
Enhancing GTEx by bridging the gaps between genotype, gene 
expression, and disease The eGTEx Project†

A full list of authors and affiliations appears at the end of the article.

Abstract

Genetic variants have been associated with a myriad of molecular phenotypes that provide new 

insight into the range of mechanisms underlying genetic traits and diseases. Identifying any 

particular genetic variant’s cascade of effects, from molecule to individual, requires assaying 

multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that 

extends the GTEx project to combine gene expression with additional intermediate molecular 

measurements on the same tissues to provide a resource for studying how genetic differences 

cascade through molecular phenotypes to impact human health.

Introduction

Identifying the molecular and cellular basis of human genetic disease provides new 

opportunities for disease prevention and treatment. Genome-wide association studies 

(GWAS) have already resulted in thousands of genetic associations, localizing regions of the 

genome that confer disease risk. However, within disease-associated regions, the causal 

variants and the mechanism of action often remains poorly understood. To address this 

challenge, the Genotype-Tissue Expression (GTEx) project has generated a systematic, 

multi-tissue reference for identifying genetic variants associated with changes gene 

expression (or, expression quantitative trait loci, eQTLs). This resource supports research 

into potential mechanisms of action for disease-associated variants1,2. Beyond gene 

expression, a rapidly increasing array of molecular and sequencing-based assays is 

identifying genetic variants associated with a diversity of intermediate molecular 
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phenotypes. Integration of multiple layers of molecular measurements will clarify the causes 

and consequences of changes in gene expression as well as identify new mechanisms 

underlying human disease.

Among the multiple molecular phenotypes recently used in QTL-based analyses are 

measurements of histone modification, chromatin accessibility, allele-specific expression, 

alternative splicing, DNA methylation, and protein expression. QTL-based analyses of 

histone modifications and chromatin accessibility provide insight into variants that influence 

transcription factor binding and nucleosome positioning3,4. Allele-specific expression QTLs 

(ase-QTLs) have used allelic ratios as a quantitative phenotype to increase the power of 

eQTL analyses5–7, and can aid the localization of causal variants8. Alternative splicing 

QTLs (sQTLs) have been a major focus of multiple eQTL studies using RNA-seq and have 

been implicated as important contributors to human disease9. Methylation QTLs (meQTLs) 

have uncovered complex relationships between the genetic, DNA methylation, and 

expression variation10–12. Ongoing and rapid advances in high-throughput protein 

quantification have enabled the detection of protein QTLs (pQTLs), which expose variants 

influencing both transcriptional and post-transcriptional mechanisms13,14.

Beyond studies of QTL types in isolation, integrative or multi-omic analyses offer to 

elucidate the cascade of molecular effects of disease variants. For example, intersection of 

DNase I sensitivity quantitative trait loci (dsQTLs) and eQTLs established that over half of 

eQTLs are also associated with changes in chromatin accessibility3. Intersection of meQTLs 

and eQTLs identified variants with complex causal relationships depending on CpG and 

genic contexts15,16. Intersection of eQTLs and pQTLs exposed buffered effects, protein-

specific effects, and overlap with disease-associated variants13,14,17,18. Recent integration of 

eight cellular phenotypes across the regulatory cascade from transcription factor binding to 

protein expression demonstrated essential contributions of splicing to disease-associated 

variation9. Such increased accessibility to multi-omics data offers new opportunities to 

develop and test holistic or ‘systems genomics’ approaches. These approaches offer to 

provide new opportunities for predictive modeling and enrich our understanding of the 

multitude of effects for disease-associated variants and their interplay across diverse -omics 

layers19. .

A major challenge to integration of multi-omics data in the study of human disease is that 

many multi-omics analyses have been conducted in cell lines instead of primary tissues. 

