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Abstract

Understanding speech in background noise is often more difficult for individuals who are older 

and have hearing impairment than for younger, normal-hearing individuals. In fact, speech-

understanding abilities among older individuals with hearing impairment varies greatly. 

Researchers have hypothesized that some of that variability can be explained by how the brain 

encodes speech signals in the presence of noise, and that brain measures may be useful for 

predicting behavioral performance in difficult-to-test patients. In a series of experiments, we have 

explored the effects of age and hearing impairment in both brain and behavioral domains with the 

goal of using brain measures to improve our understanding of speech-in-noise difficulties. The 

behavioral measures examined showed effect sizes for hearing impairment that were 6–10 dB 

larger than the effects of age when tested in steady-state noise, whereas electrophysiological age 

effects were similar in magnitude to those of hearing impairment. Both age and hearing status 

influence neural responses to speech as well as speech understanding in background noise. These 

effects can in turn be modulated by other factors, such as the characteristics of the background 

noise itself. Finally, the use of electrophysiology to predict performance on receptive speech-in-

noise tasks holds promise, demonstrating root-mean-square prediction errors as small as 1–2 dB. 

An important next step in this field of inquiry is to sample the aging and hearing impairment 

variables continuously (rather than categorically) – across the whole lifespan and audiogram – to 

improve effect estimates.
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1. Introduction

Successful communication in difficult listening environments is dependent upon how well 

the auditory system encodes and extracts signals of interest from other competing acoustic 

information. Therefore, it is not surprising that older individuals and people with impaired 

auditory systems have increased difficulty understanding target speech in background noise. 

This point is especially important for auditory rehabilitation of older individuals with 
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hearing impairment. Kochkin (2002, 2010) found hearing-aid users who responded to a 

survey were most dissatisfied with listening in noisy situations; however, very little is done 

clinically to diagnose and treat listening-in-noise problems. Part of the problem may be the 

limited understanding of the mechanisms at work in the perceptual process. Understanding 

central-auditory-system contributions to signal-in-noise difficulties may help to improve 

performance in noise.

1.1. Noise is all around us, and the ability to understand speech in noise varies

Difficulties understanding speech in background noise have been linked to aging and hearing 

impairment, both as independent factors and when their effects are combined (Dubno et al., 

1984; Gordon-Salant and Fitzgibbons, 1995; Humes and Roberts, 1990; Souza and Turner, 

1994; Studebaker et al., 1999). The overlap between these factors is noteworthy, as hearing 

impairment increases dramatically with each decade of life: by 60 years of age 

approximately 50% of individuals experience hearing loss, with the prevalence increasing to 

90% by 80 years of age (Agrawal et al., 2008; Cruickshanks et al., 1998). In addition, 

several other conditions exacerbate difficulties understanding signals in noise, such as 

traumatic brain injury, diabetes, multiple sclerosis, and Parkinson’s disease (Folmer et al., 

2014; Frisina et al., 2006; Gallun et al., 2012; Lewis et al., 2006). Understanding speech in 

background noise is crucial for day-to-day functioning in the modern world, given the 

ubiquitous nature of loud noise in everyday life. Figure 1 represents the signal-to-noise 

ratios (SNRs) in various listening situations that are encountered in everyday life as recorded 

across several studies (Hodgson et al., 1999; Markides et al., 1986; Pearsons et al., 1977; 

Plomp, 1977; Smeds et al., 2015; Teder, 1990). Although the use of different methodologies 

across these studies results in some SNR variability within each situation, generally these 

results strikingly depict the variety of common situations where one must contend with the 

presence of background noise. Furthermore, impaired understanding of speech in 

background noise may have far-reaching consequences, given that hearing dysfunction has 

been linked to depression, isolation, decreased functional status, and poorer quality of life, 

as well as decreased participation in social activities and increased stress levels that can 

impact personal relationships (Arlinger, 2003; Jones et al., 1984; Keller et al., 1999; Mulrow 

et al., 1990; Seniors Research Group, 1999).

1.2. Ability to understand speech in noise varies

A hallmark of perception-in-noise literature is the wide range of performance across 

individuals, despite similarities in the pure-tone audiogram or speech understanding in quiet 

(e.g., Dirks et al., 1982). Figure 2 illustrates this characteristic variability in a group of older, 

hearing-impaired individuals with similar ages and hearing thresholds, as measured in 

steady-state speech-spectrum noise (data from Billings et al., 2015). Performance is 

quantified employing a commonly-used metric for speech-in-noise perception: the SNR50, 

defined as the dB SNR threshold at which 50% speech-recognition performance is achieved. 

A portion of the variability in auditory rehabilitation success may be explained by central 

auditory coding differences between individuals (Billings et al., 2013, 2015). In the clinic, 

an audiologist may see two patients of similar age with similar hearing impairments who 

perform very differently in background noise (if speech-in-noise testing is performed at all); 

however, auditory rehabilitation techniques for these two individuals are likely quite similar.
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1.3. The case for a physiological measure

A physiological measure of auditory neural coding may be helpful in explaining some of the 

performance variability and perhaps, with further development, serve as a substitute for 

speech-understanding testing in those who cannot be tested reliably. One technique that 

shows particular promise is electroencephalography (EEG): using electrodes placed on the 

scalp to record electrical potentials associated with synchronous neural activity.

There has been great interest in using EEG data to understand more about the process of 

speech comprehension in background noise. One approach is to examine waypoints along 

the auditory neural pathway (e.g., brainstem nuclei, auditory cortex) to determine how the 

auditory signal is being encoded, and to determine what neural information is available to 

the listener for the resulting perception of speech. The underlying assumption is that 

accurate understanding in background noise is dependent, in part, on the integrity of neural 

coding of the auditory stimulus. Measurements of cortical neural coding may help clarify the 

capacity of the auditory system to faithfully code signals in noise before higher-level 

processing is applied, resulting in perception. Representing the intermediate processing 

stages may be important, because as listening environments get more difficult, more top-

down processes may be used to make up for missed cues; therefore, it would be helpful to 

have a reliable physiological measure that reflects pre-cognitive information about acoustic 

coding.

The main advantage of EEG over other techniques is that it has extremely high temporal 

resolution. Furthermore, EEG recording is both non-invasive and silent, which is especially 

advantageous for studying hearing. The hardware for recording EEG data also tends to be 

less expensive than most other techniques for studying brain function.

