (IL1R) pathway (87, 88), impaired receptivity
of macrophages to IFN-γ signaling (89), and impaired
IL-12 and TNF-α responses in macrophages and den-
dritic cells (DCs) (85). Gene-deletion studies in single
TLRs have revealed that innate immune responses to
M. tuberculosis are likely the result of the complex ac-
tivation of multiple signaling pathways. For instance,
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mice lacking both TLR-2 and TLR-9 are more suscep-
tible to M. tuberculosis infection than mice lacking the
ability to signal through either TLR by itself (90). The
susceptibility of MyD88–/– mice to M. tuberculosis in-
fection is an example of the importance of common
adaptor molecules that integrate signals from multiple
PRRs and other innate immune pathways for the in-
duction of antimycobacterial immunity. Further evi-
dence for this concept is demonstrated by the increased
susceptibility of M. tuberculosis-infected mice lacking
CARD9, an adapter molecule integrating signals from
C-type lectin receptors, or PYCARD/ASC, an adapter
molecule integrating signals from nucleotide oligomeri-
zation domain-like receptors for the induction of the
inflammasome (91, 92).

MyD88 signaling in innate immunity integrates sig-
naling from TLR and IL-1 receptor families by bridging
ligand-receptor binding to IL-1-receptor-associated kinases
and the activation of multiple downstream pathways, in-
cluding NF-κB, mitogen-activated protein kinases, and
activator protein 1. The IL-1 signaling pathway is clearly
required for resistance to M. tuberculosis infection in
mousemodels and is supported by human immunogenetics
studies (93–96). In mice, the absence of IL-1 signaling led
to severe susceptibility to M. tuberculosis infection. Both
IL-1α and IL-1β, as well as their common receptor, IL-1R1,
have been implicated in immunity to M. tuberculosis (87,
88, 97–101). Secretion of themature form of IL-1β requires
cleavage by the terminal inflammasome effector, caspase-1,
butM. tuberculosis-infected mice lackingMyD88, ASC, or
caspase-1 signaling do not display impaired IL-1β levels
(87). Further, mice deficient in IL-1β are considerably more
susceptible to M. tuberculosis infection than mice lacking
ASC or caspase-1 (87). These findings suggest that IL-1β is
a key mediator of resistance to M. tuberculosis infection
but also indicate that the basis for resistance conferred by
MyD88, CARD9, and PYCARD/ASC likely depend on
additional factors beyond IL-1β.

While host recognition ofM. tuberculosis leads to the
activation of innate immunity, M. tuberculosis has also
evolved strategies that evade innate immune responses
mediated by PRRs. Strain-specific expression of cell en-
velope components may be associated with differential
immune responses. For example, the W-Beijing lineage
strain, HN878, has been found to express polyketide
synthase-derived phenolic glycolipids that are missing
in lab-adapted H37Rv or other clinical isolates (i.e.,
CDC1551) (102). Expression of PGL by HN878 has
been found to diminish production of multiple innate
immune cytokines and chemokines (102, 103), though
its role in the increased virulence of HN878 remains

controversial. Modulation of innate immune responses
by M. tuberculosis is also accomplished through the
presence of immune-inhibitory lipid components that
compete with immune-activating mycobacterial compo-
nents for the same receptors. For example, expression
of tetraacylated sulfoglycolipids by the W-Beijing strain
GC1237 can competitively bind TLR-2 to attenuate
responses to canonical TLR-2 agonists, including my-
cobacterial lipomannans (104). Lastly, M. tuberculosis
can also impair innate immune responses to cell-
envelope components through enzymatic means. For
instance, anM. tuberculosis serine-hydrolase, Hip1, was
found to cleave multimeric, cell wall-associated GroEL2
to a secreted monomeric form to mediate attenuated
macrophage and DC responses (105–109). Addition-
ally, M. tuberculosis mutants lacking hip1 or a putative
mycobacterial metalloprotease, zmp1, display enhanced
inflammasome activation (106, 110), suggesting that
M. tuberculosis has multiple strategies for dampening
activation of the inflammasome.

Thus, in addition to the array of host receptors that
mediate recognition of M. tuberculosis, innate immune
responses to infection likely depend on the strain of
M. tuberculosis, the presence of cell wall components
that can competitively inhibit the activation of PRRs,
and the presence ofM. tuberculosis enzymes that modify
the immunogenicity of cell envelope components.

Phagosomal Defense in Macrophages
Macrophages are the first immune cells to encounter
M. tuberculosis during infection and also represent the
primary replicative niche forM. tuberculosis. Recognition
of M. tuberculosis by macrophages leads to phagocytosis
and sequestration of the bacterium in phagosomes, which
typically eradicate pathogens via fusion with lysosomes
and consequent acidification of the pathogen-containing
phagolysosome. However, M. tuberculosis is able to sur-
vive and replicate in the phagosome by inhibiting phago-
somal maturation and phagolysosomal generation through
a variety of mechanisms (reviewed in 72, 111). Further,
transcriptional profiling of intraphagosomal bacteria indi-
cated that M. tuberculosis readily counters the nitrosative,
oxidative, hypoxic, and nutrient-poor phagosomal envi-
ronment through the expression of stress-adaptive genes
(112), though a genome-wide transposon site hybridiza-
tion screen for M. tuberculosis survival in macrophages
suggested that M. tuberculosis constitutively expresses
genes required for its survival (113). Nevertheless, it is clear
that M. tuberculosis has adapted for a lifestyle inside the
macrophage and employsmany strategies to survive within
these cells.
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M. tuberculosis glycolipids can prevent accumulation
of phosphatidylinositol 3-phosphate on phagosomal
membranes and prevent phagolysosome biosynthesis
(114).M. tuberculosis also secretes phosphatases (SapM
and PtpA) and serine/threonine kinases (PknG) that
are proposed to interfere with phagosomal maturation
(115–121). There is also evidence that M. tuberculosis
lipids, in particular, phthiocerol dimycocerosates, can
mediate escape from the phagosome and host cell death
(122). An M. tuberculosis secretion system, ESX-1, is
also known for mediating disruptions in phagosomal
integrity and preventing phagosome maturation. Pro-
motion of aberrant phagosomal integrity and bacterial
replication by M. tuberculosis ESX-1 is countered by
IFN-γ-induced, Rab20-mediated phagosomal matura-
tion (123). ESX-1-mediated phagosomal escape of bac-
teria is hypothesized to work through disruption of the
phagosome by the 6-kDa early secretory antigenic target
(ESAT-6) (124–127), though recent evidence proposes
a contact-dependent, ESAT-6-independent mechanism
for ESX-1-mediated phagosomal permeabilization (128).
Nevertheless, ESX-1-mediated permeabilization of the
phagosome exposesM. tuberculosis pathogen-associated
molecular patterns, such as N-glycolyl-muramyl dipep-
tide, to cytoplasmic nucleotide oligomerization domain
2 receptors to induce type I IFNs (129, 130). ESX-1-
mediated permeabilization of the phagosome also exposes
extracellular bacterial DNA to the cytosolic DNA-sensing
pathway, which leads to targeting of M. tuberculosis to
autophagosomes for subsequent killing (75). M. tuber-
culosis ESX-3 has also been implicated in modulating
intracellular trafficking of bacteria to avoid phagosomal
maturation through inhibition of the host endosomal
sorting complex required for transport (131–133). Thus,
studies of the M. tuberculosis ESX secretion system have
provided evidence for its role in both bacterial evasion
of phagosomal pressures and host sensing of bacterial
components. In addition to the ESX system, M. tubercu-
losis also expresses two SecA ATPase protein homologues
(SecA1 and SecA2) involved in protein export (134).
SecA2, in particular, has been implicated in virulence and
intracellular growth (135, 136). Interestingly, bothM. tu-
berculosis and BCG ΔsecA2mutants are enriched in acidi-
fied phagosomes, indicating that mycobacterial SecA2 is
required for arrest of phagosome maturation (137).

M. tuberculosis entry into macrophages through dif-
ferent receptors can lead to distinct activation of path-
ways that can inhibit or promote bacterial replication.
The overall effect of multiple receptors engaging distinct
or overlappingM. tuberculosis ligands is a complex and
dynamic issue. For example, M. tuberculosis uptake by

complement receptor 3 depended on host cholesterol,
which mediated phagosomal association with coronin-1
and consequent inhibition of phagolysosome forma-
tion through activation of host calcineurin (138, 139).
Alternatively, TLR-2 recognition of mycobacterial
mannosylated lipoarabinomannan activates NF-κB and
NOS2 gene transcription that leads to antimycobacterial
nitric oxide (NO) production (140). NO production is
strongly associated with resistance to M. tuberculosis,
though evidence for the antimycobacterial effects of
NO is stronger in the mouse model. In mice, reactive
nitrogen intermediates are toxic to mycobacteria in vitro
(141–143), and infection can be exacerbated by the
inhibition of NOS in vitro (144, 145) or in vivo (146–
148). NO production following IFN-γ signaling has also
been reported to limit overt inflammation by inhibiting
processing of IL-1β by the inflammasome (149). Re-
latedly, mice with disrupted NOS2 alleles display exa-
cerbated disease following M. tuberculosis infection
(146, 150). Although in vitro studies using human al-
veolar macrophages and primary monocytes did not find
an antimycobacterial role for NO (151–153), specific
staining for NOS2 in the BAL of TB patients reveals
upregulation in infected individuals compared to healthy
controls (154). Nevertheless,M. tuberculosis has several
strategies to cope with otherwise damaging reactive ni-
trogen and oxygen intermediates:M. tuberculosis KatG,
a catalase-peroxidase, can inactivate phagosomal reac-
tive oxygen (155), and the M. tuberculosis proteasome
can mediate resistance to nitrosative stresses (156). Pro-
miscuous recognition of mycobacterial antigens by the
same receptor may also have convergent outcomes as in
the case for TLR-2-mediated recognition of M. tuber-
culosis cell wall fractions leading to TNF-α production
in murine macrophages (157). TLR-mediated recogni-
tion of M. tuberculosis is also reported to synergize
with the vitamin D pathway to induce the antimicrobial
peptide (AMP), cathelicidin, in human macrophages
(158, 159). The biologically active vitamin Dmetabolite,
calcitriol, induces hCAP-18, a gene encoding the pro-
form of cathelicidin, following TLR ligation of macro-
phages (158–160). In addition to direct antimicrobial
activity, cathelicidin has been shown to exert antimi-
crobial functions by activating transcription of host
autophagy genes Beclin-1 and Atg5 (161). The vitamin
D pathway also synergizes with IFN-γ secreted by T cells
to induce IL-15 autocrine signaling to promote auto-
phagy and phagosomal maturation in M. tuberculosis-
infected human macrophages (162).