While GTEx has demonstrated the value of multi-tissue data to identify tissue-specific 

mechanisms of disease-associated variants, there remains a need to obtain multi-omics 

reference data to study the effects of genetic variation across multiple tissues and multiple 

layers of molecular complexity. In addition to complementing studies of complex genetic 

diseases, expanding multi-tissue molecular data from ‘normal’ individuals can enhance 

cancer studies20,21 (which currently comprise 28% of all requests for GTEx data utilization), 

by distinguishing cancer-specific alterations and elucidating the tissue-specificity of certain 

cancers and their mutations22,23.

Here, we introduce the NIH Common Fund’s Enhancing GTEx (eGTEx) project, which 

seeks to complement the gene expression phenotypes determined in the GTEx project with 
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intermediate phenotypes across the same tissues and individuals (Fig. 1). These additional 

data types will provide a more complete reference of how genetic differences cascade 

through molecular and cellular phenotypes to impact organismal phenotypes. To achieve this 

goal, eGTEx is applying diverse molecular assays to the GTEx sample collection, including 

DNase I hypersensitivity, ChIP-sequencing, DNA and RNA methylation, allele-specific 

expression, protein expression, somatic mutation, and telomere length assays. Together, the 

eGTEx reference aims to enable high-resolution identification of the mechanistic impacts of 

genetic variants and their role in human diseases, and will serve as an enabling resource that 

will facilitate novel integrative and holistic computational methods development and 

biological insights.

The eGTEX project: Study design and assays

The goal of the GTEx project is to establish a national multi-tissue cohort for molecular 

phenotypes. The current release (dbGaP accession phs000424.v7.p2) of GTEx provides 

11688 transcriptomes from 714 individuals and 53 tissues (median of 17 tissues per 

individual, 173 samples per tissue). The next release, v8, is expected to include 17,500 

transcriptomes from ~850 individuals, and final data production for the project is targeted 

for late in 2017. In addition to molecular data, GTEx includes pathology reports, histology 

images and reports, and donor characteristics, including ethnicity, age and sex. Within 

GTEx, tissues are obtained from deceased donors with next-of-kin consent to permit the 

collection and banking of anonymized samples for scientific research24. Two existing 

strengths of the GTEx project are the large number of tissues collected from each donor, 

facilitating characterization of gene expression across a wide variety of tissues, and the 

relatively large size of the donor population, allowing one to evaluate the contribution of 

individual genetic variation. The first steps of assaying genetic variation and its impact on 

gene expression is the focus of several accompanying consortium papers25,26. However, 

fully understanding how a genetic variant regulates gene expression, such as through 

changes in DNA methylation or the binding affinity of a transcription factor, and 

subsequently connecting the downstream effects of differential gene expression through to 

protein abundance requires additional molecular assays.

The goal of the eGTEx initiative is to enhance our understanding of gene regulation by 

performing additional molecular analyses on the same tissues that underwent gene 

expression analysis. Because of the large size of the GTEx tissue collection (over 25,000 

samples), the variable quality across collected samples, and the relatively small aliquot 

remaining for each sample, the eGTEx initiative will analyze a subset of the entire 

collection. The study design for eGTEx activities was allocated across 2 “dimensions” of 

analysis: Phase I, involving a relatively small number of donors (~15) analyzed for a large 

number of different tissues (>20); and Phase II, involving a relatively small number of 

tissues (4–6) analyzed in a larger number of donors (150–200). eGTEx has planned to use 

the same tissues from the same individuals for as many assays as possible. However, because 

available aliquots are limited, some assays require frozen tissue as input, and the throughput 

differs by assay, the extent of overlap and the number of phenotypes that will be generated 

from each individual sample will vary. The molecular phenotypes being studied are shown in 

Table 1 and described in the following sections.
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DNA accessibility

Systematic understanding of the impact of genetic variation on gene expression requires 

both comprehensive delineation of regulatory DNA, and an understanding of the degree to 

which individual regulatory regions vary at the population level. DNA is tightly packaged 

into chromatin inside our cells, with 147-nucleotide segments of DNA wrapped around each 

histone octomer (themselves separated by ~50 nucleotide linkers). Displacement of 

nucleosomes through the binding of transcriptional regulators results in accessible regions of 

