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Predictive metabolomic profiling of microbial
communities using amplicon or metagenomic
sequences
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Microbial community metabolomics, particularly in the human gut, are beginning to provide a

new route to identify functions and ecology disrupted in disease. However, these data can be

costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing

data are readily available for populations of many thousands. Here, we describe a compu-

tational approach to predict potentially unobserved metabolites in new microbial commu-

nities, given a model trained on paired metabolomes and metagenomes from the

environment of interest. Focusing on two independent human gut microbiome datasets, we

demonstrate that our framework successfully recovers community metabolic trends for more

than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles

of coral-associated, murine gut, and human vaginal microbiomes. We also provide an

expected performance score to guide application of the model in new samples. Our results

thus demonstrate that this ‘predictive metabolomic’ approach can aid in experimental design

and provide useful insights into the thousands of community profiles for which only meta-

genomes are currently available.
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Advances in high-throughput metabolomics technology
have enabled comprehensive coverage of a large number
of small-molecule metabolites in microbial communities1.

Analysing metabolic differences between differentially regulated
biochemical pathways can facilitate the discovery of potential
biomarkers associated with disease and provide insights into the
underlying pathogenesis2,3. This has been highlighted by an
increase in studies that rely on multi’omic profiling to simulta-
neously characterize community ecology, metabolic signatures,
and functional attributes of the human microbiome or other
environments4–12. For example, among the best-studied bioactive
microbial metabolites influencing human health are the short-
chain fatty acids (SCFAs) including propionate, butyrate, and
acetate, which have been implicated in the pathogenesis of several
diseases, including inflammatory bowel disease (IBD) and col-
orectal cancer13–15. Other examples include the bile acids16,
sphingolipids17, and tryptophan derivatives18 all with evidence of
microbial interactions and bioactivity in the gut.

Inferring the capacity of a microbial community to produce
molecules and using large-scale data sets to connect new specific
genes to metabolites is thus an essential first step towards the goal
of understanding how and why gut microbiome metabolism
affects human health19. The strength of association between gut
microbial and metabolic profiles suggests that it may be possible
to approximately predict the metabolomic activities or features of
microbial communities from metagenomes, based on their
taxonomic or functional profiles. Easily identifying such asso-
ciations purely based on enzymatic roles is greatly limited by the
currently unsaturated repertoire of gene–metabolite reactions, as
well as by the relative (rather than absolute) abundance measures
provided both by typical sequencing and metabolomic technol-
ogies. Despite these limitations, however, approaches that predict
metabolite features associated with gut microbial profiles can
serve as a hypothesis generator that can facilitate population-scale
discovery of novel associations (e.g. in large metagenomic data
collections) and lead to new sets of testable hypotheses, serving as
a complementary adjunct to experimental validation studies (e.g.
as has been the case for predictive functional profiling from
amplicon data20).

Recently, a few studies have taken initial steps to carry out such
predictions in the subset of cases with prior knowledge of the
mechanisms linking microbiome and metabolome (e.g. from
stoichiometric enzyme reaction matrices derived from databases
such as Kyoto Encyclopedia of Genes and Genomes (KEGG)21).
One set of approaches, collectively referred to as Predicted
Reactive Metabolic Turnover (PRMT), calculate community-
based metabolite potential (CMP) scores, which represent the
relative capacity of the community in a given sample to generate
or deplete each metabolite22–24. Other methods reconstruct pre-
dictive metabolic models of community metabolism in either a
constraint-based or a network-based modeling framework25–27.
One common drawback of both these approaches is their inability
to distinguish between failure to predict due to missing annota-
tion or accurate reaction information in the reference database
and failure due to alternative biological mechanisms, making
them difficult to apply or validate in a data-driven manner. In
addition, these methods depend on accurate characterization and
annotation of species- and even strain-specific metabolites, and
they do not scale well to complex communities with partially
referenced taxa or metabolites. All these studies thus link
microbial functional potential to metabolomic activity, but they
are limited in scope and lack rigorous external (independent)
validation, particularly in environments such as the human gut in
which metabolomic training measurements are feasible and
where accurate and novel bioactive discovery can have particular
impact.

Here we describe MelonnPan (Model-based Genomically
Informed High-dimensional Predictor of Microbial Community
Metabolic Profiles), a computational framework to predict com-
munity metabolomes from microbial community profiles. Mel-
onnPan infers the composite metabolome by enabling (1) data-
driven identification of an optimal set of predictive microbial
features, and (2) robust quantification of the prediction accuracy
of the well-predicted metabolites. This allows researchers to
reproducibly infer metabolites for communities from which only
metagenomes are currently available. We applied MelonnPan to
two independent gut metagenome data sets comprising >200
patients with Crohn’s disease (CD), ulcerative colitis (UC), and
healthy control (HC) participants. This revealed high con-
cordance between predicted and observed community metabolic
trends in >50% of metabolites whose identities were confirmed
against laboratory standards, including prediction of metabolic
shifts associated with bile acids, fatty acids, steroids, prenol lipids,
and sphingolipids. When using taxonomic features from ampli-
con sequencing profiles, similar accuracy was maintained for
coral-associated, murine gut, and human vaginal microbial
communities as well. The implementation of MelonnPan, asso-
ciated documentation, and example datasets are made freely
available in the MelonnPan software package at http://
huttenhower.sph.harvard.edu/melonnpan.

Results
The MelonnPan algorithm. We have developed MelonnPan as a
computational method to predict metabolite features from
amplicon or metagenomic sequencing data by incorporating
biological knowledge in the form of either taxonomic or func-
tional profiles. Unlike existing stoichiometry-based methods that
rely on a limited number of well-characterized taxa, enzymes, and
metabolites, functional annotation is not necessary for Melon-
nPan, as the tool is designed to capture insights using machine
learning even from uncharacterized microbial features. In this
manuscript, we discuss specifically its application to the human
gut microbiome, but the methodology is generalizable to any
appropriately profiled microbial environment. Briefly, Melon-
nPan uses elastic net regularization28 to identify which features
(taxonomic or functional) are predictive for a given metabolite.
Given a new taxonomic profile (from amplicons or a metagen-
ome) or metagenomic functional profile (i.e. gene family abun-
dances), it then combines a subset of the sequence features to
estimate the associated composite metabolome. The
resulting predicted metabolites are each the weighted sum of
relative abundances of predictive features (taxa or gene families),
where the regression coefficients from the trained elastic net
model are used as weights in the prediction algorithm (Fig. 1).