There are several limitations and caveats that come with EEG, however. Only synchronous 

activity from thousands or tens of thousands of neurons at once, all with similar spatial 

orientations, will produce potentials large enough to measure from the scalp. The actual 

“firing” of a neuron (action potential) happens too fast and the resulting voltage field 

decreases too rapidly to achieve this type of summation across neural units; therefore, the 

potentials that sum to produce the EEG signal do not come directly from the firing of 

neurons but rather from postsynaptic potentials that follow. Thus, the pyramidal neurons, 

with their long apical dendrites running parallel to one another and perpendicular to the 

cortical surface, are thought to be disproportionately represented in the EEG signal 

compared to other areas and cell types. Finally, EEG has poor spatial resolution, and tracing 

signals back to their generation sites in the brain poses difficult problems which are beyond 

the scope of this article to address in detail. In general, given these caveats, researchers must 

be cautious not to misinterpret EEG as reflecting “overall” brain activity, and must also be 

cautious in making claims about the specific underlying neural generators involved.

When EEG recordings are analyzed in time windows that are aligned to the presentation of 

an auditory stimulus, they are referred to as auditory-evoked potentials (AEPs). AEPs are the 

most popular category of electrophysiological measures that have been used in attempts at 

capturing the type of neural coding mentioned above, and they will constitute the focus of 

this paper. Like all measures in the evoked-potentials family, AEPs attempt to quantify the 
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nervous system’s time-locked response to an external stimulus – in this case, an auditory 

stimulus. The time-locked response is significantly smaller in amplitude than the ongoing 

EEG activity, so it must be extracted through signal averaging over many stimulus 

presentations, and analysis is generally done on voltage waveforms in the time domain. The 

major landmarks of the waveform, positive and negative voltage peaks, are characterized in 

terms of their amplitude and latency. Evoked potentials are considered distinct from 

“induced” potentials, which are also related to discrete stimulus events but are not phase-

locked to them, and which tend to be analyzed in the frequency domain. Together, evoked 

and induced potentials form the larger class known as event-related potentials (ERPs). These 

are in turn distinct from analysis based on the ongoing or spontaneous EEG activity.

AEPs are known for having low variability within subjects (Tremblay et al., 2003) and 

relatively high variability between subjects, which is one notable property that suggests they 

may be sensitive to the types of individual differences in encoding that may be important 

clinically. However, aside from the auditory brainstem response (ABR) – which, with its 

comparatively low intersubject variability within a clinical subpopulation, is considered the 

“gold standard” for hearing assessment in newborns – the potential clinical utility of AEPs 

remains largely unproven. Still, there are many clinically relevant applications being 

explored, and several of the most promising are briefly described below.

1.3.1. Difficult-to-test patients—AEPs may complement or replace behavioral 

measures in difficult-to-test individuals. Individuals with co-morbid health conditions such 

as traumatic brain injury (TBI), post-traumatic stress disorder (PTSD), and dementia 

encounter difficulties when completing behavioral audiologic testing. Specifically, Veterans 

with TBI often suffer from fatigue, those with PTSD suffer from anxiety, and those with 

dementia often cannot follow instructions. As a result, behavioral testing can be difficult to 

complete, and the results may be inaccurate. Thus, replacing or supplementing behavioral 

testing with a short and simple physiological measure that accurately predicts speech 

understanding in noise could fill a gap in current clinical assessments for individuals who 

are difficult to test behaviorally.

1.3.2. Diagnosis of supra-threshold hearing impairments—When speech 

understanding in noise is worse than what would be predicted from pure-tone audiometric 

results, AEPs may aid in more accurately describing performance and diagnosing problems. 

It is not uncommon to encounter patients who present with normal or borderline-normal 

pure-tone thresholds. Among U.S. Veterans seen in Veterans Affairs audiology clinics, the 

prevalence of those with normal audiometric thresholds is 10%, and a portion of these 

Veterans reports communication and speech-understanding difficulties disproportionate to 

their normal hearing thresholds (Billings et al., in press). Evidence suggests that the 

audiogram, which is based on tonal thresholds, is unable to reliably detect or describe supra-

threshold auditory impairment such as perception in noise (Carhart and Tillman, 1970; 

Groen, 1969; Wilson, 2011). One potential cause of suprathreshold difficulties may be 

neural degradation (Kujawa and Liberman, 2009). Supplementing audiometric testing with a 

physiological measure could assist in identifying sources of neural degradation and thus 

improve diagnosis of these conditions. For example, envelope- and frequency-following 
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responses, a type of steady-state AEP, have been shown to be sensitive to speech-

understanding difficulties (Anderson et al., 2010; Ruggles et al., 2011).

1.3.3. Rehabilitation planning—Ideally, rehabilitation interventions should be tailored 

to target the underlying hearing deficit, and AEPs may help to pinpoint the nature of these 

deficits. For instance, regarding auditory training: if obligatory bottom-up neural coding (as 

indicated by brainstem and cortical AEPs) is occurring as expected but performance is poor, 

that may constitute evidence in favor of an auditory rehabilitation approach that targets top-

down processing, such as through explicitly taught listening strategies or by employing 

synthetic methods of auditory training (i.e., with tasks focused on higher-order speech 

representations, such as sentences, stories, or conversations). In contrast, if AEPs show that 

exogenous neural coding is not occurring normally, that might support a bottom-up 

rehabilitation program that focuses on recognition of lower-order acoustic cues and employs 

analytic auditory training methods (i.e., with speech broken down into basic constituent 

parts: syllables, phonemes, or even isolated cues within a phoneme, such as vowel formant 

transitions) in order to improve access to the important acoustic cues (Kricos and McCarthy, 

2007).

1.3.4. Monitoring effectiveness of auditory training—Finally, AEPs could be used 

to monitor success of an auditory training program. The time course of training effects is an 

important scientific question that may have direct clinical application. Specifically, it has 

been demonstrated that neural changes can sometimes be detected earlier than behavioral 

changes (e.g., Tremblay et al., 1998). Clinically, then, if a physiological test detected 

emerging neural changes that had not yet consolidated into improved behavioral 

performance, that could be considered as evidence for continuing with the current training 

regime. However, if physiological testing during training does not show neural changes, then 

the clinician might choose to pursue an alternate strategy. The combination of behavioral 

and electrophysiological information could lead to tailored rehabilitation specific to the 

needs of each individual.

1.4. Some other functional neuroimaging techniques

Though not the focus of the present paper, it is important to note that, aside from EEG, there 

are other functional neuroimaging techniques that may be able to help us understand human 

speech-in-noise listening more fully. Two of the most promising – magnetoencephalography 

(MEG) and functional magnetic resonance imaging (fMRI) – are briefly reviewed below. For 

a deeper comparison between functional neuroimaging techniques, see Bunge and Kahn 

(2009).