‘open chromatin’, which can be mapped using endonucleases such as DNaseI27,28. Past 

work has shown that disease and trait associations are highly concentrated in accessible 

elements29 and that allelic variation in DNA accessibility can be precisely map the effects of 

sequence variation on transcription factor activity3,30,31. In eGTEx, we will examine DNA 

accessibility using both the DNaseI hypersensitivity assay (DHS) and the higher-resolution 

DNaseI footprinting assay to map transcription factor occupancy within regulatory DNA at 

nucleotide-level resolution. This assay is highly unbiased and captures variation in diverse 

regulatory elements, including promoters, enhancers, silencers, insulators, and locus control 

regions.

Histone modifications

Each histone protein in the chromatin fiber has a long amino-acid tail that can be post-

transcriptionally modified, thus serving both structural and informational roles32. An ever-

growing multitude of histone modifications has been described, whose combinations mark 

diverse chromatin functions, including active enhancers, active promoters, poised promoters, 

repressed regions, heterochromatin, or transcribed functions33. Among diverse chromatin 

states that have been broadly surveyed, enhancer regions marked by histone H3 lysine 27 

acetylation (H3K27ac) were shown to be the most variable across tissues and cell types33,34, 

the most variable across individuals35, and the most highly enriched for disease-associated 

genetic variants34. Thus, to characterize the protein-DNA interactions through which gene 

regulation is mediated, eGTEx will perform chromatin immunoprecipitation sequencing 

(ChIP-seq) to profile the enhancer- and promoter-associated histone modification H3K27ac.

Because DNA accessibility and ChIP-seq assays require frozen material, they cannot be 

performed on as wide a spectrum of GTEx tissues as most other assays, and instead will 

focus on the brain and the tissues that were collected frozen on a subset of GTEx donors. 

Availability of DNaseI and H3K27ac data will aid in fine-mapping causal variants and 

improving localization and interpretation of tissue-specific and shared regulatory variants.

DNA methylation

DNA methylation of cytosine residues throughout the human genome is an important 

element of gene regulation and a key component of eGTEx. DNA methylation influences the 

binding of regulatory elements (such as transcription factors) to DNA36 and is involved in 

imprinting37,38, X-chromosome inactivation39, and gene silencing40. eGTEx will utilize two 

complementary methods (whole genome bisulfite sequencing (WGBS) and capture bisulfite 

sequencing) to characterize the DNA methylation landscape of GTEx tissues, with a 

particular focus on distinct brain regions implicated in mental health. In addition, as disease-

driven changes in cell type composition (specifically neuron loss in many mental health 
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disorders) have become increasingly appreciated, eGTEx will aim to account for this source 

of variation. To address this issue, eGTEx will perform Fluorescence Activated Nuclei 

Sorting (FANS) to specifically isolate neuronal nuclei from GTEx brain tissues for WGBS 

analysis. These analyses will help identify variable methylated regions (VMRs), methylation 

quantitative trait loci (meQTLs) and regions of allele-specific methylation (ASM).

Allele-specific expression

Within individuals, allele-specific expression (ASE) can validate cis-eQTLs or identify and 

characterize rare and private cis-regulatory effects41. However, the number of reads mapping 

to the coding heterozygous sites within a gene of interest limits the power to detect ASE. 

When using RNA-seq data, this is directly related to the gene’s expression level, which 

varies from tissue to tissue. eGTEx will apply microfluidic multiplex PCR followed by deep 

sequencing (mmPCR-seq) to bypass this problem and provide high depth ASE 

measurements42. This high-throughput, targeted approach decouples the power to detect 

ASE from the gene’s expression level. Therefore, mmPCR-seq can provide ASE data from a 

wider range of tissues than RNA-seq. The assay works effectively with low quality or low 

quantity RNA, which makes it perfectly suited to process the limited quantities of RNA 

available from GTEx samples. Previously, mmPCR-seq has been applied to study the impact 

of imprinting and loss-of-function variants across multiple tissues43–45. As part of eGTEx, 

mmPCR-seq data will be generated for a few hundred genes across all available tissue 

samples from ~80 individuals. Generated data will validate and complement eQTLs 

identified by the GTEx project through joint analysis of allele-specific and total expression 

data5–7. In addition, these data will aid assessment of tissue-specificity and detection of 

changes in the magnitude of effects across tissues46.

