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Proteogenomic Analysis of Protein 
Sequence Alterations in Breast 
Cancer Cells
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Cancer evolves as a result of an accumulation of mutations and chromosomal aberrations. 
Developments in sequencing technologies have enabled the discovery and cataloguing of millions of 
such mutations. The identification of protein-level alterations, typically by using reversed-phase protein 
arrays or mass spectrometry, has lagged, however, behind gene and transcript-level observations. In 
this study, we report the use of mass spectrometry for detecting the presence of mutations-missense, 
indels and frame shifts-in MCF7 and SKBR3 breast cancer, and non-tumorigenic MCF10A cells. The 
mutations were identified by expanding the database search process of raw mass spectrometry files by 
including an in-house built database of mutated peptides (XMAn-v1) that complemented a minimally 
redundant, canonical database of Homo sapiens proteins. The work resulted in the identification of 
nearly 300 mutated peptide sequences, of which ~50 were characterized by quality tandem mass 
spectra. We describe the criteria that were used to select the mutated peptide sequences, evaluate 
the parameters that characterized these peptides, and assess the artifacts that could have led to false 
peptide identifications. Further, we discuss the functional domains and biological processes that may 
be impacted by the observed peptide alterations, and how protein-level detection can support the 
efforts of identifying cancer driving mutations and genes. Mass spectrometry data are available via 
ProteomeXchange with identifier PXD014458.

Cancer develops as a result of genetic alterations that include mutations and chromosomal abnormalities. 
Mutations include alterations such as single nucleotide substitutions (missense, nonsense and silent) and small 
insertions, deletions or frameshifts. Chromosomal abnormalities can be numerical, i.e., manifest themselves 
either as gains or losses in chromosome numbers (aneuploidy), or structural, i.e., lead to rearrangements such 
as translocations, inversions, deletions, insertions or duplications. Comprehensive high-throughput sequencing 
efforts have revealed a complex interplay of aberrations that define the heterogeneous nature of cancer genomes.

Earlier studies have identified ~140 genes that drive tumorigenesis, when altered by mutations1. These genes 
regulate three essential cellular processes through twelve signaling pathways, i.e., genome maintenance, cell sur-
vival and cell fate. Depending on type, tumors can harbor from 1–2 to 8 driver mutations that generally con-
tribute to the development of cancer over 20–30 years in adults1. The field of cancer genomics, supported by the 
advance of sequencing technologies, has witnessed, however, a remarkable growth in the past decade, leading to 
joint multi-institutional efforts aimed at creating comprehensive resources that encompass hundreds to thou-
sands of gene alterations with potential diagnostic and prognostic significance. Some of these resources include 
the Wellcome Sanger Institute’s COSMIC (Catalogue of Somatic Mutations in Cancer) and CGC (Cancer Gene 
Census) databases2, the cancer-specific projects supported by the International Cancer Genome Consortium 
(ICGC)3, the Cancer Cell Line Encyclopedia (CCLE)4, and the PanCancer Atlas project conducted by The Cancer 
Genome Atlas (TCGA) collaboration5. With millions of documented mutations, efforts have shifted towards 
advancing lists of specific cancer driver genes and mutations. On the line of such efforts, the OncoKB-a precision 
oncology knowledge database-has expanded the number of cancer genes to 1,019, highlighting actionable alter-
ations6, while the CGC has catalogued 719 genes matched to cancer hallmarks and grouped into two tiers (tier 
1 with documented activity in cancer, and tier 2 with strong indication of having a role in cancer). Recently, the 
PanCancer Atlas project reported results that were generated through an effort that encompassed the analysis of 
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>10,000 tumors across 33 different cancer types. To analyze the data, a variety of bioinformatics algorithms and 
tools have been developed for quality control, reproducible computing, elimination of biases, handling of noise 
and false positives, and, overall, for dealing with the logistics of handling such large datasets7. Multi-institutional 
collaborations, such as the MC3 project, were launched for the very purpose of providing resources and meth-
ods, and for outlining best practices7. Novel software tools have been developed for performing advanced tasks 
for data alignment7, normalization, scoring, and curation. Specific needs such as variant or gene fusion calling, 
annotation, filtering, validation, indel location, or identification of splice creating mutations were addressed. 
Additional tasks focused on assessing correlations between cancer aneuploidy and mutations (or mutation rates), 
and the expression of proliferation and immune signaling genes8. Overall, the effort resulted in entire mutational 
landscapes and signatures that have been proposed for assessing the functional consequences of mutations in 
DNA repair genes9 and splicing factors10,11, and in genes with splice-site-creating12 and immune response13 role. 
For example, a set of mutation calling algorithms were advanced for generating a dataset of ~3.6 million somatic 
variants, of which ~3.4 million were single nucleotide variants (SNVs)7. Both the software methods and the data-
sets were made publically available. From the same source of PanCancer tumor exomes, Bailey et al. proposed a 
total of 299 cancer driver genes encompassing over 3,400 putative missense driver mutations, which when further 
refined by using three structural level tools, resulted in 579 driver mutations associated with 53 genes14. The mis-
sense driver mutations appeared to be more prevalent in oncogenes than in tumor suppressors, the driver genes 
being associated with biological processes related to RTK and immune signaling, transcription, preservation of 
genome integrity and protein homeostasis and ubiquitination. Many driver genes were associated with a single 
cancer type, and >50% of the samples contained druggable alterations. Alternatively, tumor suppressors were 
richer in truncations and frameshifts, and appeared to harbor rare cancer predisposing alleles15. Studies have also 
suggested that gene fusions play a role in the development of ~16% of cancer cases, and that such fusions may 
provide leads for targeted and immune-based therapies16.