1.4.1. Magnetoencephalography (MEG)—Just as the neural activity of the brain in 

response to auditory stimulation produces electrical potentials that can be detected by 

electrodes and recorded as AEPs, the electrical currents from that synchronous, aligned 

neural activity in turn induce magnetic fields that can be detected by magnetometers and 

recorded as AEFs (auditory-evoked fields). The technique of recording these magnetic fields 

is called magnetoencephalography (MEG).
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MEG shares many of the strengths and weaknesses of EEG. Like scalp EEG, MEG has very 

high temporal resolution. Also like EEG, MEG is only capable of detecting synchronous 
neural activity that is relatively close to the cortical surface, and the signals of interest for 

AEFs are about 100 times smaller in amplitude than the ongoing MEG.

The main advantage of MEG over EEG is that magnetic fields pass freely through the scalp 

with virtually no distortion, whereas scalp EEG is highly affected by individual differences 

in head geometry, as the signal is “smeared” according to the volume, shape, and 

conductance properties of the meninges, cerebrospinal fluid, skull, and scalp.

On the other hand, MEG setups tend to be larger, rarer, more expensive, and less portable 

than their EEG counterparts. A key factor underlying these limitations is the fact that cortical 

AEF amplitudes are about 10 million times smaller than the “noise” of the ambient magnetic 

field in a typical urban environment, so MEG is only possible in specially designed rooms 

with robust magnetic shielding.

1.4.2. Functional magnetic resonance imaging (fMRI)—Functional magnetic 

resonance imaging (fMRI) is a very different type of neuroimaging technique from EEG and 

MEG. Rather than measuring the voltage changes associated with neural activity, the most 

common implementation of fMRI measures brain activity by monitoring changes in blood 

flow, relying on the fact that oxygenated blood flow to a given brain region increases in 

concert with heightened neural activity because of increased energy demands. Like EEG and 

MEG, the fMRI signal is noisy and must be extracted through signal averaging and 

statistical analyses.

The main advantage of fMRI over EEG and MEG is its ability to localize the activity it 

detects to specific regions in the brain, within 1–5 mm. This stands in marked contrast to 

EEG and MEG, which both present problems and complications when it comes to source 

localization. The tradeoff is that fMRI has a temporal resolution on the scale of seconds 

rather than milliseconds. This means that the order in which different regions are activated 

cannot be determined from fMRI data, and transient activations lasting only a few 

milliseconds might not be detected at all. One aspect of fMRI that complicates testing with 

auditory stimuli in particular is that the scanners themselves produce frequent “knocking” 

sounds that are quite loud. This can be somewhat mitigated by careful timing of stimuli 

relative to the magnetic pulses of the scanner (sometimes called “sparse” fMRI) or by 

presenting through specialized earphones.

1.5. Cortical auditory-evoked potentials (CAEPs)

All electrophysiological data presented in the remainder of this paper are from cortical AEPs 

(CAEPs). More specifically, the data concern the P1, N1, P2, and N2 peaks. This complex of 

voltage peaks is generated in response to audible stimulus onsets and relatively abrupt 

audible changes in stimulus properties such as amplitude, frequency, and spatial location. In 

YNH listeners, these peaks occur roughly 50–300 ms after the evoking stimulus. The most 

stable and robust of these peaks are N1 and P2, and they are where we focus most of our 

analyses in this paper. Traditionally, the most common single wave to be analyzed is N1 (~ 

100 ms) for adults and adolescents or P1 for children under 10 years old (in children, P1 is 
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both larger and later than in adults); these are thought to represent the processing of stimuli 

at the level of the auditory cortex. Though attentiveness is not required to produce the N1 

peak, its properties can be affected by attention in some circumstances. For additional 

background on CAEPs and their clinical applications, see Stapells (2002).

2. Experiments and outcome measures

2.1. Overview: A brain-and-behavior approach

Herein, we review data from our laboratory and attempt to quantify the effects of aging and 

hearing impairment on both behavior and CAEPs. We also present some new data that 

illustrate these effects as a function of background noise type. Finally, we review some of 

the attempts that have been made toward clarifying the ways in which CAEPs in noise may 

correlate with or predict behavioral speech-in-noise listening performance.

In a series of experiments, CAEPs and behavioral data were collected with the goal of 

investigating how electrophysiology might inform our understanding of speech perception in 

noise. The data summarized in this review paper are taken from three studies conducted in 

our laboratory, and they have all been at least partially presented elsewhere. The portions of 

the data we have chosen to present here were selected to illustrate the effects of age, hearing 

impairment, signal type, and noise type. Special emphasis has been placed on: (i) instances 

where CAEPs and behavioral measures intersect to reveal the differential effects of age and 

hearing impairment, and (ii) instances where CAEPs were used to predict behavior. All three 

experiments used subject groups to explore age and hearing impairment effects by testing 

younger normal-hearing (YNH), older normal-hearing (ONH), and older hearing-impaired 

(OHI) participants.

2.2. Experiment 1: Billings et al., 2015

Experiment 1, reported previously (Billings et al., 2015), included both CAEP and 

behavioral measures for the 15 participants in each subject group. Behavioral performance 

was tested by asking subjects to listen to and repeat sentences from the IEEE corpus 

(Institute of Electrical and Electronic Engineers, 1969). These sentences were presented in 

steady-state speech-spectrum noise at up to seven SNRs ranging from −10 to +35 dB. 

Responses were scored by the number of pre-designated key words subjects correctly 

repeated from the sentences. CAEPs were recorded in response to the naturally-produced 

syllable /ba/ presented at a subset of the SNRs used behaviorally. To quantify these 

responses, the following waveform features were examined: four peaks from the average-

referenced waveform at the Cz electrode, located on top of the head (P1, N1, P2, N2); three 

peaks from the global field power (GFP) waveform, which represents the standard deviation 

across all electrodes at each time point (N1, P2, N2); and the full-wave-rectified area in the 

N1-P2-N2 latency range (50–550 ms post-stimulus) for both Cz and GFP. Each peak was 

quantified in terms of both amplitude and latency. Not all measures were included in all 

analyses; this will be further explained as each analysis is discussed below.
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2.3. Experiment 2: Billings et al., 2016

Experiment 2, reported previously (Billings et al., 2016), employed behavioral measures 

only and had 20 participants in each group. Northwestern University Auditory Test Number 

6 (NU-6; Tillman and Carhart, 1966) words were presented in the same steady-state speech-

spectrum noise used in Experiment 1, with SNRs ranging from −10 to 35 dB. Responses to 

target words were scored in two ways: (i) percentage of words correct and (ii) percentage of 

phonemes correct. As with Experiment 1, multiple signal levels were tested, but only results 

obtained using the highest signal level (80 dB C) are included here.