In the fitting stage, MelonnPan is trained using samples for
which both sequencing data and experimentally measured
metabolite abundances are available (Fig. 1a). Both measures
are effectively relative abundances—normalized reads or spectral
counts, respectively. The training (and, later, inference) meta-
genomes can be profiled with any system that quantifies relative
abundances of taxa or functionally related microbial gene
families; here we use previously profiled amplicon data and
metagenomes functionally profiled by HUMAnN229 with Uni-
Ref90 as the reference catalogue, i.e. clustered sets of sequences
from UniProt at a minimum of 90% amino acid identity30. The
fitting process uses per-metabolite elastic net regularization to
optimize a small number of sequence features’ coefficients. The
final model for a particular environment (the human gut or
otherwise) is selected based on rigorous internal validation (cross-
validation) corresponding to the greatest cross-validated like-
lihood for each metabolite. Metabolites that cannot be well
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predicted by any generalizable model are flagged based on rank
correlation between predictions and training measurements
(Spearman correlation coefficient <0.3). Finally, the model can
then be applied to new microbial communities from analogous
environments using simple linear regression, multiplying the
learned coefficient values by sequence feature abundances
(Fig. 1b). During model assessment prior to predictive applica-
tions in new data sets, no information from the test set is used in
training the model. Here, for our main gut-specific model, we
have also applied the final internally validated model to an
independent, external validation cohort. Performance is summar-
ized as each metabolite’s Spearman’s rank correlation coefficient
across all samples with the corresponding measured metabolite
(“Methods”).

MelonnPan accurately predicts metabolites from metagen-
omes. We validated an initial MelonnPan model for the human
gut using two independent metagenomic and metabolomic data
sets comprising 155 and 65 IBD patients and controls, respec-
tively, with CD (n= 68 and 20), UC (n= 53 and 23), and HC
participants (n= 34 and 22; Supplementary Table 1). In each
cross-sectional cohort (the Prospective Registry for IBD Studies at
the Massachusetts General Hospital (PRISM) and the Nether-
lands IBD cohort (NLIBD)), stool samples were profiled by a
combination of shotgun metagenomic sequencing and four liquid

chromatography tandem mass spectrometry (LC-MS) methods
(including polar compounds in the positive and negative ion
modes, lipids, and free fatty acids and bile acids, “Methods”). The
LC-MS profiling yielded ~8000 clustered features, characterized
by chromatographic retention time and exact mass. Metagenomic
functional profiles were generated for all samples with
HUMAnN229, resulting in approximately 1 million UniRef90
gene families. Both data types were quality controlled and filtered
before modeling: features were removed when they did not vary
in value over the available samples. In particular, both gene
families and metabolites, of very low relative abundance and
prevalence (<0.01% in ≥10% of samples) were removed, leaving
2818 metabolites and 814 gene families for final modelling
(“Methods”). All training, including internal cross-validation, was
performed using only data from PRISM; performance evaluation
and external validation was conducted using held-out samples
from the Netherlands (NLIBD).

In these data, we modelled a panel of 466 metabolites whose
identities were confirmed experimentally against laboratory
standards31. After initial filtering, model fitting, and internal
cross-validation, >50% (n= 107, 53.8%) were well predicted
(Spearman correlation of predicted versus measured metabolite
abundance ≥0.3) by MelonnPan during independent validation
(Supplementary Fig. 1). The well-predicted metabolites (Fig. 2a)
included sphingolipids [e.g. ceramide and phytosphingosine, fatty
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Fig. 1 MelonnPan is a predictive model inferring microbial community metabolite features from amplicons or metagenomes. a The MelonnPan model can
be trained to infer metabolite profiles for a particular microbial community type given, first, training data consisting of paired metagenomes (X) and
metabolomes (Y) from the environment of interest. The model is fit beginning with microbial sequence features derived from training metagenomes. It
uses an elastic net regularized regression, per metabolite, to identify a minimal set of microbial features whose abundances predict that metabolite. These
individual learners are first checked using cross-validation, and poorly fit metabolites (Spearman correlation coefficient between measured and predicted
metabolite abundances across samples <0.3) are flagged. b The sequence features’ coefficients (W) for remaining, well-predicted metabolites are saved
and can be applied to new metagenomes to predict the associated metabolite features (Y, in units of relative abundance), which can be utilized for
downstream epidemiological analysis
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acids (e.g. docosapentaenoic acid and caproic acid), B-group
vitamins (e.g. pantothenate, Fig. 2d), and derivatives of
cholesterol and bile acids [e.g. cholestenone (Fig. 2c) and cholic
acid]. These compounds are increasingly recognized as important
signalling molecules in the regulation of systemic host–microbial
cometabolism1. The fully fit model parameters, predictions, and
performance summary across metabolites and subjects are
provided in Supplementary Data 1–4, and the implementation
and model are available online at http://huttenhower.sph.harvard.
edu/melonnpan.

A substantially large number of metabolites were thus well
predicted across samples (Supplementary Data 5), both during
cross-validation and in independent held-out metagenomes; as a
result, MelonnPan can successfully recover the metabolomic
profiles of a moderately large number of experimentally validated
metabolites across entire metagenomic samples (Fig. 2b, Supple-
mentary Data 6, Supplementary Fig. 2). While these validations
mainly tested the subset of identified metabolites verified using
experimental standards, the model can be trained and fit to all
unique metabolites, even those without a confidently assigned
label (Supplementary Fig. 3). In particular, among 2818
metabolites with unique cluster IDs, approximately 60% (n=

1679, 59.6%) had ≥0.3 accuracy (Spearman r) during training
(Supplementary Fig. 1). Among these, a large number (n= 933,
55.6%) were, like the labelled compounds, well predicted both
during cross-validation and in independent validation data. This
high predictability is somewhat surprising, given the complexity
of gut microbial communities and the multitude of external and
internal influences that can potentially impact metabolite
abundances. This highlights the robustness of MelonnPan’s
predictive capabilities even in the context of complex, unstable,
and dynamic communities, such as the human gut.