Post-transcriptional RNA modifications

m6A methylation recently emerged as an important post-transcriptional modification of 

RNA, affecting more than 7,000 protein-coding and non-coding genes, and influencing 

protein translation, transcriptional gene regulation, stability, alternative splicing, microRNA 

targeting, circadian rhythms, and overall gene function47,48. m6A methylation is present in a 

wide variety of tissues, varies in abundance across tissues and across development. However, 

much remains unknown, including the variation of m6A methylation across individuals in 

different tissues, the role that genetic variants play in guiding methylation changes, and the 

role of m6A methylation QTLs in human disease association. Thus, a systematic survey of 

the inter-individual and inter-tissue variation in m6A methylation within the GTEx cohort 

can have important implications for the study of human disease, by revealing tissue-specific 

m6A methylation patterns, inter-individual differences in m6A methylation, and individual 

genetic variants that act as m6A-QTLs, all in the context of a deeply profiled cohort that 

benefits from genomic, transcriptomic, epigenomic, and proteomic measurements. To 

address this opportunity, eGTEx will carry out m6A-seq experiments along two dimensions, 

the first exploring tissue diversity for a small set of individuals, and the second exploring 

inter-individual variation for a small set of tissues. Along the tissue dimension, we will 

profile 20 tissues in 8 individuals, across a total of ~100 samples as not all individuals have a 

sufficient sample quantity or quality. Along the individual dimension, we will profile 4 

tissues across 100 individuals, for a total of ~300 samples, once more based on sample 

Stranger et al. Page 5

Nat Genet. Author manuscript; available in PMC 2019 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quality and availability in sufficient quantity. We will use a combination of two m6A 

profiling technologies: ‘location analysis’, by MeRIP-seq, which uses an additional RNA 

fractionation step prior to m6A profiling, thus enabling us to pinpoint the locations in the 

transcript where m6A methylation occurs, and ‘level analysis’, by m6A-LAIC-seq, which 

does not include a fractionation step and provides a more quantitative readout of overall 

m6A methylation levels for each transcript. We will seek to profile these data matrices 

sufficiently densely to enable imputation across technology platforms, across tissues, and 

across individuals in the context of the larger GTEx and eGTEx data matrices.

Protein abundance

Proteins provide a critical link that allows us to fill the gap between RNA expression and 

phenotype. On one hand, protein levels can be considered as biomarkers for phenotypes; at 

the same time, they are heritable molecular phenotypes whose genetic basis can be linked to 

genotype or RNA expression. Preliminary studies have indicated that there is an imperfect 

correspondence between eQTL and pQTL: in particular, not all pQTLs coincide with 

eQTLs13,14,17,18. Measurement of protein expression in the GTEx cohort will allow further 

validation of genome-transcriptome relationships while simultaneously characterizing novel 

genome-proteome relationships and their relationship to transcriptome biology. eGTEx will 

characterize protein expression using two complementary strategies: isobaric tandem mass 

tag (TMT)-based quantitative mass spectrometry (MS) 13 and a custom panel set of 

antibodies targeting ~400 transcription factors and cell signaling proteins, using the high-

throughput, robust, microwestern technology49. Preliminary studies show that using a 

customized sample preparation protocol that maximizes the protein yield of PAXgene 

preserved tissue samples and running each tissue sample in duplicate, we can additionally 

identify ~7,500 proteins per sample using MS. The microwestern assay has been optimized 

to use small input quantities and will allow quantification across the full spectrum of 

abundance levels (albeit on a subset of all proteins). Importantly, the microwestern assay 

allows for quantification of low abundance proteins that are not typically captured using MS, 

thus rendering the two approaches highly complementary. Generated data will support 

detection of pQTLs from approximately 200 individuals per tissue, and will enhance studies 

of tissue-specificity, network relationships, and multi-omics integrative analyses.