2.4. Experiment 3: Maamor and Billings, 2017

Experiment 3 included both CAEP and behavioral measures for the 10 participants in each 

group. Noise type was varied between four-talker babble, steady-state speech-spectrum 

noise, and speech-spectrum noise with the amplitude-modulation envelope of a single talker. 

Only results obtained using four-talker babble are included in this review. The CAEP results 

have been reported previously (Maamor and Billings, 2017); however, the behavioral data 

and prediction models incorporated here are being reported for the first time. The behavioral 

measures presented here are the Quick Speech-in-Noise Test (QuickSIN; Killion et al., 

2004) and the Words-in-Noise test (WIN; Wilson and Burks, 2005). Both tests use speech 

signals presented against a background of four-talker babble at varying SNRs. For 

QuickSIN, the target signals consist of sentences drawn from the IEEE corpus (six per trial); 

five “key words” are scored per sentence (the rest are ignored); and the level of the babble 

increases by 5 dB after each sentence while the signal level remains constant, producing 

SNRs from +25 to 0 dB. For WIN, the target signals are NU-6 words (35 per trial); each 

word is scored entirely correct or incorrect; and signal level decreases by 5 dB after each 

block of 5 words while the babble level remains constant, producing SNRs from +30 to 0 

dB. CAEPs were recorded to /ba/ syllables at 65 dB SPL in four-talker babble at several 

SNRs. CAEPs were used to develop universal (non-group-specific) prediction models for 

behavioral performance.

2.5. SNR50 and the psychometric function

To quantify behavioral performance across SNRs with a single scalar metric, in all three 

experiments we chose to use the 50% speech-recognition-in-noise threshold, commonly 

known as the SNR50. An SNR50 was derived for each participant by fitting a logistic 

psychometric function to their performance data and calculating the SNR at which the 

function intersected the 50-percent-correct line. Group and individual results for IEEE 

sentences presented in steady-state speech-spectrum noise for each of the three test groups 

from Experiment 1 are shown in Figure 3 as an example of the nature of the behavioral data 

collected as well as general group effects and individual variability.

2.6. CAEP waveform measures: N1, P2, area

Figure 4A shows how SNR affects the waveform morphology of the response across the 

three participant groups in Experiment 1, and 4B illustrates the growth functions associated 

with N1, P2, and area measures recorded at the Cz electrode using a common-average 

reference. It is notable that in looking at P2 amplitude the YNH group emerges as having a 
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pattern that is distinct from both older groups, whereas for N1 amplitude it is the ONH 

group that stands out from the other two. One might interpret this as evidence that the OHI 

and YNH groups share similar characteristics. However, these surface-level similarities belie 

what we suspect are fundamentally different forces in play underneath.

3. Effects of age and hearing loss

The relative effects of age and hearing impairment on speech understanding in noise are 

important to understand given their co-occurrence. However, because age and hearing loss 

are often correlated, it is difficult to fully control for confounds that may be present when 

trying to isolate these effects. The approach that many researchers have taken is to recruit 

groups of subjects with and without hearing loss who are older and younger so as to 

represent three or four discrete groups. Using this method, we have attempted to characterize 

the effects of age and hearing loss for both brain and behavioral measures. For the purposes 

of this paper we define the age effect as the difference in the measurements between ONH 

and YNH groups (ONH-YNH), and we define the hearing loss effect as the difference 

between OHI and ONH (OHI-ONH).

3.1. Behavioral effects

Figure 5 represents the behavioral effects of age (Figure 5A) and hearing loss (Figure 5B) 

for different signal types, noise types, and scoring methods. Within each panel, a dashed line 

separates estimates in steady-state noise (left) from estimates in four-talker babble (right). It 

should be noted that results from all three experiments are presented in this figure: results 

for IEEE sentences in steady-state noise are from Experiment 1; results for NU-6 words in 

steady-state noise, scored by word and by phoneme, are from Experiment 2; and all the four-

talker babble results are from Experiment 3. Increased age (ONH vs. YNH) was associated 

with a 2- to 4-dB increase in SNR50, depending on the signal and noise that was used. In 

babble noise hearing impairment was associated with a 1- to 3-dB increase in SNR50, 

closely resembling the effect of age. In steady-state noise, however, hearing impairment was 

associated with much larger effects: between about 10–12 dB. In steady-state noise, the 

hearing-impairment effect was 6–10 dB larger than the age effect, reflecting the difficulty 

experienced by older-hearing impaired individuals. It is interesting that the hearing-

impairment effect is more comparable with the age effects when testing occurred in babble 

noise. Initially, one might think that the four-talker babble was a difficult noise for all groups 

and effectively limited the spread that is often seen within older hearing-impaired 

individuals. Although the spread was limited for the OHI group in babble, it was because 

many OHI participants actually performed better in babble than in steady-state noise. This 

result does not follow the established understanding of how babble would increase difficulty.

It may be that the differences in measurement tool contributed to the small effect in babble 

relative to steady-state noise. All babble SNR50s (Experiment 3) were derived using clinical 

tests (QuickSIN and WIN), whereas steady-state SNR50s (Experiments 1 and 2) were 

derived using custom tests developed in our laboratory. The custom tests drew from the same 

corpora as the QuickSIN and WIN (IEEE sentences and NU-6 words, respectively), but each 

used randomly selected tokens from the entire corpus, not just the relatively small subset 
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used by its clinical counterpart. It seems feasible that a sparser sampling from a larger set of 

tokens could result in a greater spread in results than a denser sampling of a smaller set. 

Furthermore, for the custom tests a given token had an equal chance of appearing at any 

SNR, whereas the clinical tests always present a given token in the same SNR each time it 

occurs. Another hypothesis one might raise to explain the results is the fact that the clinical 

tests estimate SNR50 directly from the total score using the Spearman-Kärber method, while 

the custom tests extract SNR50 from a fitted logistic function. However, we currently 

believe that the estimation method (curve-fitting vs. Spearman-Kärber) is unlikely to have an 

appreciable effect, because the two methods are known to produce very similar estimates of 

50% thresholds (Armitage and Allen, 1950). Finally, an overarching problem with both of 

these explanations is that no equivalent noise-type discrepancy is observed for the age-effect 

data.