In each well-predicted metabolite, on average, <2% of the gene
families (median model size= 12, median positive weights= 9,
and median negative weights= 11) were selected by the Melon-
nPan model (Supplementary Data 3, Supplementary Fig. 4). This
is both statistically and biologically meaningful, since MelonnPan
imposes regularization to estimate a sparse model and identify a
small set of relevant sequence features (where both the elastic net
mixing and sparsity parameters are selected based on internal
ten-fold cross-validation; “Methods”). The learned weights from
MelonnPan represent the relative capacity of the features in a
given sample to be associated (positively or negatively) with each
metabolite (assuming some baseline metabolite profile across
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Fig. 2 MelonnPan accurately predicts metabolite features based on metagenomic sequence profiles. a From a panel of 466 metabolites whose identities
were confirmed against laboratory standards, these 50 were the best predicted by MelonnPan with unique Human Metabolome Database (HMDB)
identifiers (as measured by Spearman correlation (r) of predicted versus measured profiles in the Netherlands inflammatory bowel disease (NLIBD)
independent validation cohort). All metabolites shown have r > 0.3 over a total n= 65 NLIBD samples. Two representative metabolites are shown in red.
b Measured and predicted metabolite profiles across a single representative sample were strongly and significantly associated across 107 labelled
metabolites (including both unique and non-unique compounds that were well predicted by MelonnPan). c Representative significant prediction for
cholestenone in the test set. d Representative statistically significant prediction for pantothenate in the NLIBD validation data (values are relative
abundances). See Supplementary Figs. 1–2 and Supplementary Data 1–6 for full results. For each scatter plot, the best fitting regression line is also shown
(in red)
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samples). Biologically, this allows us to build an interpretable
model by progressively setting the contributions of less relevant
features to zero and retaining only a small number of features—in
this case, genes with potential enzymatic contributions to, or
other associations with, the targeted metabolite.

As an additional validation, and to further rule out the
possibility of data artefacts, we tested MelonnPan’s behaviour
when attempting to link randomized, null microbial profiles to
metabolite profiles. In particular, we independently permuted
both metabolite and gene family training data across samples,
which were then renormalized following permutation to preserve
the core characteristics of each individual data set (“Methods”).
We repeated this procedure 1000 times, each time collecting the
resulting coefficients from the trained MelonnPan model, and
averaged the number of well-predicted metabolites across
iterations to derive the final predictability (which would, in the
absence of overfitting, remain near-zero). We found that the
randomized null profiles produced a consistently very low set of
metabolites considered to be well predicted as compared to true,
unshuffled data during assessments on both training and
independent validation data sets (59.6% of true compounds well
predicted versus 3.2% after permutation of training data; 55.6% of
true compounds well predicted in validation data, versus 4.4%
after permutation, McNemar’s exact test P < 0.0001, Supplemen-
tary Figs. 5–6). This represents both an indication of Melon-
nPan’s robustness to overfitting and a justification for its arbitrary
threshold (i.e. Spearman r > 0.3), which is broadly consistent for
summarizing a sufficiently high number of “well-predicted”
metabolites.

Estimating MelonnPan accuracy in new microbial commu-
nities. The usefulness of MelonnPan, of course, depends on the
accuracy of its predicted metabolomes from new microbial
community samples and the corresponding ability to recapitulate
findings from metabolomic studies. To characterize this effect, we
developed the Representative Training Sample Index (RTSI) (in
the spirit of the Nearest Sequence Taxon Index of PICRUSt20) to
quantify the representativeness of new samples with respect to
training data sets (“Methods”). Briefly, MelonnPan first flags any
feature (taxon or gene family) not present in the training meta-
genomes, and for the remaining common features (between
training and test samples), it calculates an average similarity score
(per microbial community sample) based on principal compo-
nent analysis (PCA). In particular, RTSI scores are computed by
sequentially seeking the highest correlation coefficient with the
top principal components (PCs) explaining a majority of the
variation in the training microbiomes (“Methods”). We compared
the RTSI scores and MelonnPan accuracies for all of the NLIBD
validation samples across all well-predicted metabolites (Supple-
mentary Fig. 7), which revealed a strong and statistically sig-
nificant correlation (Spearman correlation= 0.4, P= 0.003)
between representativeness (higher RTSI) and predictability of
samples across metabolites (as measured by Spearman correlation
between measured and predicted metabolite abundances). This
correlation value was itself conservatively low, caused by a few
outlier samples without which the predictiveness of the RTSI for
MelonnPan performance on new samples is even greater.

These insights have potential implications at multiple levels.
First, this method provides MelonnPan users with a way to be
appropriately cautious when applying the model to predict
metabolite features for communities distinct from a default,
human gut model or from other models that the user may have
trained. The ability to calculate RTSI values within MelonnPan
allows users the flexibility to determine whether their samples

are similar enough for a trustworthy MelonnPan prediction
before running an analysis. Second, these evaluation results in the
NLIBD cohort confirm that MelonnPan predictions can be
conceived as surrogates for metabolic profiles of communities
across a large number of representative metagenomes, in the
absence of measured metabolomic data. This can serve both as a
hypothesis-generation tool and as an efficient, cost-effective first
pass analysis driving experimental design, which we recommend
pairing with follow-up experiments to prove the inferred
metabolite profiles (much as has been the case for amplicon
and metagenomic data analysis using PICRUSt20).