Despite the abundance of data, due to the variability introduced by different sequencing technologies, depth 
of sequencing and data-processing pipelines, compounded by a heterogeneous biological background, the iden-
tification of driver mutations even within cancer–driver genes continues to pose a challenge. Studies focused 
on characterizing cancer cell lines by using reversed-phase protein arrays have shown that protein expression 
captured better the signals from genetic alterations than mRNA expression, and that correlations between patient 
cohorts and cell lines do exist (i.e., in terms of top mutated genes, mutation frequencies, and associated pathways 
such as p53, PI3K, NOTCH, and SWI/SNF complex signaling)17. Similar copy number abnormalities (CNA) were 
also found in cell lines and breast tumors18. Overall, however, peptide-level confirmation of genomic and tran-
scriptomic variants has been proven to be low due to limited protein sequence coverage via tandem mass spec-
trometry (MS/MS) analysis, presence of posttranslational modifications (PTMs), and protein degradation19,20. 
Moreover, certain samples have been shown to display anti-correlations between mRNA and protein levels as a 
result of gene-level CNAs19,20. Therefore, future protein-level identification and confirmation of genomic altera-
tions and coding mutations is expected to play an essential role in the discovery of cancer driver genes and their 
mutations, in assessing the impact of these alterations on the regulatory mechanisms that govern aberrant cell 
behavior, in the classification of cancer types and subtypes, in the identification of actionable mutations, and ulti-
mately in the development of precision medicine therapeutic approaches. In this work we describe the results of 
mass spectrometry-based profiling of three cell lines that led to the identification of single amino acid mutations 
in over 200 proteins. We describe the data selection process, evaluate the mass spectrometric quality of the data, 
and assess the biological relevance of the observed peptide alterations.