Another way to characterize the effects of age and hearing impairment is to examine 

differences between groups in measured performance at a fixed SNR. Referring back to the 

psychometric function (Figure 3), this would be equivalent to drawing a vertical comparison 

line instead of a horizontal one. Figure 6 shows results by group and SNR and illustrates the 

importance of relatively small changes in SNR. Older individuals can experience extreme 

difficulty even at SNRs that can typically be found in common conversational environments, 

such as at a cocktail party or in a restaurant, represented by 0 and 4 dB, respectively. In these 

difficult situations, average speech understanding accuracy remains below 50% correct for 

the older, hearing-impaired group.

3.2. CAEP effects

Data from Experiment 1 (steady-state noise) and Experiment 3 (four-talker babble) are 

combined here to summarize the effects of age and hearing impairment on CAEPs. Figure 7 

shows effects of age (Figure 7A) and hearing impairment (Figure 7B) on N1 and P2 

latencies and amplitudes as well as full-wave-rectified area measures, which integrate 

absolute amplitude over a wide range of response latencies (50–550 ms for Experiment 1 

and 30–350 ms for Experiment 3). Values for peak latencies, peak amplitudes, and rectified 

areas were averaged within each group, and inter-group contrasts were used to estimate the 

effect sizes for age and hearing impairment.

It is not clear why behavioral effects are more systematic than electrophysiological effects. 

One possibility is potentially increased inter-subject variability on average for CAEPs 

relative to behavior. One might think that reduced variability could result because behavior 

is filtered through active cognitive processes with similar intent across participants, whereas 

pre-attentive AEPs give only a glimpse of the signal coding and not what the participant 

does with that information. Cortical AEPs are largely resistant to the top-down control that 

is present in behavior, which likely contributes to the discrepancies between 

electrophysiological and behavioral effects. In animal models, aging and hearing impairment 

have been shown to result in a net down-regulation of neural inhibition throughout the 

central auditory system, from the cochlear nucleus all the way up through the primary 

auditory cortex (PAC; Caspary et al., 2008). It is therefore plausible that the counterintuitive 
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pattern of larger AEP amplitudes seen in older and hearing-impaired human participants 

may also be related to reduced neural inhibition.

4. Associations between brain and behavior

The relationship between cortical AEPs and behavior has been explored for many decades. 

Historically, cortical AEPs have been used for the clinical purpose of estimating behavioral 

thresholds in difficult-to-test adult populations. However, this practice has since fallen out of 

favor clinically and been almost entirely supplanted by use of the ABR. This occurred 

mainly because CAEPs often do not reach maturity until the late teenage years, whereas the 

ABR is present even before birth and can therefore be used to test patients of all ages, 

including newborn infants. Nonetheless, cortical AEPs continue to be used for some 

applications in adults and have been used successfully to estimate the pure-tone thresholds, 

usually to within 10 dB, with the cortical AEP threshold generally being elevated relative to 

the behavioral threshold (Ikeda et al., 2010; Prasher et al., 1993; Rapin et al., 1970; Yeung 

and Wong, 2007). Sometimes, however, the CAEP threshold may be more than 20 dB above 

the behavioral threshold, or even absent entirely (e.g., Glista et al., 2012; Van Maanen et al., 

2005). On its own, an absent evoked response is non-diagnostic, because lack of a response 

to a given stimulus may be due to a number of factors unrelated to the brain’s response to 

that stimulus (e.g., an increase in biological or environmental noise unrelated to the stimulus 

could obscure the response).

For signal-in-noise testing, the existing literature combining CAEPs and behavior is often 

limited to small-sample, group-design studies resulting in somewhat restricted 

generalizability, with results specific to the characteristics of the tested subgroup. Several 

studies have explored the relationship between behavior and CAEPs, particularly in the 

domain of speech-in-noise testing. Some researchers have used the Hearing in Noise Test 

(HINT) and found statistically significant (α = .05) weak-to-moderate correlations with N2 

amplitude in 32 children (r = −0.383; Anderson et al., 2010) and N1 amplitude in 22 adults 

(r = 0.520; Parbery-Clark et al., 2011). Campbell et al. (2013) and Bidelman et al. (2016) 

both used the QuickSIN as their speech-in-noise test and found a statistically significant (α 
= .05) moderate-to-strong correlations with P2 latency (r = 0.494) and N1 amplitude (r = 

0.63) in 17 and 12 adults, respectively. Using a behavioral measure that combines accuracy 

and reaction time, a weak-to-moderate correlation with N1 and P2 amplitude was found (r = 

0.37; Bidelman et al., 2014). Our past studies reveal similar values with best correlations 

between IEEE sentences and N1, P2, P3 latency/amplitude ranging between r = 0.53 and r = 

0.80 (Bennett et al., 2012; Billings et al., 2013; Billings et al., 2015). The correlation 

coefficients that have been found for brain-behavior relationships using cortical AEPs are 

generally very similar to those found using brainstem AEPs (Anderson et al., 2011; 

Bidelman et al., 2014; Parbery-Clark et al., 2011). Using an oddball paradigm, Bertoli and 

colleagues (2005) examined the degree to which the SPIN-generated SNR50 was correlated 

with the latency and amplitude from three CAEP peaks (MMN, N2b, and P3b) recorded in a 

noisy background from 30 individuals and found only a moderately strong correlation with 

N2 latency to be statistically significant (α = .05). These studies highlight some of the 

difficulties associated with brain-behavior correlations: (a) these studies are often limited to 

relatively small samples; (b) a single behavioral measure (often the SNR50) is correlated 
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with any number of CAEP measures; and (c) it is usually not clear how many total 

correlations were truly calculated to find the “significant” few.

One of the problematic aspects of relating brain measures to behavioral performance is 

deciding what physiological measures to use. In contrast to behavior, where the SNR50 

stands as the single most well-established measure used to characterize the psychometric 

function, there are many potential electrophysiological measures that might be used to 

characterize the neural response, and few guidelines on how to select between them. In a 

study from our laboratory, even beginning with a restricted set of outcome measures 

ultimately led to making many comparisons, given the large number of test conditions 

(Billings et al., 2013). Because of the obvious problems with type I error due to multiple 

testing, we took a modeling approach to predict the behavioral SNR using a weighted 

average of all the electrophysiological outcome measures, with the individual weights set to 

produce the best possible predictions. The resulting weighting factors could help us relate 

the behavioral and electrophysiological data in a more thorough and systematic way.