MelonnPan predictions outperform existing methods. We next
sought to compare our results with the predicted metabolites
identified by a recently developed metabolite prediction method,
MIMOSA24. MIMOSA was evaluated, as it is, to the best of our
knowledge, the only current method capable of predicting
community-wide metabolic relative abundances from population-
level metagenomic data, as well as providing an informed soft-
ware implementation. MIMOSA builds on a previously proposed
metabolic network model (PRMT22) to estimate the metabolic
potential of a microbial community from taxonomic composition
and metagenome content. Briefly, MIMOSA first generates a
stoichiometric matrix describing the quantitative relationship
between genes and metabolites to provide an estimate of the CMP
score of the community of interest. Next, it compares the dif-
ferences in CMP scores between all pairs of samples with the
differences in the corresponding measured metabolites. In order
to identify statistically significant well-predicted metabolites,
MIMOSA relies on false discovery rate (FDR)-corrected P values
based on Mantel’s test32 for correlation between two distance
matrices. Similar to MelonnPan, MIMOSA also relies on user-
provided paired tables of metabolites and microbial sequence
features. However, unlike MelonnPan, it does not explicitly use
data mining and model building to construct and validate a
predictive model. As a result, MIMOSA is unable to do prediction
on new metagenomic samples not previously seen by the
algorithm.

In order to assess the prediction performance of MIMOSA in
the NLIBD cohort, we first mapped the corresponding metabolite
names to KEGG identifiers by mapping the compound IDs to
Human Metabolome Database (HMDB33), which includes cross-
references to KEGG compound identifiers, leading to 303 KEGG
compounds (149 unique identifiers). Next, we converted the
UniRef90 gene family abundances to approximate the corre-
sponding KO (KEGG Orthology) abundances by assigning the
UniProt-KO annotations to the corresponding protein families in
UniRef90. In order to apply MIMOSA, we first normalized the
KO abundances using MUSiCC34 (default and recommended
option in the MIMOSA software). Only a small number of
metabolite compounds were well predicted by MIMOSA
(Supplementary Fig. 8A; n= 20 (23%), Mantel’s test Q < 0.05).
In contrast, MelonnPan was able to accurately predict the vast
majority of these metabolites (n= 130 (84%), Spearman r > 0.3).
In addition, a few metabolites were anti-predicted by MIMOSA,
unlike MelonnPan which generally yielded higher confidence
(greater Spearman correlation between measured and predicted
abundances) among the common metabolites predicted by both
methods (Supplementary Fig. 8B) and greater number of well-
predicted metabolites even when restricted to the small subset of
well-characterized metabolites (Supplementary Fig. 8C). This
suggests that there may be major gaps between the relatively small
proportion of annotated microbial enzymatic activities and those
newly identifiable using machine learning.
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MelonnPan uncovers meaningful biological relationships. To
gain insights into the taxonomic and functional makeup of the
most predictive gene families in this context, we next quantified
how much each gene family contributed to the MelonnPan pre-
dictions for the human gut. We performed gene set enrichment
analysis (GSEA)35 to identify the classes of genes most frequently
selected by the metabolic model, i.e. significantly over- or under-
represented during metabolite prediction (ranking gene family
features by how often they are used in a model for any well-
predicted metabolite). We assigned taxonomy to these gene
families using HUMAnN229 by choosing the lowest common
ancestor of the majority of genes with homology, based on the
gene’s taxonomic assignment (or “Unclassified” when not unique
to the genus level). We then compared the general difference in
the cumulative distributions of the gene families in each gene set
(summarized to genera) with that of the MelonnPan ranked list
with a permutation-based Kolmogorov–Smirnov (KS) test
(“Methods”).

Eight genera were significantly over-abundant in the Melon-
nPan gene list, with the strongest effects observed among
Pseudoflavonifractor, Clostridium, Coprococcus, Anaerotruncus,
Blautia, Collinsella, Ruminococcus, and Anaerostipes (statistically
significant GSEA result with Q < 0.25, Fig. 3a, Supplementary
Fig. 9). The majority of these genera are from the Firmicutes
phylum, with the exception of Collinsella which belongs to the
phylum Actinobacteria. Some of these genera including Clos-
tridium and Ruminococcus encode several species belonging to
the Clostridium cluster IV or XIVa36 that preferentially
colonize the mucus layer and consequently increase the butyrate
bioavailability for colon epithelial cells37. A decrease in the
relative abundances of these species in the human colon has been
associated with several diseases, including IBD38. Moreover,
species from Clostridium cluster IV are also known to be the
primary producers of SCFAs in the human colon, which are
increasingly recognized as key signalling molecules between the
gut microbiota and the host13. Decomposition of these genera
revealed that they were further typically contributed by a few
representative species or strains (Supplementary Data 7). Melon-
nPan thus enables identification of functionally relevant gene
families with species- or even strain-specific metabolic associa-
tions, facilitating biologically relevant mechanistic studies at finer
taxonomic resolution.

In order to further decipher these gene families at greater
resolution, we repeated the enrichment analysis using functional

annotations to identify biological processes that were significantly
over- or under-abundant in metabolite prediction (“Methods”).
We focussed on the Pfam database39, which categorizes these
metabolically predictive gene families into protein families.
Surprisingly, while no individual Pfam families were enriched
during this testing, there was a significant over-representation of
uncharacterized protein domains among predictive gene families
(Fisher’s exact test P= 3.46e−52, Fig. 3b), which was consistent
across all functional annotation catalogues we considered
(Supplementary Fig. 10). This substantially large number of
unannotated genes likely include as yet uncharacterized metabolic
enzyme classes with potential roles in community metabolism.
This is consistent with the proposed role of numerous
uncharacterized microbial genes in explaining the vast majority
of microbial diversity and function within the human gut40. This
suggests that a concerted approach integrating computational
function prediction with microbial physiological and biochemical
validation will be necessary to link specific microbial chemistry to
new individual organisms, genes, and enzymes from meta’omic
sources.