Autophagy is the process whereby cytoplasmic con-
stituents are degraded or recycled. A role for autophagy
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in antimycobacterial immunity in macrophages has
been extensively characterized. Initial studies utilizing
M. bovis suggested that autophagy plays a role in pro-
moting phagosomal maturation to enhance bacterial
killing (163). Moreover, LRG-47, an IFN-γ inducible
p47 GTPase reported to be critical for phagosomal
maturation and control of M. tuberculosis (164), is also
involved in the induction of autophagy in M. bovis-
infected macrophages (165). Autophagy-related genes
were revealed to be involved in regulating the intracel-
lular bacterial load of lab-adapted and clinical isolates
of M. tuberculosis in a genome-wide small interfering
RNA screen in infected human macrophage-like THP-1
cells (166). Accumulating evidence indicates that auto-
phagy is integrated into the host response to M. tuber-
culosis infection by synergizing with pathogen sensing,
phagosomal maturation, and IFN-γ inducible path-
ways to mediate antimycobacterial immunity: STING-
dependent cytosolic sensing of M. tuberculosis DNA
is required to deliver bacteria to autophagosomes and
restrict bacterial replication (75); knockdown of cGAS
in infected macrophages attenuated the induction of
autophagy and survival during chronic M. tuberculosis
infection (78); detection of cyclic-di-AMP secreted by
M. tuberculosis in macrophages induced type I IFN pro-
duction and autophagy to limit bacterial virulence (77);
PARKIN, a conserved ubiquitin ligase, was shown to
ubiquitinate M. tuberculosis-containing phagosomes to
facilitate ubiquitin-mediated autophagy and restrict bac-
terial replication (167); IFN-γ-induced host ubiquilin-1
colocalizes withM. tuberculosis and mediates trafficking
of bacteria to autophagosomes (168); IFN-γ receptor
signaling mediated by the MyD88 adaptor-like (Mal)
molecule induced autophagy and killing of intracellular
M. tuberculosis in macrophages (169). Several studies
have also delineated strategies employed by M. tuber-
culosis to evade autophagy. M. tuberculosis is reported
to induce the expression of microRNA-33 to inhibit
autophagy and regulate intracellular lipid metabolism
to benefit bacterial replication (170). Further, a screen of
M. tuberculosis cosmid clones in search of genes that
inhibited bone marrow-derived DC antigen presentation
revealed M. tuberculosis PE_PGRS47 (Rv2741) as an
inhibitor of autophagy-mediated antigen presentation
(171), suggesting that M. tuberculosis-mediated im-
pairment of innate immunity can also negatively impact
the generation of adaptive immunity. It is also becoming
clear that autophagy-related proteins are likely to per-
form multiple functions, and care must be taken when
interpreting specific knockouts or knockdowns of indi-
vidual genes. For instance, myeloid cell-specific ablation

of Atg5, but not other autophagy genes, compromised
control of M. tuberculosis (172, 173). Deletion of the
autophagy-related genes Ulk1, Ulk2, Atg4B, or p62
compromised the ability to induce autophagy, but they
were dispensable for the control of M. tuberculosis
(173). Analysis of lung sections from M. tuberculosis-
infected Atg5 knockout mice indicated that Atg5 may be
involved in regulation of neutrophil responses during
infection, suggesting autophagy-independent roles for
Atg5. Further, a recently described role for Atg5 in LC3-
associated phagocytosis duringM. tuberculosis infection
supports the notion that specific components of auto-
phagy can also overlap with other phagosomal path-
ways in immunity against mycobacteria (174).

Taken together, it is clear that macrophage recogni-
tion and phagocytosis of M. tuberculosis lead to a dy-
namic tug of war between antimycobacterial defenses
and M. tuberculosis immune evasion. Macrophage
defenses include AMPs, nitrosative stresses, phagolyso-
somal fusion, and autophagy and may operate inde-
pendently of or subsequent to IFN-γ signaling. On the
other hand, M. tuberculosis can subvert macrophage
defenses at the level of the bacterial cell wall components
that limit phagosomal maturation and the bacterial
genes that combat or allow adaptation to intracellular
immune pressure.

Recruitment and Function of Neutrophils and
Monocytes FollowingM. tuberculosis Infection
Secretion of cytokines and chemokines early during
infection recruits additional phagocytes to the site of
infection. Early secretion of chemoattractants may be
attributed to infected alveolar macrophages as well as
lung epithelial cells (175–177). Moreover, a recent study
suggests that cross talk between primary bronchial epi-
thelial cells and infected macrophages may also promote
secretion of chemokines (178). Trafficking of additional
monocytes and granulocytes to the lung exerts immune
pressure on M. tuberculosis and is crucial for the initi-
ation of adaptive immune responses, but it may also
promote M. tuberculosis cell-to-cell transmission and
dissemination.

Recruitment of neutrophils serves as an early line of
defense against M. tuberculosis infection via secretion
of antimicrobial molecules and inflammatory media-
tors, but neutrophils also serve as niches for bacterial
replication and can impede immunity against M. tuber-
culosis. In humans with active pulmonary TB, neutro-
phils have been found to be a significant population
of M. tuberculosis-infected phagocytes in the BAL and
sputum (179). Whole blood transcriptional profiling
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also identified a neutrophil signature in ATB patients
that is associated with type I and type II IFN-inducible
genes (180) and expression of the inhibitory molecule
PD-L1 (181), suggesting that neutrophils may play an
immunomodulatory role in human TB. In mice, the ki-
netics and magnitude of neutrophil recruitment follow-
ing M. tuberculosis infection depends on the strain of
mouse infected. Evidence for a pathogenic role for neu-
trophils is shown in studies comparing neutrophil re-
cruitment in resistant versus susceptible mouse strains
(182, 183). When comparing resistant C57BL/6 mice to
susceptible DBA/2 mice after M. tuberculosis infection,
a study found that neutrophils were rapidly recruited
into the broncheoalveolar space at higher magnitudes
in susceptible mice. Depletion of neutrophils at the onset
of M. tuberculosis infection specifically extended the life
spans of DBA/2 mice, suggesting that early neutrophil
involvement was pathogenic in genetically susceptible
mice (183). Similarly, neutrophil depletion in susceptible
I/St mice shortly after M. tuberculosis infection reduced
lung pathology and bacterial growth and improved
survival compared to C57BL/6 mice (184). In a separate
study, depletion of neutrophils 5 weeks after aerosol
M. tuberculosis infection of resistant BALB/c mice en-
hanced the levels of lung IL-6 and IL-17 without im-
pacting IFN-γ and modestly enhanced control of bacterial
burden (185). Neutrophil depletion in the first 4 days
following intravenousM. tuberculosis infection of BALB/
c mice, however, led to enhanced bacterial growth at
extrapulmonary sites, suggesting that antimycobacterial
immunity conferred by neutrophils may be dependent on
the route of infection and the kinetics of neutrophil in-
volvement (186). Utilizing fluorescently labeled bacteria,
a recent study demonstrated that bacterial distribution in
myeloid cells shifts from CD11b+Ly6G– monocytes and
macrophages to CD11b+Ly6G+ neutrophils in Nos2–/–

animals infected with M. tuberculosis, suggesting that
neutrophil influx can create a growth-permissive envi-
ronment for M. tuberculosis under NO-deficient condi-
tions (187). Evidence for beneficial roles that neutrophils
play in antimycobacterial defense focus on neutrophil
secretion of AMPs such as cathelicidin and lipocalin-2 to
restrict bacterial replication (188) or via uptake of AMP-
containing apoptotic neutrophils by M. tuberculosis-
infected macrophages (189). Neutrophils can also release
chromatin scaffolds that trap extracellular bacteria in an
AMP-containing mesh. M. tuberculosis has been shown
to induce the formation of neutrophil extracellular traps
in vitro (190), and levels of neutrophil extracellular traps
detected in the plasma of ATB patients were associ-
ated with disease severity and decreased with antibiotic

therapy (191). Further, as discussed later in the chapter,
dysregulation of neutrophil recruitment by unrestrained
IL-17 responses during M. tuberculosis infection can in-
cur pathological consequences by driving lung-damaging
inflammation. Thus, the overall effect of neutrophil re-
cruitment to the site of M. tuberculosis infection may be
determined by host genetics, the context of infection
(pulmonary versus extrapulmonary), or timing and du-
ration of neutrophil activity.