4.1. Using functional neuroimaging to predict speech understanding in noise

4.1.1. Using electrophysiological methods: CAEPs—Speech-in-noise studies 

demonstrate that two important factors—SNR and background noise type—interact with age 

and hearing impairment to affect performance. When signals are presented in continuous 

background noise, perception is relatively unaffected in normal-hearing individuals until 

SNR reaches about 0 dB; in contrast, individuals with hearing impairment can require SNRs 

of 4 to 12 dB to maintain comparable performance with normal-hearing individuals 

(Crandell and Smaldino, 1995; Killion, 1997; Moore, 1997). The critical point of about 0 dB 

SNR for normal-hearing individuals is reflected electrophysiologically as well as 

behaviorally: Billings et al. (2009) found that the most drastic changes in latency and 

amplitude occurred at SNRs ≤ 0 dB. These similarities suggest that certain 

electrophysiological measures may prove to be good predictors of speech-in-noise 

understanding. As mentioned previously, a physiological predictor of speech understanding 

in noise may be especially useful in difficult-to-test individuals.

We created several different prediction models using data from Experiments 1 and 3 to 

investigate the feasibility of using electrophysiology to predict speech understanding in 

noise. More specifically, we have attempted to use peak amplitudes, peak latencies, and area 

measures to predict the SNR50 that was determined using word and sentence tests. Partial 

least squares (PLS) regression was used to develop the prediction models. PLS regression 

has the advantage of making judicious use of many correlated predictors, in this case the 

CAEP measures, by determining weighted linear combinations of independent variables that 

are optimized to best predict the dependent variable(s). The accuracy of these predictions 

was quantified in terms of root-mean-square prediction error (RMSPE), with prediction error 

being defined as the difference between the predicted SNR50 and the measured SNR50 for 

each subject.

Table 1 represents the prediction errors for Experiment 1 (upper portion) and Experiment 3 

(lower portion). Our first attempts at developing the predictions model were based solely on 

young, normal-hearing individuals, as we were interested in determining the accuracy of 
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predictions under “ideal” conditions—i.e., when speech understanding was good and AEP 

morphology was robust. Finding prediction errors smaller than 1 dB led us to apply the 

YNH-trained model to ONH and OHI individuals. The YNH model performed well for 

ONH (RMSPEs around 2 dB) but poorly for OHI (RMSPEs > 16 dB). Subsequently, an 

OHI-trained model was developed and resulted in smaller, but still relatively large, RMSPEs 

of around 6 dB. Given reasonable predictions for the normal-hearing groups, in Experiment 

3 we attempted to improve predictions by modifying the noise type and using a babble 

background noise that would be more representative speech-on-speech listing situations. 

Instead of models based on a specific participant group, one comprehensive prediction 

model was created by combining all 30 participants across the three groups into a single data 

pool; and instead of lengthy custom-designed speech-in-noise tests that required separate 

function-fitting after the fact to derive SNR50s, we tried using shorter clinical tests that 

estimate SNR50 directly from the number of correct responses (WIN and QuickSIN). The 

resulting RMSPEs (1–3 dB across the board) were reduced for the OHI group and remained 

relatively stable for YNH and ONH groups.

4.1.2. Using other neuroimaging methods—It is worth noting that other 

neuroimaging-based methods – ones that do not rely on latency, amplitude, or area analysis 

of waveforms – have also been investigated for possible predictive value. One such approach 

is based on identifying locations in the brain where changes in activity are correlated with 

changes in behavioral performance. A second approach is to look at cortical entrainment in 

the delta-band (1–4 Hz) and theta-band (4–8 Hz) ranges in response to slow fluctuations in 

the speech envelope. The first approach requires high spatial resolution such as that provided 

by fMRI, while the second approach depends on high temporal resolution, as can be 

supplied by MEG or EEG. A review of the literature suggests that there may indeed be 

potential to develop methods of predicting receptive speech-in-noise performance based on 

these approaches. However, the story is not at all straightforward, and numerous challenges 

exist.

First, seemingly slight differences in the task, stimulus, subject population, or method of 

analysis can result in rather different activation loci being identified – or even the reversal of 

an effect direction within the same location. For example, Vaden et al. (2013, 2015) found 

that cingulo-opercular network activity immediately before a word-recognition trial was 

predictive of better performance, yet activity in this region during the trial was predictive of 

poorer performance. They also found that occipitotemporal regions were predictive of 

performance for older adults but not for younger ones. It can be especially difficult to draw 

conclusions in comparing across studies when more than one of these factors changes at a 

time. For instance, using positron emission tomography Scott et al. (2004) found that 

cortical processing of multiple speakers in unmodulated noise occurred in the dorsolateral 

temporal lobe, while Salvi et al. (2002) found that when subjects listened monaurally to 

sentences in multitalker babble and repeated the last word of each sentence, activation 

occurred in the right anterior lobe of the cerebellum and the right medial frontal gyrus. With 

activation loci apparently being so sensitive to particular task variables, it is unclear whether 

results on any particular test will be generalizable to overall speech-in-noise performance.
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Similar issues present themselves in the temporal and spectral domains as well. While the 

bulk of neuroimaging studies on cortical phase-locking support the idea that more robust 

entrainment to the speech envelope in the delta band is predictive of increased behavioral 

performance (Ding et al, 2014; Ding and Simon, 2013; Peelle et al., 2013; Zoefel et al., 

2017) while theta-band entrainment is not (Ding et al., 2014; Peele et al., 2013), these 

studies focus on younger adults listening in stationary noise – or in quiet with degraded 

speech signal (as through noise-vocoding). However, in modulated noise, for a subject group 

with equal numbers of normal-hearing and hearing-impaired participants, Millman et al. 

(2017) found that larger amplitudes of envelope-locked cortical responses were associated 

with poorer performance, even after controlling for age and hearing loss.

Second, when brain scans are performed concurrently with behavioral testing, there is no 

way to discern if the same results would have been obtained from the stimuli alone in a 

passive condition – a property that would be important if aiming for clinical utility with 

hard-to-test patients. Indeed, per Binder et al. (2004), the cingulo-opercular network that 

Vaden et al. (2013, 2015) found to be predictive of performance is not associated with the 

processing of acoustic cues, but with preparation for behavioral task performance in general. 

Interestingly, areas that are widely thought to be involved in processing of acoustic cues and 

segregation of auditory streams – most notably in the left superior temporal gyrus (STG; 

Deike et al., 2004; Hwang et al., 2007) – were not found to be predictive of performance in 

the Vaden et al. studies.

Finally, a note on terminology: While the word “prediction” and its variants are used in these 

MEG and fMRI studies, they generally look at overall trends and correlations between 

variables in a single data set, without using a validation set or cross-validation methods, and 

without looking at how close the individual predictions are on average. Furthermore, these 

studies tend to collect behavioral and neuroimaging data simultaneously on the same stimuli, 

which allows for very little to be said about generalization to overall speech-in-noise 

listening performance.