Somatic mutation

It is generally assumed that the trillions of cells in a human body share identical DNA 

sequences, but in reality we are a mosaic of genomes. In addition to many known epigenetic 

differences, we are made up of subpopulations of cells with genetic differences, such as 

point mutations, structural changes, and differences in telomere length. The extent of this 

mosaicism is largely unknown, but recent studies suggest that the extent of somatic 

variability in humans is considerable and contributes to disease phenotypes50. However, 

there have been few systematic and comprehensive studies of human somatic variability, 

particularly outside of readily obtainable tissues like blood. This gap in knowledge is a 

significant impediment to many ongoing and future studies of human phenotypic variation 

and disease susceptibility, such as the interpretation of somatic variability in cancer genome 

sequencing projects. The eGTEx project will systematically study somatic variability by 

performing several new assays in addition to leveraging the existing RNA-sequencing data. 

Stranger et al. Page 6

Nat Genet. Author manuscript; available in PMC 2019 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Somatic point mutations will be evaluated by deep exome sequencing using NimbleGen’s 

SeqCap EZ Human Exome Library v2.0 and sequencing to an average depth of 150x on an 

Illumina HiSeq 2000. Somatic structural variability will be analyzed using the deep exome 

sequencing data and SNP arrays for copy number variation (CNV) and copy-neutral loss of 

heterozygosity (LOH) events.

Telomere length

Telomere length (TL) plays a central role in maintaining cellular proliferative potential and 

genome stability, and telomere shortening over the life course may be a critical mechanism 

underlying many age-related health conditions, including cardiovascular disease51. In 

contrast, longer telomeres may increase risk for some types of cancer52. Most 

epidemiological studies of the association between TL and disease risk are difficult to 

interpret, in part because it is not clear how well TL in peripheral blood cells reflects TL 

disease-relevant tissues. We are addressing this gap in eGTEx by measuring average TL (i.e., 

telomere repeat abundance) across many tissue types using a high-throughput, Luminex-

based method53–55. We will characterize the relationships among TL measures taken from 

different tissues and determine if tissue-specific TL is associated with the frequency of 

somatic events in the same tissue (i.e., copy number variation (CNV) and loss of 

heterozygosity (LOH) events, detected using exome sequencing and SNP array data). In 

addition, we will determine whether SNPs known to affect leukocyte TL (based on prior 

GWAS) also influence TL in other tissues. Knowledge of tissue-specific effects of SNPs on 

TL will enable Mendelian randomization studies to estimate the effects of TL on disease in a 

tissue-specific fashion. The results from this eGTEx project will provide a foundation for 

interpreting epidemiological findings and guide the design of future studies of the effect of 

TL on human health.

Integrative multi-omics analyses

Integrative analyses that combine across both GTEx and eGTEx data will complement the 

collection of molecular phenotype data (Box 1). These efforts will aim to (1) determine the 

extent to which different molecular phenotypes vary across tissues, and which factors 

mediate the levels of each phenotype. For example, it may be found that the variation of 

mRNA abundance of a particular gene largely occurs between individuals, while that of the 

protein abundance occurs between tissues, suggesting tissue-specific regulatory steps that 

occur at post-transcriptional levels. Integrative analyses will also aim to (2) establish the 

similarity of covariation and coexpression networks across tissues, and (3) identify which 

loss-of-function mutations are expressed at the RNA and protein level and to what degree 

this expression varies across tissues. Recent evidence suggests that a subset of loss-of-

function effects are compensated at the protein level, highlighting the utility of multi-omics 

data in personal genome interpretation56.

Studies using eGTEx data will integrate and enhance diverse external projects and resources. 