Predicted metabolites reveal global structure in the IBD
metabolome. Several recent studies demonstrated that IBD
patients and healthy individuals, as well as the IBD subtypes (UC
and CD), can be distinguished using metabolic profiling41, sug-
gesting that the IBD metabolome would be a meaningful
benchmark for testing the accuracy of MelonnPan’s metabolite
predictions. To demonstrate that MelonnPan can capture biolo-
gical variation in metabolic profiles without directly measuring
the metabolites, we compared the first two components of
metabolic variation from the measured metabolites and super-
imposed the predicted variation from inferred metabolites in the
same two-dimensional space. Specifically, we ordinated the
principal coordinates of 65 subjects in the NLIBD cohort based
on Spearman dissimilarity between predicted and measured
metabolite compositions for the top 50 unique metabolite clusters
whose identities were confirmed against laboratory standards.
The ordination plot revealed similar global structure in the IBD
microbiome, which is reflected by the closeness of measured and
predicted profiles across compounds (Fig. 4).

We found that well-predicted metabolites linked to IBD
spanned a broad range of metabolic categories, including amino
acids, bile acids, fatty acids, and sphingolipids, among others. In

Anaerostipes (1)

Ruminococcus (15)

Collinsella (7)

Blautia (5)

Anaerotruncus (2)

Coprococcus (8)

Clostridium (6)

Pseudoflavonifractor (13)

0 1 2 3 4 5

−log10 (P value)

G
en

er
a 

(n
um

be
r 

of
 g

en
es

)

Taxonomic enrichment
Metabolically predictive genera

a

572 (0.004%)

5,655,872 (44.42%)

235 (0.002%)

7,077,423 (55.58%)No

Yes

Yes No
Uncharacterized (unannotated in Pfam)

In
 M

el
on

nP
an

 g
en

e 
lis

t

10.0%
20.0%
30.0%
40.0%
50.0%

Percent

Enrichment of uncharacterized genes
in metabolite predictive set

Fisher's exact test P = 3.49e − 52

b

Fig. 3 MelonnPan reveals biologically meaningful functional relationships. a Statistically significant gene sets (genera) (Q < 0.25) enriched in the
MelonnPan predictive gene list, as identified by the permutation-based Kolmogorov–Smirnov (KS) test (based on 100,000 null permutations). The bars in
the x axis indicate the logarithm of P values calculated as the fraction of permutation values that are at least as extreme as the original KS statistic derived
from the non-permuted data. Numbers in the parentheses indicate the size of the gene sets. b Statistically significant over-representation of
uncharacterized gene families in MelonnPan gene set. Contingency table describing the relationship between class membership in Pfam database and
metabolite predictiveness reveals enrichment of uncharacterized proteins in the metabolite prediction process

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10927-1

6 NATURE COMMUNICATIONS |         (2019) 10:3136 | https://doi.org/10.1038/s41467-019-10927-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


particular, the ordination revealed strong support for approxi-
mately three clusters in the IBD metabolomic structure. Major
ordination groups of covarying metabolites included compounds
that are either derived from the same parent compound or
interconverted by a common pathway, including: (i) several bile
acid and very long-chain fatty acid groups depleted in IBD
(Supplementary Fig. 11, right cluster), (ii) several cholesterol and
tetrapyrroles derivatives enriched in IBD (left cluster), and (iii) a
smaller mix of non-differentially abundant metabolites such as
amino acids, peptides, purines, and their derivatives (central).
Using the same differential abundance analysis (“Methods”) on
both predicted and measured metabolomic compositions yielded
highly similar quantitative results across metabolites (Spearman
correlation between effect size estimates based on measured and
predicted profiles= 0.70 for CD versus HC and 0.45 for UC
versus HC comparisons, respectively; P < 2.2e−06; Supplemen-
tary Fig. 12), suggesting that MelonnPan predictions can be used
to infer disease-relevant differences in metabolomic compositions
from metagenomes even in the absence of comprehensive
metabolomic profiling.

We next set out to identify broad classes of compounds that
were significantly over- or under-abundant in MelonnPan
predictions for IBD. We focused on classes with at least one
member in our data set and identified enrichments in MelonnPan
prediction that were statistically significant after FDR correction
(Fisher’s exact test Q < 0.25, “Methods”). Two metabolic classes
were significantly over-abundant in MelonnPan-predicted com-
pounds, with the strongest effects observed among bile acids and
tetrapyrroles (Supplementary Fig. 13). The enrichment of bile
acid-associated products among the well-predicted metabolites
highlights the important role of community ecology in microbial
metabolism of bile acids. Concordant with previous studies,
primary bile acids were significantly elevated and secondary bile
acids were significantly reduced in IBD patients31. Bile acid

biosynthesis is directly mediated by microbial enzymatic activity,
which, in IBD, fails to de-conjugate primary bile acid, causing a
reduction in secondary bile acids and their anti-inflammatory
effects on intestinal epithelial cells. Among other enriched
metabolic classes, tetrapyrroles tended to be consistently depleted
in IBD subjects compared to controls31. Taken together,
these findings confirm that MelonnPan is able to provide
metabolically relevant predictions across a broad range of
compounds, identifying important contributors of the gut
microbiome–metabolome axis, in turn facilitating large-scale
integrated multi’omic analyses of the microbiome.

Inference across the human body and environmental micro-
biomes. As a final illustration of MelonnPan’s ability to generate
biological insights from a variety of microbial environments and
assay types, we applied MelonnPan to three paired 16S and
metabolomics datasets. These data were previously generated in
the context of (i) metabolomic and taxonomic profiles from
microbial communities associated with ecologically critical reef-
building corals42, (ii) bacterial community and metabolomic
profiles from the vaginal microbiome43, and (iii) paired taxo-
nomic and metabolomic samples from the mouse gut44. Samples
from each of these data sets were profiled for taxonomic com-
position by 16S rRNA gene amplicon (16S) sequencing. For
metabolites, proton-nuclear magnetic resonance (1H-NMR)
spectroscopy was used for Data set 1, whereas targeted LC-MS
and a combination of untargeted LC-MS and gas chromato-
graphy (GC)-MS metabolomics techniques were used for Data
sets 2 and 3, respectively (“Methods”).