In addition to neutrophils, monocytes are recruited to
the site of M. tuberculosis infection. Similar to neutro-
phils, monocyte recruitment is important for innate im-
munity during M. tuberculosis infection but may also
inadvertently promote M. tuberculosis dissemination.
C-C chemokine receptor type 2 (CCR2) is a chemokine
receptor expressed on monocytes and is responsible for
CCL2-mediated recruitment of monocytes to sites of
bacterial infection (192). CCR2 was found to mediate
immunity againstM. tuberculosis depending on the dose
of infection. CCR2 knockout mice were more suscepti-
ble to high-dose intravenous M. tuberculosis infection
(193), but not after low-dose infection (194). Monocytes
have been shown to differentiate into macrophages and
DCs following M. tuberculosis infection, and monocytes
transferred intoM. tuberculosis-infected mice were shown
to be the predominant population of innate immune cells
producing iNOS (195). Additionally, monocyte delivery
of M. tuberculosis to pulmonary lymph nodes can coor-
dinate with DCs to prime CD4T cells after infection (196).
Monocytes may therefore represent a recruited popula-
tion of innate cells that combat M. tuberculosis infection
through the production of reactive nitrogen intermediates
and priming of adaptive immunity. However, monocyte
recruitment following M. tuberculosis infection may also
be detrimental to the host by providing an environment
full of permissive cells. Treatment of M. tuberculosis-
infected mice with polyinosinic-polycytidylic acid (polyIC)
led to CCR2-dependent recruitment of a population of
M. tuberculosis-permissive monocytes, severe susceptibil-
ity, and early mortality (197). Interestingly, susceptibility
of polyIC-treated mice to M. tuberculosis infection was
dependent on type I IFN signaling and was not due to any
particular alteration to the T-cell response. The recruit-
ment of neutrophils and monocytes to the site of M. tu-
berculosis infection represents a host strategy to contain
bacterial replication that is co-opted by the bacterium to
facilitate its growth and dissemination.

NK Cells in M. tuberculosis Infection
NK cells are innate lymphocytes with the capacity to
secrete IFN-γ and perform cytolytic functions to mediate

8 ASMscience.org/MicrobiolSpectrum

Sia and Rengarajan

http://www.ASMscience.org/MicrobiolSpectrum


control of a variety of pathogens, including M. tuber-
culosis. Various components of the M. tuberculosis cell
wall can bind directly to NKp44 found on NK cells (198),
and NK cells can also recognize stress molecules upregu-
lated on the surface ofM. tuberculosis-infected cells (199).
NK cells can mediate direct killing of M. tuberculosis-
infected macrophages (199) but can also restrict intra-
cellular bacterial replication via secretion of IL-22 (200)
and IFN-γ (201) to increase phagolysosomal fusion of
M. tuberculosis-containing phagosomes. Additionally,
NK cells can enhance immunity against M. tuberculosis
indirectly by enhancing CD8 T-cell production of IFN-γ
(202) by promoting the expansion of γδ T cells (203) and
by lysing M. tuberculosis-expanded regulatory T cells
(204). The cytolytic capacity of NK cells is diminished
in ATB patients relative to healthy controls and can be
reconstituted following antibiotic therapy (205). Further,
NK cell function in TB patients can be attenuated by
monocyte-derived IL-10 (201). Interestingly, a popula-
tion of IL-21-dependent NK cells that appears following
BCG vaccination has been shown to expand following
M. tuberculosis challenge (206), suggesting that NK cells
may also display some hallmark characteristics of mem-
ory cells.

Inflammation and Cell Death
During M. tuberculosis Infection
The regulation of inflammation is a critical factor that
determines the outcome of M. tuberculosis infection.
Overexuberant inflammation impairs cellular immunity,
damages lung tissue, and can lead to lung cavitation and
enhanced transmission. Inversely, too little inflamma-
tion can impair control of bacterial burden by delaying
the induction of innate and adaptive immunity. While
neutrophil recruitment and activity during M. tubercu-
losis infection can help contain bacterial replication,
sustained neutrophilic inflammation can mediate dam-
aging inflammation and promote disease. Importantly,
whole blood transcriptomics identified a neutrophil-
driven type I IFN-inducible signature in human TB that
decreased upon treatment (180). Excessive type I IFN
signaling has been shown to promote disease in mouse
models and human samples. Mice lacking type I IFN
signaling are more resistant to M. tuberculosis infection
(207–210), though signaling through type I IFNs may
play a protective role in the absence of IFN-γ (211, 212).
Mechanisms underlying the pathogenic role of type I
IFNs during M. tuberculosis infection include inhibition
of IL-1β production (213, 214), induction of IL-10 to
impair innate cytokine production (215), and loss of
IFN-γ responsiveness in infected macrophages (215).

In addition to induction of type I IFNs, neutrophils have
also been reported to drive lung destruction through the
secretion of matrix metalloproteinase 8 (216). The ma-
trix metalloproteinase family of enzymes has been im-
plicated in lung tissue destruction duringM. tuberculosis
infection (217–220) but has also been shown to promote
macrophage recruitment and bacterial dissemination
during infection of zebrafish (221).

Eicosanoids are lipid mediators of inflammation de-
rived from the oxidation of arachidonic acid. The bal-
ance between proinflammatory prostaglandin E2 (PGE2)
and anti-inflammatory lipoxin A4 (LXA4), twomembers
of the eicosanoid family of signaling molecules, can de-
termine the outcome of M. tuberculosis infection (222–
224). During M. tuberculosis infection, mice incapable
of synthesizing PGE2 display increased susceptibility
(223), and absence of the enzyme 5-lipoxygenase, which
metabolizes arachidonic acid to LXA4, confers resistance
(222). Importantly, therapeutic correction of low PGE2
levels can confer enhanced survival in highly susceptible
mice infected with M. tuberculosis (100). Leukotriene
A4 hydrolase is an enzyme that catalyzes the production
of proinflammatory leukotriene B4 from leukotriene A4,
which can also be converted to anti-inflammatory LXA4
as a counterbalance. In zebrafish, LTA4H mutants were
found to be hypersusceptible to M. marinum infection
due to dysregulation of the balance between leukotrienes
and lipoxins; increased levels of LXA4 in LTA4H mu-
tants impaired TNF-α responses and promoted sus-
ceptibility (225). The relevance of this finding to humans
is highlighted in a TB meningitis cohort in Vietnam
where heterozygosity for six LTA4H polymorphisms
conferred a survival advantage over homozygosity (225).
Indeed, anti-inflammatory glucocorticoid treatment effi-
cacy in TB meningitis patients can be differentiated by
a single nucleotide polymorphism in the LTA4H pro-
moter controlling transcriptional activity, which suggests
that the balance of inflammation is critical to disease
progression and treatment outcomes in TB meningitis
(226).

TNF-α is a critical proinflammatory cytokine in im-
munity against M. tuberculosis infection and can be se-
creted by a number of innate and adaptive immune cells.
The importance of TNF-α in antimycobacterial immu-
nity is clearly demonstrated by heightened susceptibil-
ity of TNF-α antibody-depleted animals or in animals
lacking TNF receptor signaling following M. tubercu-
losis infection (227). TNF-α is also a critical mediator of
immunity against TB in humans. This is demonstrated
by increased rates of progression to ATB in LTBI pa-
tients receiving anti-TNF treatment for inflammatory
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disorders (228), which can be recapitulated in the NHP
model of infection (70). The effects of anti-TNF treat-
ment in humans and NHPs, as well as in mice (229–
231), suggests that TNF-α is critical for maintaining
sequestration of M. tuberculosis in the granuloma.
Histopathological evidence from gene-disrupted or
antibody-depleted mice infected with M. tuberculosis
also suggests that TNF-α signaling may be playing a
role in modulating apoptotic or necrotic cell death
following infection (229, 231).

Cell death can be a means of restricting bacterial re-
plication by the host or a way to disseminate to second-
ary loci of infection for M. tuberculosis. Apoptosis of
M. tuberculosis-infected cells leads to fewer viable bac-
teria and effective cross-presentation of bacterial antigens
(224, 232, 233), whereas necrosis of M. tuberculosis-
infected cells allows viable bacteria to exit and disseminate
(223, 234, 235). Proapoptotic M. tuberculosis mutants
lacking secA2 (236) and nuoG (237) were attenuated
in vivo, and mice infected with these strains displayed
enhanced priming of adaptive immunity compared to in-
fection with wild-type M. tuberculosis, suggesting that
prevention of host cell apoptosis is anM. tuberculosis vir-
ulence strategy. Relatedly, M. tuberculosis-infected mu-
rine neutrophils can aid in DC trafficking to the draining
lymph nodes to initiate antigen-specific CD4 T-cell re-
sponses (238), but M. tuberculosis delays CD4 T-cell
priming by inhibiting neutrophil apoptosis (239). Infec-
tion with the proapoptotic nuoG mutant M. tuberculosis
resulted in earlier DC trafficking to lung-draining lymph
nodes and earlier priming of antigen-specific CD4 T cells,
but enhanced priming was abrogated upon neutrophil
depletion (239). Additionally, uninfected macrophages
performing a constitutive housekeeping function called
efferocytosis can uptake M. tuberculosis-containing apo-
ptotic bodies, which leads to delivery and killing of bac-
teria in lysosomes (240). This suggests that apoptosis may
be a host strategy to limit bacterial replication by se-
questering bacteria in vesicles that can be safely degraded
by nearby innate immune cells. Inhibition of apoptosis
by M. tuberculosis is driven by host intrinsic factors fol-
lowing infection with virulent strains. The proinflamma-
tory eicosanoid PGE2 has been demonstrated to regulate
synaptotagmin-7, a calcium sensor that maintains plasma
membrane integrity (241). Human macrophages infected
with virulent M. tuberculosis H37Rv, but not avirulent
H37Ra, promote LXA4 production and inhibition of
PGE2 biosynthesis, which impairs resealing of plasma
membrane disruptions to preferentially induce host cell
necrosis instead of apoptosis (241). Mice lacking PGE2
also suffered from increased lung bacterial burden fol-

lowing low-dose aerosol infection with virulentM. tuber-
culosis (223). Host cell necrosis followingM. tuberculosis
infection can be induced through activation of the cyto-
solic receptor interacting protein kinase 3 pathway, which
inhibits apoptosis of infected macrophages through Bcl-
xL and promotes necrosis through upregulation of ROS
(242). Additionally, macrophages infected with virulent
H37Rv, but not avirulent H37Ra, undergo proteolysis
at the N-terminal of annexin-1, which prevents the com-
pletion of the apoptotic envelope and drives macrophage
necrosis (235). Taken together, apoptosis represents a
strategy by the host to limit infection through the com-
bination of bacterial sequestration in apoptotic vesicles
and the induction of adaptive immune responses, but
M. tuberculosis may delay apoptosis or promote necrosis
to facilitate replication and dissemination.