Results
Selection of mutated peptide sequences.  Two breast cancer cell lines, representative of ER + (MCF7) 
and HER2 + (SKBR3) breast cancers, as well as a non-tumorigenic cell line (MCF10A), were subjected to tandem 
mass spectrometric analysis to enable proteome-level detection of altered peptide sequences. The use of various 
cell states (cell cycle-arrested and proliferating cells), three biological and five technical replicates, as well as of 
nuclear/cytoplasmic enriched cell extracts, provided a rich resource for enabling a comprehensive examination 
of the cells. The proteomic profiling of the three cell lines led to the identification of a few thousand protein 
groups matched by ~20,000 unique peptide sequences, when a conventional database search against a reviewed, 
canonical Homo sapiens database was performed. The search for matches between the experimental data and the 
theoretical protein sequences in the database was performed with the Proteome Discoverer 1.4 software pack-
age that included the Sequest HT search engine. The identification of mutated peptides was accomplished with 
the aid of an additional database (XMAn-Unknown mutation analysis database) that comprised over 700,000 
mutated entries formatted in FASTA format21. XMAn-v1 was built with information extracted primarily from 
the COSMIC database2, and comprised mainly missense mutations and a few small-scale insertions, deletions 
and frameshifts. When the MS raw file search parameters were modified to include the mutated entries, a list of 
an additional 275 proteins matched by 294 unique mutated peptides (402 MS/MS hits), carrying mainly mis-
sense mutations and a few deletions/frameshifts and insertions, was obtained. Only 265 of these proteins could 
be matched to reviewed UniProt IDs. The list of mutated peptides was selected from the database search results 
by applying criteria that minimized the false matches, i.e.: (a) The FDRs were set to <1% and <3% for high 
and medium confidence matches, respectively; (b) The peptides that included amino acid substitutions with 
close mass, that resulted in small m/z differences for multiply charged ions that are difficult to distinguish be 
ion trap instruments, were excluded (i.e., Q → E, E → Q, D → N, N → D, Q → K, K → Q, K → E, E → Q, L → I, 
I → L, I/L → N, where the masses of the residues are K = 128.17, Q = 128.13, E = 129.11, D = 115.09, N = 114.10, 
I/L = 113.16); and (c) The matches were retained only if they were unique to the XMAn-v1, but not common to 
both the Homo sapiens and XMAn-v1 databases.
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Description of parameters that characterize the mutated peptides.  A breakdown of the mutated 
database search findings is presented in Supplemental Table S1. The results include the mutated peptide 
sequences, the number of spectral counts, the UniProt IDs, the gene names, the protein group accession names, 
the gene and protein-level mutation sites and type, a short sequence for identifying the site of the mutation in a 
peptide, other possible UniProt organism matches, the non-mutated sequence counterparts, the cell line pres-
ence, and a description of the protein function extracted from UniProt. For some mutated peptide entries, the ID 
of the parent protein was updated manually to the ID from the canonical/reviewed UniProt database. This was 
necessary either because the peptide was recognized in XMAn-v1 under a gene name or some other identifier, or 
because the mutated peptide was assigned to another master protein group during the XMAn-v1 search than its 
non-mutated counterpart in the canonical database search. In addition, the table includes one set of search engine 
results and scores, i.e., Xcorr, missed cleavage site, charge state, m/z, MH + , difference between the theoretical and 
experimental mass (Δm), LC retention time, and identification confidence criteria. With few exceptions, most 
peptide identifications were of high confidence. The Xcorr score values for these peptides indicated good quality 
matches between the experimental and theoretical mass spectra [34 peptides (1 + ), Xcorr = 2.34–3.56; 152 pep-
tides (2 + ), Xcorr = 3.34–5.31; 200 peptides (3 + ), Xcorr = 3.87–6.26; and 16 peptides (4 + ), Xcorr = 3.98–4.74). 
Additional information, such as altered peptide domains and BLOSUM62 scores22, was also added to the table. 
Per cell line, 139 (SKBR3), 124 (MCF7), and 119 (MCF10) mutated sequences were identified, representing 126, 
111 and 110 proteins, respectively. Stacked column charts illustrate the distribution of missense mutations in each 
cell line, from- and to- each amino acid, normalized to the frequency of the amino acids in the human proteome 
(Fig. 1). As shown in previous work, the normalized frequency of random mutations is expected to not show 
much variability among amino acids21. Similar trends were observed in this dataset as well, however, mutations 
from Arg, Ala, Lys and Met, and to Cys, Leu, Met, Asn, Arg, Ser, Thr and Val, were encountered at higher frequen-
cies than other mutations in some of the cell lines. The higher frequency of mutations from Arg was in line with 
previous observations that the CpG dinucleotide sequence, which is present in four out of the six Arg codons, 
mutates at higher rates than other dinucleotides23. Mutations from Glu (E) and Asn (N) were under-represented, 
most likely due to the elimination from consideration of mutations that involved amino acids with close mass (see 
above). Overall, the largest mutation frequencies that could lead to changes in amino acid properties from basic 
to acidic or from polar to nonpolar, or vice versa, with possible impact on protein structure and function, were 
encountered for the following substitutions: A → D, A → S, D → Y, H → R, K → N, M → I, P → L, Q → R, R → C, 
R → Q, R → H, and T → M.