In each of these datasets, we used MelonnPan to learn a model
that predicted the relevant metabolite relative abundance features
from available microbial features (taxonomic profiles derived
from 16S rRNA gene sequencing). Owing to the small sample size
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of these data sets, we used leave-one-out cross-validation
(LOOCV) for MelonnPan training, followed by independent
filtering (i.e. features were removed when they did not vary in
value over the available samples) of both metabolite and
operational taxonomic unit (OTU) features (“Methods”). Of the
metabolites assayed in each data set, >50% did not pass individual
pre-filtering (see “Methods”, Supplementary Table 2) and were
accordingly discarded from downstream analysis. We found
that >60% of the analysed metabolites were well predicted in each
of these data sets (Supplementary Fig. 14, Supplementary Table 2),
and these were typically associated with a small number of OTUs
(median model size of 29, 14, and 32 for Data sets 1–3,
respectively), suggesting that, for a substantial fraction of
compounds, information contained in a few taxonomic features
is sufficient to explain a majority of the variation in metabolite
abundances (in agreement with the human gut gene family
application). Once again, the data-derived models learned by
MelonnPan were significantly more accurate than the mechan-
istic models used by MIMOSA (Supplementary Table 2), which
were limited to a very small number of already-characterized
compounds in these more challenging microbial environments
(Supplementary Figs. 15–17), further emphasizing the utility of
MelonnPan for microbe–metabolite hypothesis generation in a
variety of ecological settings. As a cautionary note, unlike the
human gut samples, we did not have access to independent
validation data sets in these environments. Therefore, we consider
these applications as only a preliminary evaluation about the
potential generalizability (external validity) of MelonnPan pre-
dictions in less well-studied environments.

Discussion
MelonnPan represents a newly developed method to infer
approximate metabolite feature abundances associated with
microbial communities, and its validation and applications show
that the information contained in microbiome taxonomic and
functional profiles is sufficiently correlated with metabolomic
content to infer actionable predictions of microbial community
biochemical environments. This is of particular interest not only
in the human gut but also generalized to a broad range of habitats
including environmental microbiomes, given sufficient training
measurements from the environments of interest, and the model
provides an estimate of expected performance (the RTSI score) in
new samples to guide experimenters. Although MelonnPan’s
predictive approach does not replace metabolomic profiling, it
can approximately predict and compare possible metabolic pro-
files across many samples at a small fraction of the cost of
metabolomics, thus opening up avenues for more cost-effective
tiered study designs and providing metabolic insights and
hypothesis generation in thousands of existing samples for which
only metagenomic data are currently available.

In order to guide users when integrating MelonnPan hypoth-
eses with downstream experimental validation, MelonnPan spe-
cifically provides a confidence score (RTSI) for each new
microbiome, with a low confidence score indicating a high degree
of dissimilarity with training metagenomes. Because training
dissimilarity among metagenomes (as captured by RTSI) affects
MelonnPan accuracy, RTSI values can be used as a guideline to
indicate how much additional metabolomic data may be needed
to complement a pre-trained MelonnPan model in a new envir-
onment. This information is particularly crucial since MelonnPan
captures metagenome–metabolome associations in a data-driven
manner, operating even in the absence of any microbial bio-
chemical annotations, and this yields significantly higher pre-
diction accuracy than current methods that rely on the very

limited number of well-characterized enzyme–metabolite
relationships.

As with many recent studies, this investigation supports the
importance of characterizing microbial features at the highest
possible taxonomic resolution, as major microbial phenotypic
differences associated with secondary metabolite production are
often species or strain specific. Specifically, our analysis confirmed
several previously documented IBD-associated species as impor-
tant drivers of microbe–metabolite dynamics in the gut (Fig. 3a,
Supplementary Data 7). To further interrogate whether species
abundance data lead to similar metabolic prediction in the human
gut application, we performed additional analysis with the species
abundance data as input predictors to the MelonnPan model.
While species-level predictors led to similar performance in the
training cohort, these taxonomy-based predictions did not gen-
eralize to the independent cohort (Supplementary Fig. 18). This
substantially lower predictability in the validation cohort likely
reflects strain-level effects captured by gene family data, as strain
differences in different populations can substantially affect
metabolite prediction generalizability. This highlights the
importance of including gene-level profiles as predictors, as
specific strain-specific metabolism as well as other phenotypically
relevant traits (e.g. antibiotic resistance) may not be captured
from species abundance data alone.

The limitations of this approach must be considered in inter-
preting MelonnPan predictions. MelonnPan does not predict
metabolite fluxes or peaks directly (as opposed to constraint-
based methods); instead, it provides an estimate of each meta-
bolite’s community-wide relative abundances by synthesizing and
combining microbial sequence features. The initial applications
shown here are primarily applied to untargeted MS-based
metabolomic measurements, but we have shown that Melon-
nPan remains comparably accurate when learning from targeted
MS or NMR metabolite measurements as well. Although Mel-
onnPan can be used for predictions in a broad range of envir-
onments beyond the well-studied human gut, it should be
cautioned that each learned model is environment specific. Thus
a model learned on the human gut can generalize to other human
gut phenotypes (Supplementary Fig. 19), but no single model is
expected to be accurate for cross-environment prediction tasks.
MelonnPan is thus intended as a hypothesis-generation tool, as
the general agreement between predicted and measured meta-
bolite relative abundances is often sufficient to inform subsequent
experimental validation studies, which should absolutely be per-
formed to confirm predictions and obtain direct measurements of
the metabolites of interest.