Initiation of Adaptive Immunity
to M. tuberculosis by DCs
An important function of innate immunity during M.
tuberculosis infection is the priming of adaptive immune
responses. DCs are professional antigen-presenting cells
that initiate adaptive immunity by presenting M. tuber-
culosis antigens in the context of major histocompati-
bility complex (MHC), costimulatory molecules, and
cytokines. Depletion of cells expressing the pan-DC
marker, CD11c, following M. tuberculosis infection
impaired control of bacterial burden and delayed the
initiation of adaptive immunity, illustrating the impor-
tance of DCs in mobilizing adaptive immune responses
that can control bacterial replication (243). There is
abundant evidence that M. tuberculosis is able to infect
murine (244–246) and human DCs (247–249). In mice
infected with green fluorescent protein GFP-expressing
M. tuberculosis, DCs were found to be the major pop-
ulation of phagocytes infected by bacteria after 4 weeks
(246). Upon M. tuberculosis infection, DCs mature and
migrate to the lung-draining lymph nodes to initiate
antigen-specific T-cell responses, which depended on
the chemokine receptor CCR7 and its corresponding
chemokines CCL19 and CCL21 (250–252). Further, IL-
12, a cytokine secreted bymyeloid cells and important for
the induction of IFN-γ responses, is required for DC mi-
gration duringM. tuberculosis infection (253). Priming of
adaptive immune responses requires the transport of live
bacteria to the lung-draining lymph nodes (246, 250), but
antigen-specific T cells can be primed by both the infected
migratory DC and uninfected lymph node resident DC. A
study demonstrated that infected DCs migrate to the
lung-draining lymph nodes, where they secrete soluble,
unprocessedM. tuberculosis antigens that are summarily
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phagocytosed by uninfected lymph node resident DCs
(254). The exportation of M. tuberculosis antigens was
initially proposed to benefit the host by circumventing
inefficient antigen presentation by infected DCs. How-
ever, secretion of M. tuberculosis antigens by infected
DCs may also benefit the pathogen by diverting antigen
away from MHC class II antigen presentation (255).

Effective interaction between DCs and T cells is de-
pendent on appropriate function of antigen presentation
machinery, including expression of MHC, costimula-
tory molecules, and cytokines following M. tuberculosis
infection. However, there is abundant evidence that
M. tuberculosis infection impairs antigen presentation
to evade antigen-specific T-cell responses. It is well rec-
ognized that M. tuberculosis infection leads to impaired
MHC class II antigen presentation by macrophages
(reviewed in 256). M. tuberculosis-mediated inhibition
of phagosomal maturation has been implicated in at-
tenuating processing of M. tuberculosis antigen 85
(Ag85) and the MHC class II-associated invariant chain
(257). Multiple studies have also reported that M. tu-
berculosis infection impairs MHC class II expression
in macrophages through inhibition of class II transacti-
vator, a master transcriptional regulator controlling
expression of MHC class II molecules (258–261), al-
though there is little evidence of similar inhibition
of MHC class II in DCs. Nevertheless, M. tuberculosis
infection of DCs leads to functional impairment of an-
tigen presentation. M. tuberculosis infection has been
shown to impair DC maturation of human (reviewed
in 262) and murine DC functions (reviewed in 263,
264). Studies examining proliferation of T-cell recep-
tor transgenic CD4 T cells specific for M. tuberculosis
Ag85 as a proxy for functional antigen presentation
have demonstrated that M. tuberculosis EsxH can im-
pair antigen processing through inhibition of the host
endosomal sorting complex required for transport
(ESCRT) (265). Additionally, M. tuberculosis promotes
suboptimal antigen presentation in vitro and in vivo
without detectable differences in the expression levels
of costimulatory molecules when compared to BCG-
infected DCs (266). Interestingly, studies using a mutant
M. tuberculosis strain lacking hip1 (discussed above)
indicate that M. tuberculosis readily impairs DC costi-
mulation and cytokine production to evade antigen-
specific CD4 T-cell responses (107, 109), and a recent
study demonstrated that BCG hip1 retains similar im-
mune evasion functions (267). Taken together, the ini-
tiation of the adaptive immune response requires the
participation of DCs, which themselves are readily
infected and subverted by M. tuberculosis infection.

M. tuberculosis subversion of DC functions can interfere
with antigen presentation and delay or impair the initi-
ation of the adaptive immune response. Improving DC
functions during M. tuberculosis infection may improve
innate and adaptive immunity and enhance immune
control of bacterial burden. A study that exoge-
nously engaged the CD40 costimulation pathway in
M. tuberculosis-infected DCs improved DC functions
and promoted antigen-specific CD4 T-cell responses that
augmented control of lung bacterial burden (268). Fur-
ther, mucosal transfer of Ag85B-loaded DCs following
challenge withM. tuberculosis augmented the efficacy of
BCG vaccination (269), suggesting that early antigen
presentation by DCs is an important component that
determines the efficacy of vaccine-induced immunity.
DCs are critical players that initiate adaptive immune
responses toM. tuberculosis and determine the outcome
of infection. Interventions or therapies that improve DC
functions may provide benefits by augmenting cross talk
between DCs and antigen-specific T cells.

ADAPTIVE IMMUNITY AGAINST
M. TUBERCULOSIS
Protective immunity to M. tuberculosis and control
of bacterial replication requires adaptive immune re-
sponses. This is best exemplified by the extreme sus-
ceptibility to mycobacterial infections of lymphopenic
HIV patients and gene-deleted mice lacking MHC
class II or T cells in general. Cytokine secretion and di-
rect antimicrobial actions of antigen-specific T cells are
key features of the adaptive immune response against
M. tuberculosis infection. Further, the long-lived nature
of antigen-specific memory T cells provides the basis for
developing vaccines that induce antimycobacterial im-
munity. There are also expanding roles for B cells, γδ
T cells, and CD1-restricted T cells that provide specific
responses to a diverse set of M. tuberculosis antigens
that complement antigens classically presented through
MHC class I and II. However, adaptive immune re-
sponses can also become malignant by promoting ex-
cessive inflammation or be rendered ineffective from
chronic antigen exposure. Here, we cover the impor-
tance of timing, location, and quality of CD4 T-cell
responses during M. tuberculosis infection, how CD8
T cells contribute to immunity against M. tuberculosis,
the roles that inhibitory receptors play during infection,
the phenotypes and functions of memory T cells, and the
roles that B cells, γδ T cells, CD1-restricted lymphocytes,
and mucosal associated invariant T (MAIT) cells play in
immunity against M. tuberculosis.
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Kinetics and Homing of CD4 T Cells
after M. tuberculosis Infection
In the mouse model of infection, CD4 T-cell responses
are absolutely required to control bacterial replication,
and animals lacking such responses succumb rapidly
(270, 271). MHC class II knockout mice or CD4 de-
pletion led to abrupt mortality followingM. tuberculosis
infection (270, 271). CD8 T cells play a key role in im-
munity against M. tuberculosis but cannot compensate
for CD4 deficiency (270). Similarly, antibody depletion
of CD4 in cynomolgus macaques severely compromised
control of M. tuberculosis and led to reactivation in la-
tently infected animals (69). Thus, the initiation of the
CD4 T-cell response is a key feature defining the out-
come of M. tuberculosis infection. There is a widely re-
cognized delay in the initiation of antigen-specific CD4
T-cell responses following low-dose aerosol infection of
mice (250, 272–275) and NHPs (276). M. tuberculosis-
infected cynomolgus macaques had detectable antigen-
specific responses 4 weeks postinfection (276). In mouse
models of infection, antigen-specific CD4 T-cell re-
sponses are first detected in the lung-draining lymph
nodes 2 weeks after infection. Significant antigen-specific
lung CD4 T-cell responses are subsequently detected in
the lungs 3 weeks after infection. This is in stark contrast
to antigen-specific responses to other bacterial (277) or
viral (278) pathogens, which are detected swiftly after
infection. Adoptive transfer of ESAT-6-specific CD4
T cells prior to aerosol M. tuberculosis infection have
demonstrated an apparent kinetic bottleneck whereby
lung antigen-specific activation occurs only 7 days after
infection despite the presence of antigen-specific T cells
(279), suggesting that antigen-specific responses are
delayed by mechanisms other than trafficking of CD4
T cells from the mediastinal lymph nodes to the lungs.
Delay in the initiation of adaptive immune responses to
M. tuberculosis infection may be due to a variety of fac-
tors, including slow growth of the bacterium, inhibited
apoptosis of infected macrophages and neutrophils, and
delayed activation and migration of DCs, which cumu-
latively allow M. tuberculosis to establish a persistent
infection in the lung.