5. Future directions

The existing literature combining electrophysiology and behavior is mainly limited to small-

sample, group-design studies and due to the inter-subject variability on AEPs even within 

same group, they lack statistical power. The results of these studies are important but are 

somewhat restricted in their generalizability, with results specific to the characteristics of the 

tested subgroup or stimulus. For example, middle-aged individuals are often not included in 

group designs studying age. Figure 8 shows the sampled age and hearing impairment 

participant space for Experiment 1 with the amplitude of the auditory evoked response 

represented by color brightness. It is clear from this figure that a large portion of the 

population were not represented in the study (e.g., individuals from 35 to 59 years of age). 

To establish generalizable effect sizes of age and hearing impairment and to develop useful 

AEP-based prediction models will require larger and more diverse samples, so that age and 

hearing thresholds can be treated as continuous covariates rather than being used to separate 

subjects into discrete (and somewhat arbitrary) groups. With a sample that more fully spans 

the variable space, the effects of age and hearing impairment will be better characterized, 

Billings and Madsen Page 14

Hear Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and prediction models will likely be more generalizable to clinical populations. Such a 

robust experimental design will maximize our ability to clarify the relationship between 

electrophysiology and behavior, and support the development of a robust electrophysiology-

based prediction model.

Another area of improvement may be in determining how to best characterize the 

electrophysiological waveform. Currently, peak latency and peak amplitude are most often 

used to represent the evoked waveform. Perhaps taking the entire waveform into account 

rather than extracting certain peaks would enable better predictions. Certainly, reducing the 

need for choosing a peak could improve the utility and ease of a prediction tool. Using area 

measures was our attempt at a more automated method of characterizing the waveform, but 

there are also more advanced methods being explored that have been made possible by 

modern computing power.

Finally, when creating prediction models, overfitting to the data can be a problem. As a 

model gets more complex, it will likely fit the dataset it was developed on better and better; 

however, with increasing complexity the model becomes less and less generalizable to other 

independent datasets (Hastie et al., 2009). Some degree of over-fitting is likely when the 

model was created using the same sample that is being tested. A better approach is to divide 

a dataset into two independent samples: a model development sample and a model validation 

sample. By applying a developed model to an independent validation sample, overfitting can 

be detected (and then minimized) and generalization can be tested.
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Appendix

Appendix A.

Details for everyday situations presented in Figure 1.

Group Name Specific Situation SNR (dB) Description Study

Inside

Urban inside 9 Conversation in urban household noise Pearsons et al, 1977

Suburban inside 14 Conversation in suburban household 
noise

Pearsons et al, 1977

Office 13 12×14 carpeted office Teder, 1990

Conference room 9 Carpeted conference room Teder, 1990

Radio/TV

Music 11.1 Conversation in a music background Smeds et al, 2015

Radio/TV 7.6 Conversation in radio or TV noise Smeds et al, 2015

Classroom

Classroom 7.9 University Hodgson et al, 1999
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Group Name Specific Situation SNR (dB) Description Study

Classroom 22 High school, located near moderately 
busy street

Pearsons et al, 1977

Classroom 21 High school, located under landing path 
for LAX

Pearsons et al, 1977

Classroom 11.5 12 classrooms with ventilation Markides et al., 
1986

Classroom −4.5 12 classrooms with student-activity Markides et al., 
1986

Hospital

Hospital 11 Patient room Pearsons et al, 1977

Hospital 4 Nurses station Pearsons et al, 1977

Outdoors

Urban outside 4 Urban backyard or patio area facing 
street

Pearsons et al, 1977

Suburban outside 7 Suburban backyard or patio area facing 
street

Pearsons et al, 1977

Outdoors 12.5 Conversing amongst traffic, birds 
singing, etc.

Smeds et al, 2015

Outdoos 4 Suburban patio party Teder, 1990

Outdoors 6 Lakeshore, moderate wind Teder, 1990

Restaurant

Bar 1 Neighborhood bar, Friday evening Teder, 1990

Restaurant bar 7 Restaurant bar, 1/3 full Teder, 1990

Small restaurant 5 Small restaurant, 1/2 full Teder, 1990

Small restaurant 4.5 Small restaurant, full Teder, 1990

Hilton bar 5.5 Hotel lobby bar with piano music Teder, 1990

Dept. Store

Dept. Store 4 Department stores Pearsons et al, 1977

Dept. Store 3.8 Conversation at checkout or while 
shopping

Smeds et al, 2015

Automobile

Car 1 1986 Chevrolet Nova at 55 mph, asphalt Teder, 1990

Truck 2 1986 Dodge Ram at 60 mph, concrete Teder, 1990

Truck 1.5 1986 Dodge Ram at 40 mph, concrete Teder, 1990

Car 2 1988 Pontiac Bonneville at 65 mph, 
asphalt

Teder, 1990

Car 6 Conversation in moving car Smeds et al, 2015

Cocktail Party

Cocktail party −2 In halls with a sound-reflecting ceiling Plomp, 1977

Cocktail party 1 Only taking into account horizontally-
radiated sound

Plomp, 1977

Babble 4.6 Conversation in multi-talker babble noise Smeds et al, 2015

Public Trans.

Public trans. −8 Bay Area Rapid Transit system Pearsons et al, 1977

Aircraft −11 Different planes cruising at normal 
speed/altitude

Pearsons et al, 1977

727 jet 5 In the cabin while taxiing Teder, 1990
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Group Name Specific Situation SNR (dB) Description Study

727 jet 10 In the cabin while descending Teder, 1990

Public trans. 4.4 Conversation on train, in the station hall, 
or close to the platform

Smeds et al, 2015

Appendix B.

Study methodology details for those measurements that are characterized in Figure 1.