Interestingly, even for predictions made independently of
mechanism and molecular origin, the strong predictability of
some specific metabolites may have value in suggesting such
mechanisms. For instance, predictability of a metabolite could
indicate that it is either produced by a set of microbes or sti-
mulated in host cells in the presence of specific microbes. Such
specialized metabolites would be of use as markers of a defined set
of microbes, a route for model-based association discovery that is
faster and less resource-intensive than approaches such as Flux
Balance Analysis. Future work identifying from culture-
independent population-level data thus have the potential to
focus on strain-specific gene sets or potentially even single-
nucleotide polymorphism-level differences among bioactive taxa.
Additional directions for future research to further refine the
predictive accuracy of MelonnPan include (i) integration of other
types of microbial measurements such as metatranscriptomic
data, (ii) dynamic prediction utilizing longitudinal profiles, and
(iii) adoption of more sophisticated machine learning strategies
such as a multivariate or a Bayesian framework, which could
explicitly incorporate quantitative features such as community-
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wide enzyme-specific reaction information and zero-inflation,
among others.

Culture-independent metagenomic sequencing has already
profiled tens of thousands of samples containing millions of taxa
and microbial genes45–48—millions of which are, as a result,
uncharacterized. For example, only about 1.0% of all proteins in
UniProtKB have been experimentally characterized49. As a result,
one important finding of MelonnPan’s human gut model is the
association of mostly (>60%) unannotated gene families with
metabolite relative abundances (Supplementary Data 7). Such
links between gene families and metabolites provide promising
targets for downstream characterization of the genes themselves,
particularly when applied to other less well-characterized envir-
onments, as they may act functionally in the generation or
metabolism of these compounds. This computational approach
thus (i) generates both biochemical and functional genomic
hypotheses for future validation, (ii) contributes to a system-wide
understanding of the microbiome50, (iii) serves as an additional,
complementary tool to existing metabolic reconstruction models,
and (iv) helps to lay the experimental design foundation for
translational applications of metabolomics in microbial commu-
nities. As reference databases that allow matching to known
standards continue to saturate51,52 and training data sets continue
to expand53, the prediction accuracy of MelonnPan will improve
by default over time. Taken together, this analytical framework is
a necessary first step towards population-level meta’omic data
integration, ultimately allowing us to better understand the
dynamics of the microbiome, moving beyond molecular catalo-
gues towards health applications of microbiome research.

Methods
Training and validation cohort descriptions. Both training and validation
cohorts are described in detail in Franzosa et al.31. Briefly, subjects included in the
training cohort are from PRISM, which is a referral centre-based, prospective
cohort. Patients aged ≥18 years with a diagnosis of CD based upon standard
endoscopic, radiographic, and histologic criteria were eligible to participate. A total
of 155 adult patients comprising of CD and UC patients and non-IBD controls (68
CD, 53 UC, 34 HC subjects) were enrolled31. PRISM research protocols were
reviewed and approved by the Partners Human Research Committee (#2004-P-
001067), and all experiments adhered to the regulations of this review board.

Subjects included in the validation cohort are from two independent cohorts
from the Netherlands. Cohort 1 consists of 22 non-IBD (HC) subjects who
participated in the general population study LifeLines-DEEP (LLDeep) in the
northern Netherlands54 and Cohort 2 consists of 43 patients with IBD (UC= 23,
CD= 20) from the Department of Gastroenterology and Hepatology, University
Medical Center Groningen (UMCG), Netherlands. A total of 65 stool samples were
collected. Identical protocols were used to collect the stool samples in both these
cohorts.

Taxonomic and functional profiling. Metagenomic data generation and proces-
sing were performed at the Broad Institute. After extracting DNA from stool
samples, metagenomic libraries were prepared using the Nextera XT DNA Library
Preparation Kit (Illumina) according to the manufacturer’s recommended protocol
and sequenced on the Illumina HiSeq 2500 platform, targeting ~2.5 Gb of sequence
per sample with 101 bp, paired-end reads. Low-quality reads <60 nt in length were
filtered out using Trimmomatic55 as well as human contaminating reads using
bowtie256; these steps were performed using the KneadData pipeline (https://
bitbucket.org/biobakery/kneaddata). Species-level taxonomic abundances were
inferred for all samples using MetaPhlAn257 (https://bitbucket.org/biobakery/
metaphlan2) and run with default parameters. Functional profiling was performed
by using HUMAnN229. Briefly, HUMAnN2 maps metagenomic reads to the
pangenomes58 of species identified upstream in the taxonomic profiling step.
Protein-coding sequences in these pangenomes have been pre-annotated to their
respective UniRef90 families30, which serve as a comprehensive, non-redundant
protein sequence database. Reads that do not align to a known pangenome are
separately mapped to the entirety of UniRef90 by translated search with DIA-
MOND59. All hits are weighted based on alignment quality and sequence length,
with per-species and unclassified hits combined to produce community totals for
each protein family (in addition to species-stratified totals) in RPK (reads per
kilobase) units. RPK units were further normalized to RPKM units (reads per
kilobase per million sample reads) to account for variation in sequence depth
across samples.

Metabolite profiling. The stool samples from participants in the two cohorts
(PRISM cross-sectional, 155 samples and NLIBD, 65 samples; weight range
50.5–167.8 mg) were processed as described in Franzosa et al.31. Four separate LC-
MS methods that measure complementary metabolite classes were used to measure
polar metabolites and lipids in each sample. Raw LC-MS data were processed using
Genedata Expressionist v9.0 for chemical noise removal, RT alignment, peak
detection, and isotope clustering. The combination of the four LC-MS methods
generated 8869 clustered features, characterized by chromatographic retention time
and exact mass to <5 ppm accuracy. Three thousand eight hundred and twenty-
nine metabolomic features were linked to putative identifiers based on accurate m/z
matching against the HMDB33. A subset of 466 metabolites were identified more
precisely using reference data generated from an in-house compound library. More
details of the LC-MS metabolomics experiments are provided in Franzosa et al.31.