CD4 T cells interact with infected macrophages to
restrict intracellular M. tuberculosis replication. Thus,
the effectiveness of the CD4 T-cell response depends on
proper homing of antigen-specific CD4 T cells from
lymphoid tissues to M. tuberculosis-infected cells in the
lung. In M. tuberculosis-infected mice, antigen-specific
CD4 T cells expressing CXCR3 localized to the lung
parenchyma and were more efficient at controlling bac-
teria followingM. tuberculosis infection when compared

to vasculature-restricted CD4 T cells that expressed
CX3CR1 (280). Interestingly, cells retained in the lung
vasculature secreted the highest amount of IFN-γ during
infection (280). Adoptive transfer studies demonstrated
that IFN-γ accounted for greater control of bacterial
burden in the spleen over the lung and drove immuno-
pathology when overexpressed (281), suggesting that
the function of IFN-γ may be to mediate control of bac-
terial dissemination to extrapulmonary sites and that
IFN-γ may be detrimental when unrestrained. The dis-
tinction between vasculature-restricted and parenchyma-
localizing CD4 T cells seems less important in rhesus
macaques (282), where the majority of antigen-specific
CD4 T cells can be found in the lung parenchyma but are
restricted to the outer lymphocytic cuff of granulomas.
Notably, studies have demonstrated that expression
of IDO by cells in the granulomas of M. tuberculosis-
infected rhesus macaques can mediate inhibition of T cell
entrance into granuloma, and biochemical inhibition
of IDO led to reorganization of the granuloma to include
T cells localizing into the macrophage core (66, 283).
Taken together, there is strong evidence that localization
of antigen-specific CD4T cells into the lung tissues where
M. tuberculosis-infected myeloid cells reside is an impor-
tant feature of protective immunity to M. tuberculosis.

Quality and Specificity of the CD4
T-Cell Response to M. tuberculosis
The quality of the T-cell response is an important feature
determining the outcome of M. tuberculosis infection.
Canonically, the production of IFN-γ by Th1 cells, CD8
T cells, and other lymphocytes is considered essential
for protection against mycobacterial infections. In hu-
man immunogenetics studies, Mendelian susceptibility
to mycobacterial disease (MSMD) is a spectrum of
genetic mutations in five autosomal genes (IFNGR1,
IFNGR2, STAT1, IL12B, IL12RB) and an X-linked
gene that confer susceptibility to avirulent environmen-
tal mycobacteria and BCG (284). Deficiencies related
to IFN-γ signaling in young patients with mutations
in IFNGR1 and IFNGR2 confer fatal susceptibility to
mycobacterial infections (285–288). STAT1 is an in-
tracellular molecule important for IFN-γ signaling, and
individuals with heterozygous germline STAT1 muta-
tions lose gamma-interferon activating factor (GAF) ex-
pression (289). GAF is an important transcription factor
that facilitates IFN-γ-induced gene expression. Individ-
uals with heterozygous STAT1mutations have impaired
nuclear accumulation of GAF and suffer from recur-
rent mycobacterial infections (289). Additionally, mu-
tations affecting IL-12 expression levels and signaling
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also confer susceptibility to mycobacterial infections.
Two mutations in the leucine zipper domain of NEMO,
an intracellular protein involved in NF-κB activation,
impairs CD40-mediated IL-12 production in mono-
cytes and DCs (290) and leads to recurrent mycobacte-
rial infections. Similarly, defects that impair IL-12p40
lead to decreased IFN-γ levels and confer susceptibility
to mycobacterial infections (291–294). Mutations in
IL12RB are the most frequent genetic factors associated
with Mendelian susceptibility to mycobacterial disease,
but recurrent mycobacterial susceptibility in individ-
uals with IL12RB mutations can be mitigated with
BCG vaccination or primary BCG disease (291, 292,
295–298), suggesting that IL-12/IL-23 signaling may not
be completely required for secondary immunity. IFN-γ
is readily detected in human BAL in patients with TB
disease and decreases following therapy (299), which is
likely a consequence of decreasing bacterial loads. In
contrast, studies of human peripheral blood mononu-
clear cells show a decrease in IFN-γ responses in ATB
patients compared to controls (300–305). Lower fre-
quencies of M. tuberculosis-specific IFN-γ responses in
ATB patients may reflect trafficking of these cells to the
lungs, resulting in specific depletion from the periphery.
IFN-γ secretion is also an important tool leveraged for
the detection of M. tuberculosis-specific CD4 T-cell
responses in humans and in animal models. Genome-
wide analysis of M. tuberculosis-specific CD4 T-cell
epitopes in LTBI individuals revealed three broadly
immunodominant antigenic islands related to bacterial
secretion systems recognized by IFN-γ secreting CD4
T cells (306). Animal models of TB also demonstrate a
key role for IFN-γ in immunity against M. tuberculosis
infection. Mice deficient in IFN-γ succumb to low-dose
M. tuberculosis infection (307, 308). Correspondingly,
mice lacking IL-12 are also unable to control M. tuber-
culosis infection (253, 309, 310). The antimycobacterial
effects of IFN-γ in mouse models are broadly related to
the induction of AMPs, iNOS, and cytokines that acti-
vate infected macrophages to restrict intracellular bac-
terial replication, though other mechanisms underlying
IFN-γ-mediated immunity to M. tuberculosis infection
are still being elucidated. IL-10-deficient mice are less
susceptible to M. tuberculosis infection due to an en-
hanced Th1 response (311), suggesting that IL-10 limits
Th1 immunity during M. tuberculosis infection. How-
ever, Th1 cells secreting IL-10 can also impair host con-
trol of M. tuberculosis infection (312), and CD4 T cells
producing both IFN-γ and IL-10 are detected in the BAL
of ATB patients (313). Given that IL-10 secretion by Th1
cells has been shown to be a result of high antigen dose

(314), it is possible that adaptive immunity at stages of
infection when bacterial burden is high may be com-
promised by T cell-derived IL-10. T-bet is a member
of the T-box family of transcription factors that is en-
coded by Tbx21 and is the master transcriptional regu-
lator for lineage commitment to the Th1 subset (315).
Interestingly, adoptive transfer of T-bet knockout ESAT-
6-specific T-cell receptor-transgenic CD4 T cells skewed
toward Th1 in vitro retains the capacity for early pro-
tection againstM. tuberculosis infection (316), suggesting
that protection conferred by Th1 cells may be indepen-
dent of T-bet or IFN-γ production. Taken together, these
studies demonstrate a clear requirement for the IL-12/
IFN-γ axis in immunity against M. tuberculosis infection
in humans and animal models. Further studies delineat-
ing the mechanisms underlying IFN-γ- and Th1-mediated
immunity against M. tuberculosis are warranted.

Although Th1 responses are important for immunity
against TB, studies have also demonstrated that CD4
T-cell subsets secreting IL-17 (Th17) and FoxP3+ regu-
latory CD4 T cells contribute to the response against
M. tuberculosis infection. There are context-dependent
beneficial or detrimental roles for Th17s during infec-
tion with M. tuberculosis. Infection with a W-Beijing
lineage strain of M. tuberculosis, HN878, induce Th17
responses, and mice deficient in IL-17 display increased
bacterial burden following infection (317). IL-17 re-
ceptor A subunit knockout mice (318) and IL-17A
knockout mice (319) also displayed impaired long-term
control of high-dose infection with H37Rv. Transfer of
BCG-specific, IFN-γ knockout Th17 cells into M. tuber-
culosis infected, T cell-deficient mice conferred enhanced
protection and prolonged survival compared to transfer
of naive IFN-γ knockout CD4 T cells (320), suggesting
that Th17 cells can mediate protection independently
of IFN-γ. In humans, significant frequencies of IL-17-
producing CD4 T cells were found in the peripheral
blood mononuclear cells and BAL of BCG-vaccinated
healthy individuals and declined in patients with active
disease (321). Further, individuals with bi-allelic RORC
loss-of-function mutations displayed impaired IL-17
and IFN-γ responses and were susceptible to mycobac-
terial disease and candidiasis (322). The generation of
Th17 responses to M. tuberculosis in vitro requires
costimulation through the CD40-CD40L pathway since
the absence of CD40 on DCs or CD40L on CD4 T cells
attenuates antigen-specific IL-17 responses (268). Acti-
vation of M. tuberculosis-infected DCs through CD40
promoted enhanced antigen-specific Th1 and Th17
responses that contributed to better control of bacterial
burden in vivo (268), suggesting that a balanced Th1
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and Th17 response is desirable for immunity against
M. tuberculosis. The precise role of Th17 cells in pro-
tective immunity to M. tuberculosis remains unclear but
may be related to their role in the development of less
hypoxic granulomas (323), in the recruitment of Th1
cells (324), or in the induction of CXC-chemokines and
B-cell follicles (325). However, unrestrained IL-17 res-
ponses have also been shown to promote detrimental
immunopathology, typically through pathological neu-
trophilia. IFN-γR1 knockout animals (326) or IFN-γR1
bone marrow chimeric mice selectively lacking the re-
ceptor in nonhematopoietic cells (327) display amplified
Th17 responses following M. tuberculosis infection that
lead to a pathogenic accumulation of neutrophils detri-
mental to the host, suggesting that IFN-γ signaling serves
a regulatory role by limiting excessive IL-17-mediated
neutrophilia.