As an example, characterization of tissue-specific methylation and expression patterns will 

benefit from the expanding catalog of chromatin modifications (H3K4me1, H3K27ac, 

H3K9me3, etc.), transcription factors, DNaseI hypersensitivity sites, and other regulatory 
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DNA binding factors from ENCODE and NIH Epigenomics Roadmap resources. The 

Roadmap Consortium in particular has an extensive dataset including many of the same 

brain regions being profiled by eGTEx and will allow identification of brain-specific 

regulatory regions. To better enable these types of integrated studies eGTEx and ENCODE 

have developed the ENTEX collaborative project to focus on deeply profiling a small subset 

of directly overlapping tissues using shared technologies.

Integrative eGTEx analyses will continue to focus on methodologies that enhance GWAS 

interpretation. Such methods will take advantage of recent efforts to impute molecular 

phenotypes57, test colocalization of trait and molecular association signals58,59 and jointly 

model multi-omics data60–62. The specific focus on brain tissues in GTEx and eGTEx is 

particularly useful for contextualizing GWAS of neurological and neuropsychiatric traits. 

Combinatorial analyses of GWAS associations and diverse molecular factors can reveal 

important disease-associated SNPs that may have fallen below standard association 

thresholds or help identify the likely driver SNP from a group of associated and tightly-

linked variants. Increasingly, as whole-genome-sequenced cohorts become available, 

integration with eGTEx is expected to enhance new methods for predicting and identifying 

the tissue context of diverse classes of genetic variation.

Data release and community impact

GTEx and the eGTEx projects are community resources committed to rapid and complete 

data release. Thus far, wet lab analysis of germ line genetic variation and RNA-seq-based 

mRNA expression measurements of the main GTEx project have been generated at the 

Broad Institute, serving as the Laboratory, Data Analysis, and Coordinating Center 

(LDACC) for the project. The entire Consortium has contributed to all aspects of the 

analysis pipeline, but the fact that the vast majority of the data has been generated at a single 

lab has facilitated its integration and coordinated release. eGTEx experiments, on the other 

hand, will be generating a heterogenous collection of data in more than seven laboratories, 

making data integration more challenging. Some of the data generated (for example, protein 

expression), will have little to no privacy concerns and can be made available without access 

restrictions. Other molecular phenotypes, such as DNA methylation, will be similar to RNA-

seq expression, generating both raw sequence data with individual sequence variation 

information that will be deposited into the controlled access database dbGaP, while much of 

the processed data and results can be made available without access controls through the 

GTEx portal (see URLs). The LDACC, who are continuing to release the primary GTEx 

data, will also serve as the coordination center for the release of the controlled access data 

for the eGTEx assays. This will ensure that data ID’s and metadata are harmonized across 

the entire project, and will enable eGTEx data to be included with the major GTEx releases. 

Additionally, to the extent possible, open-access eGTEx data will be integrated and made 

available through the GTEx portal alongside the gene expression and eQTL results.

Given the heterogenous nature of the data, the differing capacity of the participating labs, 

and differences in how samples will need to be batched across the various assays for quality 

control purposes, we expect components of eGTEx data to be released intermittently over 

the next several years with this publication serving as a guide to the overall eGTEx effort. 
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The Phase I data, representing analysis of a wide range of tissues from a relatively small 

number of donors, will be generated first by most groups and thus should be released before 

Phase II data, representing a smaller number of tissues analyzed over a larger number of 

individuals. We plan initial data deposition in late 2017/early 2018 with no publication 

embargo after data release.

Impact of eGTEx on research community and future directions

The tissues from GTEx donors are collected without focus on a disease state and are 

representative of a US-based human population24. With detailed molecular data being 

collected across diverse tissues by eGTEx, the resource provides a snapshot of ‘normal’ (or 

non-diseased state) genetic and genomic variation among individuals and across tissues. As 

such, the resource serves as a reference for disease-focused research, where investigators can 

compare eGTEx data with genomic data characterized from disease cohorts. Much in the 

way that eQTL studies are being used to generate hypotheses regarding causal genes and 

mechanisms underlying GWAS trait associations, these novel eGTEx genomic data are 

expected to be widely used to elucidate additional mechanisms contributing to diverse 

human disease.