Filtering, transformation, and normalization. After normalizing the raw mea-
sures into relative abundances, we limit our analysis to only those features (species,
gene families, and metabolites) that are both prevalent and abundant with mean
relative abundance >0.01% in at least 10% of the samples. Because of the specific
properties of meta’omic data that significantly influence model building, such as
compositionality, sparsity, skewness, mean-variance dependency, and extreme
values, we quantile-transform the input features (species or gene family abun-
dances) to the quantiles of a standard normal distribution in order to improve the
detection power of the elastic net model60,61. This approach has been extensively
used in genetic association studies and have proven to be a robust approach for
modelling non-normal phenotypes62–64. We use the rntransform function from the
GENABEL package from R (version 3.5.1) for the quantile-based inverse normal
transformation65. To identify an optimal subset of predictive features, the meta-
bolite relative abundances are arcsine square root transformed66 to approximate
homoscedasticity when applying linear models. The models are fitted to the
transformed data and the resulting predictions are back-transformed to preserve
the coverage of the predicted metabolite compositions.

Elastic net regularization. We designed and implemented the elastic net reg-
ularization technique28 for metabolomic predictive model building. In particular, a
per-metabolite elastic net model is fit on the rank-transformed features (species or
gene family abundances). More details on the elastic net method and its variants
have been previously published67. We use the glmnet package from R (version
3.5.1) for fitting the elastic net model and choose the tuning parameters (i.e. both
the elastic net mixing parameter α and sparsity parameter λ) based on cross-
validation.

Cross-validation and evaluation metric. Ten-fold cross validation (unless
otherwise stated) was used to determine the tuning parameters in the elastic net
model. Spearman correlation coefficient (r) between the true and pre-
dicted metabolite compositions was used to evaluate the predictability of each
compound. Following Cohen68, we term those metabolites for which r is >0.3 as
“well predicted” and flag the rest as poorly predicted metabolites.

Significance testing with shuffled data. In order to quantify whether our fra-
mework identified more well-predicted metabolites than expected by chance (i.e.
when all the shared signal between genes and metabolites are broken), we
repeatedly shuffled the sample labels in both metabolite and gene family tables,
applied the MelonnPan model using the randomized data to link genes to meta-
bolites, and compared the number of well-predicted metabolites obtained with
these randomized data to the number of well-predicted metabolites obtained with
the original data. Random data were generated following the approach outlined in
the R (version 3.5.1) package pecante using the function randomizeMatrix, which
employs a post-permutation renormalization within sample to preserve the core
structural characteristics of the original data set. The procedure was repeated 1000
times to estimate the null distribution of the prediction performance in both the
training and validation cohorts.

RTSI score. To calculate the RTSI for new samples, we employed PCA to extract
the continuous axes of variation that reflect the population structure in the training
metagenomes, following a quantile-based inverse normal transformation. Specifi-
cally, we selected top PCs based on the Tracy–Widom statistics69. Based on the top
PCs, we classified the NLIBD samples as either similar or dissimilar based on their
highest correlation with the extracted PCs. We refer to the resulting similarity
(correlation) as the RTSI score. We used the AssocTests package from R (version
3.5.1) and a significance threshold of 0.05 to select the number of top PCs.

Gene set enrichment analysis. We conducted two types of enrichment analysis
after constructing appropriate gene sets: over-representation analysis and GSEA.
For the over-representation analysis, we created two-by-two tables comparing the
number of candidate genes that are members of the category to those that are not
members and assessed the significance of over-representation using a one-tailed
Fisher’s exact test. For the GSEA35, we calculated enrichment score based on a KS
test statistic that reflects the degree to which a gene set is over-represented at the
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extremes (top or bottom) of the entire ranked list of genes (ranking gene family
features by their overall predictability in the metabolite features). To assess sig-
nificance, we performed 100,000 permutations for each gene set using the func-
tionality of the R (version 3.5.1) package gsEasy. For both these analyses, we
corrected for multiple hypothesis testing using a Benjamini–Hochberg false dis-
covery rate (FDR) approach70.

Differential abundance analysis. To perform differential abundance analysis of
the measured and predicted metabolomics data in the NLIBD cohort, we fitted a
linear model to each log-transformed metabolite relative abundance profile sepa-
rately, after adjusting for disease status (with HC as reference category), age, and
medications: immunosuppressants (yes/no) and anti-inflammatory (yes/no).

Non-gut and non-human microbial profiles. We obtained several previously
published data sets from publicly available databases for non-human-gut envir-
onments, each pairing 16S rRNA gene-based taxonomic data with metabolomic
profiles24,42. In each of these data sets, we utilized the processed profiles, publicly
available through the authors, but the relevant sequence data are also available
through NCBI. For Data set 1, we used taxonomic profiling provided from 16S
rRNA gene sequencing coupled with 1H-NMR-based metabolomics42. For vaginal
samples in Data set 2, 16S rRNA gene analysis was performed from vaginal swabs,
and paired cervicovaginal lavage fluid was collected for metabolomic analysis
(targeted LC-MS for 180 compounds24,43). In Data set 3, taxonomic composition
was again assayed using 16S rRNA gene amplicon sequencing, and metabolites
were measured using global LC- and GC-MS metabolomics24,44. Both OTU and
metabolite features with <0.0001% relative abundance in >10% of samples
were discarded from downstream analysis. In addition, a variance filtering
step was applied to remove features with very low variance. MelonnPan’s
elastic net regularization with an LOOCV was then applied to the quality-
controlled profiles.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Metagenomic sequences for the PRISM, LLDeep, and NLIBD cohorts are available via
SRA with BioProject number PRJNA400072. PRISM metabolomics data (accession
number PR000677) are available at the NIH Common Fund’s Metabolomics Data
Repository and Coordinating Center (supported by NIH grant, U01-DK097430):
Metabolomics Workbench (http://www.metabolomicsworkbench.org). Amplicon data
are available as cited from original publications. A pre-trained model using HUMAnN2-
derived UniRef90 gene family features from the human gut is included as part of the
MelonnPan software package.

Code availability
The implementation of MelonnPan is publicly available with source code,
documentation, tutorial data, and as an R package at http://huttenhower.sph.harvard.
edu/melonnpan. The software packages used in this work are free and open source,
including bioBakery methods available via http://huttenhower.sph.harvard.edu/
biobakery as source code, cloud-compatible images, and installable packages. Analysis
scripts using these packages to generate figures and results from this manuscript (and
associated usage notes) are available from the authors upon request.
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