FoxP3+ CD4 T cells, or T-regulatory cells (T-regs),
can impair antimycobacterial T-cell responses and con-
tribute to disease but can also limit overt inflammation.
FoxP3+ T-regs can be found in the peripheral blood and
airways ofM. tuberculosis-infected macaques (328) and
humans (329–334). In mice, T-regs accumulate in the
lung-draining lymph nodes and the lungs following low-
dose aerosolM. tuberculosis infection (335). Importantly,
FoxP3+ T-regs localized to pulmonary areas adjacent to
effector CD4 T cells and depletion of T-regs before and
early after infection-enhanced control of bacterial burden
(335). Further, M. tuberculosis-specific T-regs delay the
expansion of antimycobacterial CD4 and CD8 T cells
and, consequently, transfer of M. tuberculosis-specific
T-regs confers increased susceptibility to infection (336).
Regulation of T-regs during M. tuberculosis infection
may be mediated by Th1 responses sinceM. tuberculosis-
specific T-regs are selectively eliminated following IL-12
driven T-bet expression (337). The functional properties
of T-regs responsible for limiting antimycobacterial CD4
and CD8 responses remains unclear. IL-10 was not found
to be secreted by T-regs in mice infected with H37Rv
(335). In contrast, T-regs from mice infected with the
W-Beijing strain, HN878, were found to secrete IL-10,
express inhibitory receptors, and expand to greater de-
grees compared to infection with H37Rv (209), sug-
gesting that IL-10 secretion by T-regs may be dependent
on bacterial strain. Notably, the expansion of T-regs in
the lungs of mice and outbred guinea pigs infected with
W-Beijing strains occurred concurrently with a loss of
Th1 responses and is associated with severe pulmo-
nary pathology (209, 338). However, progressive loss
of T-regs in chronically infected TLR-2 knockout mice
was associated with increased pulmonary inflammation

(339), highlighting a role for TLR-2-mediated recruit-
ment of T-regs in limiting tissue pathology at chronic
stages of disease. Taken together, these results suggest
that the functional contribution of T-regs to immunity
against M. tuberculosis infection and outcome of disease
may be dependent on multiple factors, including strain of
bacteria and stage of infection.

In humans and animal models, M. tuberculosis
establishes a persistent infection despite the induction
of adaptive immune responses. Persistent inflammation
and chronic antigen exposure precedes functional ex-
haustion due to chronic antigenic stimulation. In con-
trast to the expression of Ag85B, which decreases early
following infection, ESAT-6 is expressed by M. tuber-
culosis throughout infection (340, 341). Multiple studies
examining CD4 T-cell responses to ESAT-6 and Ag85B
have suggested that antigen-specific responses are dic-
tated by bacterial expression of those antigens through-
out infection. CD4 T cells specific for ESAT-6 display a
terminally differentiated phenotype with evidence for
functional exhaustion, which runs in contrast to Ag85B-
specific CD4T cells that appear functional but are quickly
diminished (272, 342–347). Indeed, a vaccine that con-
tains ESAT-6, Ag85B, and Rv2660c, which is expressed
at late stages of infection, demonstrated enhanced efficacy
compared to BCG or to a vaccine containing ESAT-6 and
Ag85B (348), suggesting that rational incorporation of
antigens present at different stages of infection may im-
prove vaccine efficacy. A clearer understanding of pro-
tective CD4 T-cell immunity will require further studies
of the spectrum of antigens recognized by CD4 T cells
following infection withM. tuberculosis in animal models
and in humans.

Role of CD8 T Cells inM. tuberculosis Infection
Mice with gene deletion of β2 microglobulin, which
abrogates MHC class I antigen presentation, or mice
depleted of CD8 T cells live longer than corresponding
disruptions to the MHC class II pathway or CD4 T-cell
responses following M. tuberculosis infection (270).
Regardless, CD8 T cells contribute significantly to im-
munity against M. tuberculosis infection. Mice lacking
TAP-1 (transporter associated with antigen processing
1) antigen presentation molecules have deficient CD8
T-cell responses and succumb more rapidly following
M. tuberculosis infection compared to wild-type con-
trols (349, 350). Depletion of CD8 T cells in rhesus
macaques compromises protective immunity from BCG
vaccination or chemotherapeutic interventions (57), sug-
gesting that CD8 T cells are important components of
recall responses to M. tuberculosis infection. Similarly,
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in a mouse model of latency induced by antibiotic treat-
ment, CD8 T-cell responses were found to be important
in preventing reactivation (351). The importance of
CD8 T cells during M. tuberculosis infection is related
to their secretion of cytokines and cytolytic effector
molecules that can limit bacterial replication. In addi-
tion to IFN-γ and TNF-α, CD8 T cells secrete perforin to
lyse M. tuberculosis-infected macrophages (352). CD8
T cells can also release granulysin in cytotoxic granules
to directly kill intracellular M. tuberculosis (353, 354).
The use of anti-TNF-α therapy in patients with rheu-
matoid arthritis depletes a subset of effector memory
CD8 T cells that secrete granulysin and express cell
surface TNF (355), which may partially explain the in-
creased progression from LTBI to ATB in patients under-
going anti-TNF-α therapy. Human CD8 T cells respond
to epitopes in CFP10 (356), ESAT-6 (357, 358), and the
Ag85 complex (359, 360). A variety of human CD8 T-cell
clones tested against a panel of synthetic peptides derived
from immunodominant M. tuberculosis antigens revealed
that CD8 T-cell responses are concentrated toward a
limited set of epitopes and are generally restricted by the
HLA-B allele (361, 362). M. tuberculosis escape from the
phagosome and induction of apoptosis byM. tuberculosis-
infected macrophages can promote cross-presentation of
M. tuberculosis antigens to CD8 T cells. However, as pre-
viously discussed, virulentM. tuberculosis has been shown
to inhibit host apoptosis and favor necrosis to circumvent
efficient induction of CD8 T-cell responses. All considered,
CD8 T cells are a critical component of adaptive immunity
to M. tuberculosis infection and play an important role in
different disease contexts by limiting reactivation during
latency and by directly participating in antimicrobial
functions during active infections.

Inhibitory Receptors During
M. tuberculosis Infection
Chronic viral infections, such as HIV, induce the ex-
pression of coinhibitory receptors on the surface of
T cells that can dampen T-cell functionality. Abrogation
of coinhibitory receptor ligation has been shown to
be a viable strategy to revitalize functionally exhausted
virus-specific T-cell responses. The evidence for the im-
portance of coinhibitory receptors during M. tubercu-
losis infection in animal models and in human samples
varies between human and small animal models and
between the specific inhibitory receptor studied. PD-1,
CD160, and 2B4 are inhibitory receptors associated
with CD8 T-cell dysfunction in chronic viral infections
(363, 364) but are expressed at low levels on M. tuber-
culosis-specific CD8 T cells (365). Expression of inhib-

itory molecules, including PD-1 and CTLA-4, among
M. tuberculosis-specific CD4 T cells has been shown to
decrease following treatment (366, 367). Importantly,
expression of PD-1 on antigen-specific CD4 T cells from
LTBI was not associated with decreased effector func-
tions, and these cells proved to be polyfunctional with
respect to cytokine production upon antigen restimula-
tion (368), suggesting that PD-1 may be an indicator of
bacterial burden and CD4 T-cell activation rather than
functional exhaustion. However, there is some in vitro
evidence from human samples suggesting that blockade
of PD-1/PD-L1 interaction can prevent M. tuberculosis-
specific CD4 T-cell apoptosis (369) and enhance CD8
T-cell degranulation and antigen-specific IFN-γ responses
from the peripheral blood mononuclear cells of a subset
of high-responding ATB patients (370). There is evidence
that T-cell responses during ATB disease are less poly-
functional and have limited proliferative capacity com-
pared to LTBI individuals (371, 372), but whether this
functional impairment is mediated by inhibitory recep-
tors such as PD-1 remains unclear. PD-1-deficient mice
infected with M. tuberculosis have increased bacterial
burden, neutrophilic infiltration, overt inflammation,
tissue necrosis, and diminished lifespan compared to
wild-type mice (373), suggesting that PD-1 is required to
prevent aberrant inflammation duringM. tuberculosis in-
fection. Further, adoptive transfer studies demonstrated
that PD-1-expressing CD4 T cells are highly proliferative
(342, 346), and CD4 T cells lacking PD-1 can drive pa-
thology and mortality following M. tuberculosis infec-
tion (374), together suggesting that PD-1 may mark
functional CD4 T cells with intrinsic capacity for im-
munoregulation. T-cell immunoglobulin and mucin do-
main-containing 3 (Tim-3) is another inhibitory receptor
shown to play a role in mediating antimicrobial re-
sponses by binding to one of its ligands, galectin-9 (375),
and inducing the production of IL-1β by human and
murine macrophages infected with M. tuberculosis (375,
376). In contrast to PD-1, Tim-3-deficient mice were
less susceptible to M. tuberculosis infection, and Tim-3
blockade was shown to improve antigen-specific CD4
and CD8 T-cell cytokine expression (377), suggesting
that Tim-3 may play a role in limiting T-cell responses
by promoting functional exhaustion. However, Tim-3-
expressing, M. tuberculosis-specific T cells from ATB
patients were functionally superior to T cells expressing
low levels of Tim-3. Further, small interfering RNA- or
antibody-mediated disruption of Tim-3 signaling on the
T cells from ATB patients led to attenuated IFN-γ and
TNF-α production by Tim-3-expressing T cells, while
Tim-3 ligation augmented IFN-γ production (378). The
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mechanisms underlying the roles of receptors such as
PD-1 and Tim-3 require further study and may deviate
from their role in viral immunity. The evidence accu-
mulated thus far suggests that these molecules mark
functional T cells that play important roles in antimi-
crobial activity and prevention of uncontrolled inflam-
mation following M. tuberculosis infection.