Study Filtering (dB) Distance Location of mic(s) Signal Noise

Hodgson et 
al, 1999

A-weighted 1, 2, 4, 8, 16 
meters from 
instructor

Unlisted Male and female 
instructors

Classroom noise 
(i.e., student 
talking, coughing, 
chair movement) 
and noise from 
ventilation system. 
Noise from outside 
the classroom was 
removed

Markides et 
al., 1986

A-weighted, fast 2 meters Center of classroom Two groups of 
teachers: schools 
for the deaf, PHU

Short duration 
noise (i.e., 
footsteps inside 
and outside 
classroom, banging 
of doors and desk 
lids), Non-
stationary long 
duration noise (i.e., 
primarily chatter of 
the children), 
Quasi-stationary 
noise (i.e., 
machinery, cars, 
aircraft)

Pearsons et 
al, 1977

A-weighted, fast Corrected to 
1 meter

Classroom: two 
mics placed at 
different distances 
from the teacher, 
and a lavalier 
microphone worn by 
the teacher. All 
other situations: 
utilized a tape 
recorder and a 
single microphone 
located at the 
listener’s ear

Varied by situation Varied by situation

Plomp, 1977 Unlisted 1 meter Unlisted Talker distanced 1 
meter away

Sound-pressure 
level of one source 
(average level for 
randomly oriented 
talkers)

Smeds et al, 
2015

A-weighted Varied 
depending 
on 
environment

Two microphones: 
one located next to 
left ear and one next 
to right ear

Data collected 
from hearing aids. 
If selected 
segments were 
judged to contain 
target speech and 
were long enough 
(minimum 2 sec or 
an entire sentence), 
they were kept for 
further analysis. 
Speech was defined 
as “target speech” 
when the informant 
was directly 

Data collected 
from hearing aids. 
Background noise 
categories were 
sorted based on the 
median A-weighted 
noise levels at the 
better ear
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Study Filtering (dB) Distance Location of mic(s) Signal Noise

involved in a 
conversation with 
the person 
speaking

Teder, 1990 A-weighted, slow ~ 1 foot 
from 
observor’s 
body

Sound level meter 
held in front of 
researcher’s chest, 
angled 45 degrees 
toward the front

In most cases, the 
speech levels 
recorded were 
those of non-
hearing impaired 
partner

Varied by situation
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Figure 1. 
Signal-to-noise ratios (SNRs) measured in everyday listening situations across different 

studies. Specific environments from the reviewed studies have been grouped into broader 

categories and arranged according to mean or median SNR (depending on the study), with 

the highest (most favorable) on the left and the lowest (least favorable) on the right. See 

Appendices A and B for additional details about the recording procedures and listening 

situations from each study.
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Figure 2. 
Variability in speech understanding in noise across listeners. SNR50s are plotted for 

different signal levels for a young, normal-hearing group (error bars show ±1 standard error 

of the mean) and for older hearing-impaired individuals. Points above the dashed line 

represent those individuals who remained below 50% performance at the maximum test 

SNR of 30 dB.
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Figure 3. 
Psychometric functions for IEEE sentence understanding. Younger normal-hearing (solid 

black lines), older normal-hearing (long-dashed red lines), and older hearing-impaired 

(short-dashed blue lines) functions are shown both as a group average (thick) and for 

individuals (thin). (Figure modified from Billings et al., 2015).
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Figure 4. 
Experiment 1: CAEP responses at the Cz electrode to speech token /ba/ in steady-state 

speech-spectrum noise as a function of SNR for three participant groups. A. Waveform 

morphology is affected by SNR (generally latencies increase and amplitudes decrease as 

SNR gets worse) and by age and hearing status. B. SNR growth functions for N1, P2, and 

area CAEP measures, reveal systematic effects of SNR and group. (Figure modified from 

Billings et al., 2015).
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Figure 5. 
Age and hearing impairment effects on speech understanding, using data from all three 

experiments. Error bars represent the pooled mean standard error for the two sets of 

measurements used to calculate each difference value. A. Age effects on SNR50 values are 

shown for steady-state speech spectrum noise and four-talker babble using word (scored by 

word and phoneme) and sentence tests. B. Hearing-impairment effects on SNR50 values are 

shown as a function of signal and noise type. Hearing-impairment effects are 6–10 dB larger 

than the age effect for steady-state noise, whereas the effects are similar when four-talker 

babble is used.
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Figure 6. 
Speech understanding accuracy at selected SNRs, derived from individual fitted logistic 

functions, grouped by signal type and participant group. All three SNRs are within the range 

that commonly occurs in everyday listening situations. Age and hearing-impairment effects 

in terms of percent correct illustrate the difficulty that may be experienced, especially by 

older hearing-impaired listeners. Error bars represent the standard error of the mean.
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Figure 7. 
Age and hearing impairment effects on cortical AEPs. Error bars represent the pooled mean 

standard error for the two sets of measurements used to calculate each difference value. A. 

Age effects on N1, P2, and area are shown for the speech-syllable stimulus /ba/ presented in 

steady-state speech-spectrum noise (data from Experiment 1, collapsed across −5, 5, and 15 

dB SNRs) and in four-talker babble (data from Experiment 3, collapsed across −3, 3, and 9 

dB SNRs). Increased age is mostly associated with decreases in latency, amplitude, and area. 

Later P2 latencies for YNH participants are also seen. B. Hearing impairment appears to be 

associated with larger areas and peak amplitudes, shorter N1 latency, and longer P2 latency.
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Figure 8. 
Age and pure-tone average (PTA) hearing thresholds for Experiment 1 participants. Each dot 

represents one of the individuals tested in the three participant groups: YNH, ONH, and 

OHI. Shading of each dot represents the magnitude of the auditory evoked response for each 

individual. Large portions of the PTA-age space are not represented (e.g., individuals 

between 35 and 59 years of age). Continuous (non-grouped) sampling of individuals with a 

wide range of ages and hearing thresholds would improve our estimates of aging and hearing 

impairment effects and expand the generalizability of a prediction model.
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TABLE 1.

Electrophysiology-based predictions of speech-understanding SNR50s for Experiment 1 (steady-state noise; 

EPs & IEEE sentences at 80 dB C) and Experiment 3 (babble noise; EPs at 65 dB SPL; QuickSIN at 70 dB 

HL, WIN at 84 dB HL)

Model Development Model Accuracy

Predicted Variable Training Group EP Measures EP SNR (dB) Test Group RMPSE (dB)

Experiment 1*

 IEEE SNR50

YNH 5 peak + 2 area 5 YNH 0.7

5 ONH 1.9

5 OHI 16.7

      

2 area 5 YNH 0.7

5 ONH 2.7

5 OHI 16.5

      

      

OHI 5 peak + 2 area 5 OHI 7.8

2 area 5 OHI 6.9

Experiment 3†

 QuickSIN SNR50

All subjects 2 peak + 2 area 9 YNH 1.1

9 ONH 1.2

9 OHI 1.2

9 All subjects 1.2

      

 WIN SNR50

All subjects 2 peak + 2 area 9 YNH 2.9

9 ONH 2.1

9 OHI 2.3

9 All subjects 2.4

*
Billings et al., 2015

†
Maamor & Billings, 2016
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