The diversity of genetic and genomic data types being surveyed by eGTEx will facilitate 

statistical methods development in the area of data integration. Although analysis methods 

for specific pairs of data types (e.g., genetic and transcriptomic, eQTLs) have become 

relatively standardized by the community, methods development for holistic analysis of 

diverse data types remains an active research area. The eGTEx population-based genomics 

data characterizing multiple modalities of genome function from genetic to epigenetic to 

transcriptomic and proteomic variation will provide a rich primary tissue-based resource for 

development of ‘best practices’ for integrative data analysis.

As new computational and experimental approaches continue to elucidate the function of the 

genome, eGTEx aims to provide a rich data source that enables the integration of multi-

omics data in the interpretation of health and disease. These efforts will help pave the route 

towards an increased understanding of genome function, the elucidation of novel molecular 

therapeutics and the integration of high throughput molecular diagnostics in individualized 

patient care.
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Box 1: Examples of integrative analyses across tissues using eGTEx data.

 ● Determine the relative variability of molecular phenotypes.
 ● Compare covariation networks across molecular phenotypes.
 ● Determine if genes/proteins with loss of function mutations are expressed. E.g. examine regulatory 
features, mRNA levels, proteins levels.
 ● Map QTLs for each molecular phenotype to determine where most functional genetic variation resides.
 ● Construct integrative regulatory networks using ‘systems genomics’ approaches.
 ● Connect regions of allele-specific chromatin accessibility, allele-specific methylation and allele-specific 
gene expression.
 ● Integrated analysis of patterns of X-inactivation.
 ● Quantify tissue-specific levels of somatic mutations and their relationship to heterogeneity in gene 
expression levels
 ● Associate levels of methylation and expression at telomere maintenance genes (e.g., TERC, TERT, DKC1) 
with telomere length measurements.
 ● Multi-omics enrichments of trait-associated variation.
 ● Support holistic predictive modeling across molecular phenotypes.
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Figure 1. Quantifying layers of molecular and cellular phenotypes.
The eGTEx Project plans to study telomere length, DNA accessibility, histone 

modifications, DNA and RNA methylation, somatic mutation, allele-specific expression, and 

protein quantification across individuals and tissues.
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Table 1.
eGTEx study design.

Molecular assays, targeted tissues and sample number for eGTEx.

Molecular phenotypes Primary assay(s) Targeted tissues (Phase 
II) Targeted sample number

DNA accessibility DNase I hypersensitivity Brain regions, Heart, Lung 
Muscle, Esophagus, 
Breast, Prostate, Skin

~1,135

Histone modifications Chromatin immunoprecipitation 
sequencing (ChIP-seq)

Brain regions, Heart, 
Lung, Muscle

~600

DNA methylation Whole genome bisulfite sequencing 
(WGBS) and capture bisulfite 
sequencing

Brain regions, Heart, 
Lung, Muscle, Thyroid

~2,000

Allele-specific expression Microfluidic multiplex PCR followed by 
deep sequencing (mmPCR-seq)

All tissues ~2,000

Post-transcriptional RNA modifications m6a methylation capture sequencing Brain regions, Heart, 
Lung, Muscle

~300

Proteomic variation Mass-spectrometry, targeted arrays for 
transcription factors and cell signaling 
proteins

Brain, Heart, Lung, 
Muscle, Thyroid, Colon, 
Liver, Prostate, Pancreas, 
Ovary, Testis, Breast

~1,000 (MS)
~2,500 (array)

Somatic variation Deep Exome Sequencing, RNA-seq, 
SNP arrays, probe-based telomere length 
assay

~20–25 tissues ~800

Telomere length Luminex-based assay for telomere 
repeat abundance

~20 tissues ~5,000
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