Memory T-Cell Responses
In humans, antigen-specific memory T-cell responses
have been detected in individuals with LTBI and in TB
patients following successful treatment and cure. Mem-
ory T-cell subsets can be identified according to their
cell surface phenotype and functional properties, and
distinct populations of antigen-specific memory T cells
can be categorized based on their expression of a panel
of cell surface activation markers and chemokine recep-
tors (379). Characterization of M. tuberculosis-specific
memory CD4 T cells in LTBI indicated that these cells
did not express activation markers and were largely of
a CD45RA-CCR7 phenotype descriptive of T effector
memory cells (368, 380). In contrast, analysis of LTBI
individuals usingMHC class II tetramers revealed a pop-
ulation of tetramer+CD45RA-CCR7+ central memory
CD4 T cells that further expressed CXCR3+CCR6+
(306), highlighting the heterogeneity of memory CD4
T-cell phenotypes that can vary based on antigen spec-
ificity, disease status, and manner in which specific re-
sponses are identified. Human memory CD8 T cells are
predominantly terminally differentiated effector memory
T cells in individuals with LTBI (365, 381). Memory
T-cell responses have also been studied in the context
of “memory-immune” mice, which are M. tuberculosis-
infected mice that subsequently receive antibiotic treat-
ment. In this context, both memory CD4 (382, 383) and
CD8 (384, 385) T cells play a role in immunity against
M. tuberculosis infection. T cells from memory-immune
mice expanded rapidly, secreted IFN-γ, and conferred a
significant level of protection at early timepoints after
infection (383, 386–388) but are ultimately unable to
confer long-term protection (389), suggesting that mem-
ory T cells generated after primary M. tuberculosis in-
fection have limited capacity to protect from reinfection.

B-Cell and Antibody Responses
During M. tuberculosis Infection
There is a body of evidence suggesting that humoral
immunity plays a role in defense againstM. tuberculosis
infection (reviewed in 390). B cells can be found along-
side T cells in the lymphocytic cuff in human granulomas
(391–393), and whole blood gene expression analysis

revealed significant changes in B-cell-associated genes in
TB patients after initiation of TB treatment (394). No-
tably, antibodies to M. tuberculosis proteins have been
reported in the sera of TB patients (395), and antibodies
identified in a subset of health care workers exposed
to M. tuberculosis provide modest protection in vitro
and in a mouse model of infection (396). Utilization
of a high-throughput approach to identifying antibody
targets in the M. tuberculosis proteome revealed a set
of extracellular antigens recognized by antibodies in
the plasma of patients with ATB (397), suggesting that
B cells are active participants in immunity to M. tuber-
culosis infection. B-cell-deficient mice have elevated
neutrophilic recruitment and exacerbated lung immu-
nopathology following M. tuberculosis infection (398),
which is mediated through enhanced IL-17 responses
in M. tuberculosis-infected B-cell-deficient or B-cell-
depleted animals (399). These studies suggest that B cells
can influence the outcome of M. tuberculosis infection
by moderating inflammatory responses. Antibody pro-
duction by B cells can promote divergent outcomes
(400). Binding of antibody to the inhibitory Fc gamma
receptor II B attenuates macrophage IL-12 produc-
tion and negatively impacts Th1 responses (401), while
passive transfer of monoclonal antibodies specific for
M. tuberculosis cell wall components can improve the
outcome of infection in mice (390). B-cell secretion of
cytokines can also influence M. tuberculosis-infected
macrophages. Type I IFN expression by murine B cells
and B cells from pleural effusion of TB patients altered
macrophage polarization toward an anti-inflammatory
phenotype (402). Taken together, these studies highlight
a role for B cells, which constitute a significant popula-
tion of lymphocytes around lung granulomas in the
adaptive immune response to M. tuberculosis infection
by modulating inflammation through the secretion of
antibodies and cytokines.

γδ, CD1-Restricted T Cells, and MAIT Cells
in Immunity against M. tuberculosis
γδ T cells are a population of T cells that express a re-
stricted repertoire of T-cell receptor genes, recognize
nonpeptide antigens such as microbial metabolites and
phosphoantigens (403), and can be found at mucosal
surfaces including the lung (404). γδ T cells proliferate
when exposed to M. tuberculosis-infected monocytes
(405). Multiple M. tuberculosis metabolites, includ-
ing pyrophosphate, prenyl pyrophosphate derivatives
(406, 407), and triphosphorylated thymidine-containing
compounds (408), are recognized by human γδ T cells.
Human γδ T cells can also respond to mycobacterial
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heat shock proteins (409), though this response may
be dependent on BCG immunization (410). Vγ9Vδ2-
expressing γδ T cells represent a significant proportion
of M. tuberculosis-reactive T cells in peripheral blood
(411–413) and can restrict intracellular M. tuberculosis
replication in macrophages (414). Interestingly, Vγ9Vδ2
T cells can function as antigen presentation cells via
provision of CD40 costimulation to promote the ex-
pansion of αβ T cells with enhanced capacity to restrict
intracellular BCG replication (415). Additionally, human
Vγ2Vδ2 T cells recognize M. tuberculosis (416), and in
NHPs, Vγ2Vδ2 T cells are expanded by phosphoantigen
and IL-2 administration (417). Adoptively transferred
Vγ2Vδ2 T cells into naive animals confer protection
against M. tuberculosis infection (418). γδ T cells have
been shown to mediate direct killing of M. tuberculosis
via secretion of granulysin and perforin (419) or through
the induction of TNF-α by monocytes (420). There is also
evidence that γδ T cells can influence DC cross talk with
T cells by promoting DC maturation and expression of
costimulatory molecules (421). In mice, γδ T cells accu-
mulate in the lung-draining lymph nodes, are responsive
to M. tuberculosis antigen independent of MHC class II
(422), and are significant sources of early IL-17 produc-
tion following M. tuberculosis infection (423).

Due to the large repertoire of glycolipids present on
the mycobacterial cell wall, a significant T-cell response
is directed at glycolipid antigens presented by the CD1
family of molecules. CD1 molecules are a family of
MHC class I-like antigen presentation molecules that
present glycolipid antigens to T cells. There are five CD1
family members in humans, split into two groups based
on sequence homology. Group 1molecules include CD1a,
CD1b, CD1c, and CD1e. CD1d is the sole inclusion in
group 2 (424). Mycobacterial lipids are readily presented
by CD1 molecules in human cells, but mechanistic studies
of this family of molecules is limited because mice only
express two orthologs of CD1d and do not express group
1 molecules. Nevertheless, studies in human cells revealed
that mycobacterial lipids presented by group 1 CD1mole-
cules promote T-cell proliferation and cytokine produc-
tion (425–432). Mycobacterial glycerol monomycolate,
glucose monomycolate, sulphoglycolipids, and mycolic
acid can be presented through CD1b (426–428, 433).
CD1b-restricted T cells expand and secrete IFN-γ and IL-2
upon interaction with cognate antigen and contract fol-
lowing anti-TB therapy (430). Interestingly, use of CD1b
tetramers loaded with glucose monomycolate revealed
that CD1b-restricted T cells are antigen-specific and also
express CD4 (429, 434). M. tuberculosis lipids presented
through CD1a and CD1c have also been identified. A

family ofM. tuberculosis lipopeptides called didehydroxy-
mycobactins are presented by CD1a (435), and a variety
of phospholipid antigens are presented by CD1c (425).
The precise role of CD1-restricted T cells in immunity
during M. tuberculosis infection remains unclear, and
further studies of their function in the periphery and es-
pecially in BAL would inform their potential as targets for
TB vaccines.

MAIT cells are a subset of T cells with innate-like
qualities enriched in mucosal tissues, including the in-
testinal mucosa, lung, and liver (436–438). These cells
recognize antigen through a nonpolymorphicMHC class
I-related molecule 1 (439) presenting pterin-containing
byproducts of riboflavin synthesis in bacteria and fungi
(440). In humans, MAIT cells express a semi-invariant
Vα7.2 and CD161 and can either be double negative
for CD4 and CD8 or CD4-CD8+ (436, 441). MAIT cells
have been described in the peripheral blood of healthy
individuals and are depleted in ATB patients (442),
possibly reflecting migration into the lung. These cells
produce IFN-γ and TNF-α upon activation (442, 443),
but their contribution to the immune response to M. tu-
berculosis infection requires further study.

INITIATION AND HETEROGENEITY
OF THE GRANULOMA
The granuloma is a hallmark histopathological structure
in TB. It represents host sequestration of bacteria to limit
dissemination as well as a niche for long-term persis-
tence of M. tuberculosis. Further, the selectively drug-
permeable nature of the TB granuloma can diminish
the efficacy of drugs meant to treat persistent bacteria
(444). The granuloma is composed of an aggregate of
M. tuberculosis-infected and -uninfected macrophages
in varying stages of maturation and differentiation
(445–447). Macrophages in the granuloma can undergo
an epithelioid transformation, become lipid-filled foamy
macrophages, or merge into multinucleated giant cells.
This central core of macrophages is accompanied by
neutrophils, DCs, and fibroblasts circumscribed by T
and B lymphocytes and progressively becomes a hypoxic
environment where many cells undergo necrotic death to
form an acellular core termed the caseum (448). The
granuloma is a hallmark structure in human TB that is
modeled variably among available animal models.
C57BL/6 and BALB/Cmice do not naturally recapitulate
the human granuloma in that lung lesions are rarely
necrotic and caseating. The animal models that most
closely recapitulate the heterogeneity of human granu-
lomas include certain susceptible inbred mouse strains
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that present with necrotizing granulomas (C3HeB/FeJ,
DBA/2, CBA/J, I/St), guinea pigs, rabbits, and the NHP
model. Additionally, the zebrafish model has also
yielded fundamental insights into the initiation and dy-
namics of the tuberculous granuloma.

The transparency of zebrafish larvae has made direct
visualization of the initiation of the granuloma possible
following infection withM.marinum (48). Studies based
on this model have revealed that the innate immune re-
sponse is sufficient to initiate the granuloma following
infection. Recruitment of additional macrophages me-
diated, in part, by mycobacterial ESX-1 proteins initiates
a cascade of events that leads to the establishment of
the mycobacterial granuloma (221, 449). Importantly,
recruited macrophages can traffic through the initial
granuloma to phagocytose apoptotic infected macro-
phages and egress to form distal secondary granulomas
(450). Mycobacterial lipids play a key role in establish-
ing the granuloma by limiting macrophage effector
functions and promoting the recruitment of additional
macrophages to facilitate dissemination. In particular,
mycobacterial phthiocerol dimycocerosate can mask
TLR-signaling and prevent induction of nitrosative
stresses (451), and mycobacterial PGL can induce mac-
rophage production of CCL2 to recruit CCR2+ mono-
cytes that permit bacterial dissemination (452). These
studies collectively indicate that the initiation of the
mycobacterial granuloma is dependent on recruitment
of bacteria-permissive macrophages and monocytes fol-
lowing initial infection and can be mediated by myco-
bacterial secreted factors and membrane lipids.

TB granulomas can vary in their cellular composition,
oxygenation levels, inflammatory milieu, and bacterial
burden. This heterogeneity can exist between and within
infected hosts. Infection of cynomolgus macaques with
a panel of M. tuberculosis isolates that differed by a
single nucleotide polymorphism revealed that individual
granulomas can be founded by a single bacterium and
can vary in their bacterial burden compared to other
granulomas within the same host (51). Analysis of T-cell
functionality between sterile and nonsterile granulomas
revealed a modest association between IL-10 and IL-17
responses and clearance of M. tuberculosis in sterile
granulomas (453). However, in the context of TNF-α
neutralization in latently infected macaques, IL-10 and
IL-17 responses were associated with animals at higher
risk of reactivation (71). Proteome analysis of laser-
capture microdissected human and rabbit lung lesions
suggests that inflammatory responses typical of the
center of the TB granuloma are physically segregated
from anti-inflammatory responses in adjacent lung tissue

(454). T-cell functionality in the granuloma may there-
fore be a function of disease status and proximity to the
bacteria-containing, hypoxic, and necrotic core of the
TB granuloma. Additionally, T cells near the granuloma
can be negatively impacted by the depletion of key
amino acids required for proper function. As mentioned
previously, IDO, an enzyme that functions in the ca-
tabolism of tryptophan, is expressed by cells in the core
of the granulomas of rhesus macaques infected with
M. tuberculosis (283), and inhibition of IDO promoted
granuloma reorganization and attenuated disease (66).
The functionality of T cells within granulomas may also
be regulated by direct cross talk with infected myeloid
cells, including macrophages and DCs. Intravital imag-
ing of mycobacteria-induced liver granulomas revealed
limited antigen-specific T-cell migration arrest in re-
sponse to infected myeloid cells (345), suggesting that
T cells do not interact meaningfully with infected cells in
granulomas. Taken together, these studies highlight the
vast complexity and heterogeneity of the TB granuloma.

IMMUNOLOGY OF TB DIAGNOSTICS
TB diagnosis relies on evaluation of clinical symptoms
and patient history combined with radiographic exam-
ination and detection of bacteria in sputum (9). The
presence of acid-fast bacilli in sputum smears by mi-
croscopy does not specifically indicate infection with
M. tuberculosis; microbiological culture and nucleic
acid amplification-based tests are required to confirm the
presence ofM. tuberculosis infection. Xpert MTB/RIF, a
cartridge-based near-patient diagnostic assay utilizing
real-time nucleic acid amplification of M. tuberculosis
DNA, which also detects drug resistance to the first-line
drug rifampicin, is recommended by the World Health
Organization for TB diagnosis (455, 456). IFN-γ release
assays (IGRAs), which leverage the specificity of the
immune response to M. tuberculosis, are the basis of
the QuantiFERON-TB Gold In-Tube and T-SPOT.TB
diagnostic assays. IGRAs measure IFN-γ produced by
antigen-specific T cells in blood that recognizeM. tuber-
culosis antigens (ESAT-6, CFP-10, TB7.7) (457). IGRAs
provide increased specificity over traditional Mantoux
skin tests that depend on delayed-type hypersensitivity
reactions to purified protein derivative, which is not
specific to M. tuberculosis infection, and positive results
may be due to BCG vaccination or exposure to envi-
ronmental mycobacteria. However, IGRAs do not dif-
ferentiate between active and latent TB and cannot be
used to diagnose TB disease. While sputum-based smear
and culture techniques are established worldwide for
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clinical indication of M. tuberculosis infection, collec-
tion of sputum, especially from children, can be chal-
lenging and is not completely reliable. Therefore, there
is interest in developing non-sputum-based diagnostic
approaches for TB. Detection of urinary lipoarabino-
mannan in suspected TB cases is being investigated in
HIV-infected (458) and -uninfected (459) individuals.
Blood-based biomarkers discriminating between LTBI and
ATB are being investigated for potential application to TB
diagnostics and treatment response (460–462). HLA-DR,
CD38, and Ki67 expression on M. tuberculosis-specific
CD4 T cells from peripheral blood is reported to be a
highly specific and sensitive method to discriminate LTBI
and ATB and evaluate treatment response (460). A recent
study suggests that HLA-DR could function as a robust
marker distinguishing LTBI and ATB in HIV-infected
populations (461). Further understanding of the spectrum
of antigen-specific responses to M. tuberculosis infection
can be leveraged to develop diagnostics that can monitor
infection and treatment response.

TB VACCINES
The only currently licensed vaccine against TB is ba-
cillus Calmette-Guérin (BCG), an attenuated strain of
M. bovis (463, 464). BCG confers protection against
severe forms of TB, including miliary TB and TB men-
ingitis (465), but does not reliably protect against pul-
monary TB in children or adults (3, 4, 466). The lack
of validated correlates of protection against TB is a se-
vere limitation to TB vaccine development. Despite the
importance of IFN-γ responses in resistance against
M. tuberculosis infection in humans and animal models,
accumulating evidence suggests that induction of en-
hanced IFN-γ responses is not sufficient to obtain a more
efficacious TB vaccine. Indeed, the frequency and func-
tional profile of BCG-specific CD4, CD8, and γδ T cells
from whole blood, including IFN-γ-producing T cells,
did not correlate with protection against TB in newborns
(467). As of 2017, there are 14 TB vaccine candidates in
varying phases of clinical development representing
three broad strategies: subunit vaccines pairing M. tu-
berculosis antigens with adjuvants, viral-vectored vac-
cines utilizing an attenuated virus for antigen delivery,
and whole-cell vaccines utilizing attenuated M. tuber-
culosis or related mycobacterial species. Protein subunit
vaccines currently under clinical development include
M72/AS01E (468), H4:IC31 (469), H56:IC31 (470),
and ID93/GLA-SE (471). Among viral-vectored vac-
cines, results from the MVA85A phase IIb clinical trial
have prompted reevaluation of immune correlates to

aim for in a TB vaccine. MVA85A is a modified vaccinia
Ankara virus expressing Ag85A from M. tuberculosis
that was utilized as a booster vaccine in infants previ-
ously vaccinated with BCG (472). Notably, vaccination
with MVA85A enhanced frequencies of antigen-specific,
polyfunctional CD4 T cells co-expressing IFN-γ, IL-2,
and TNF-α (472). Although MVA85A vaccination en-
hanced antigen-specific CD4 T-cell responses, it did not
provide added protection against TB disease in infants
(472). Other viral-vectored vaccines in various stages of
development include Ad5Ag85A (473), ChAdOx1.85A
+ MVA85A (474), MVA85A-IMX313 (475), and TB/
FLU-04L. Additionally, a recent study utilizing a recom-
binant cytomegalovirus demonstrated protection in rhesus
macaques (476). While viral vectors do not require the use
of adjuvants, previous exposure to the vector may attenu-
ate vaccine-induced responses and represents a potential
complication to the use of viral vectors.Whole-cell vaccines
currently under development include killed Mycobacte-
rium vaccae, DAR-901 (477), VPM1002, MTBVAC, and
RUTI. VPM1002 is an approach to improve BCG immu-
nogenicity and vaccine potential by engineering BCG to
express lysteriolysin from Listeria monocytogenes to es-
cape the phagosome and carry a urease deletion mutation
that facilitates phagosomal acidification, thereby enhancing
MHC class I antigen presentation to CD8 T cells (478).
MTBVAC is a genetically attenuatedM. tuberculosis strain
lacking phoP and fadD26 that abrogates synthesis of var-
ious surface lipids (479). Lastly, the therapeutic vaccine
candidate RUTIwas developed by growingM. tuberculosis
under stress prior to fragmentation, detoxification, and
delivery in liposomes to individuals with LTBI to prevent
progression to ATB (480–482).

There have been substantial advances in our under-
standing of immunity against M. tuberculosis from the
days of Drs. Calmette and Guérin. Nevertheless, the ab-
sence of suitable alternatives to BCG highlights the
challenges before us. M. tuberculosis is adept at sub-
verting the cross talk between innate and adaptive im-
munity, and it will be important to understand that cross
talk for the rational development of better vaccines. Even
in the absence of protective correlates and in the face of
disappointing preliminary results forMVA85A, the state
of TB vaccine development is resurgent now more than
ever and provides cause for optimism for the development
of more efficacious vaccines and therapeutics against TB.
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