Artifacts that can lead to false positive identifications.  Visual inspection of the tandem MS data 
revealed some noisy spectra with un-assigned product ions, despite the low FDRs that were associated with these 

Figure 1.  Stacked column charts depicting the relative frequency of amino acid mutations. (a) Charts 
representing the number of mutations from each amino acid in the original protein sequence to a mutated 
residue; (b) Charts representing the number of mutations to each amino acid from the original residues. The 
mutation counts were normalized to the frequency of the respective amino acids in the human proteome.
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mass spectra. The database search engine enabled the identification of only b, y, a, and H2O/NH3 neutral loss 
ions. As a result, some tandem mass spectra displayed a few but rather intense unassigned ions, which often 
were found to belong to internal fragments or other neutral losses. Manual assignment of these ions can be com-
pleted with tools such as ProteinProspector24,25. Noisy spectra, or spectra in which intense fragment ions cannot 
be accounted for, are produced either from low abundance precursors, multiple overlapping peptide parents 
(including ions with posttranslational modifications), or false matches to the database. Peptide alterations can 
be confirmed in such cases via sequencing or targeted multiple reaction monitoring (MRM)/MS. A subset of 
52 mutated sequences with high quality tandem mass spectra were included in Table 1, with spectral data being 
provided in the Supplemental Dataset S1. Differences between theoretical and experimental masses that exceeded 
100–300 ppm (values typical of low mass accuracy ion trap instruments) were most often due to the fact that the 
peptide’s 2nd or 3rd isotopes were more intense than the 1st one, and were selected consequently for fragmentation. 
As a result, it was the mass of the 2nd or 3rd isotope that was compared to the theoretical monoisotopic mass, 
leading to the observed differences. For 70 of the mutated peptides, non-mutated peptide counterparts were 
found. The relative abundance of the mutated and non-mutated peptides, as well as of their parent proteins, was 
added to Supplemental Table S1, with spectral counts used as a measure of abundance. Spectral counting is a 
semi-quantitative method that estimates the abundance of peptides and proteins based on the total number of 
tandem mass spectral matches. Highly abundant proteins are typically represented by many peptides and a large 
number of counts.

Chromosomal maps of missense mutations.  To assess the extent to which mass spectrometry can be 
used to map the chromosomal profile of missense mutations (reflected, so far, mainly by gene- and transcript-level 
sequencing results), we evaluated the chromosomal distribution of catalogued substitutions for the entire Homo 
sapiens database (18,864 gene entries for which the locus was found), and compared it to that of several datasets: 
aggregate lists of genes (a–c) for which proteins were detected in various experiments conducted in our labora-
tory with breast cancer and non-tumorigenic cells (~1,500–9,000 entries); lists of cancer genes, oncogenes and 
suppresssors such as proposed by OncoKB (1,019) (d–f) and Vogelstein et al. (137) (g–i)1; and list of genes for 
which mutated proteins were detected in the present work (j-l). These gene or protein sets were queried for the 
hypothetical presence of any substitution that was included in the XMAn-v1 database. Representative histograms 
built with these data are provided in Fig. 2. Each panel comprises the distribution of mutations for a particular 
dataset (right side of each panel) compared to the genome-level distribution used as a control (left side of the 
panel). The three columns represent distributions for the % genes or proteins per chromosome (column 1), % 
mutations per chromosome (column 2), and mutation counts per gene or protein and per chromosome (column 
3). The % genes (or proteins) per chromosome was calculated based on the chromosome distribution of human 
genes for which the chromosome location could be extracted from the HGNC database (note that the numbers 
on display are lower than the ones submitted for search, due to less than 100% match in HGNC). The % mutations 
and mutation counts per gene and per chromosome were calculated based on the number of somatic mutations 
recorded in the COSMIC database (v. 66) and included in XMAn-v1.

Discussion
The analysis of the data was geared towards assessing the validity and relevance of the observed peptide alter-
ations. In terms of validity, factors related to possible sources of contamination, to artifacts that may lead to 
sequence miss assignments, and to abundance relationships between mutated and non-mutated counterparts, 
were addressed. In terms of biological relevance, issues that tackled subjects related to the identification of 
matches to cancer driver genes, to the impact of peptide alterations on biological function and protein-protein 
interactions (PPIs), as well as to the utility of mass spectrometry to generate chromosomal maps of missense 
mutations of relevance to diagnostics, were explored.

To identify possible sources of contamination, the list of mutated peptides was further scrutinized by per-
forming a search against the entire UniProtKB database26. The search resulted in the identification of 32 unique 
sequences matched to 1,040 catalogued organisms (human, mouse, rat, orangutan, birds, insects, nematodes, 
bacteria, fungi, and various parasites), that included 9 matches to Homo sapiens (5 reviewed, 4 non-reviewed), 3 
mouse reviewed, and 20 non-reviewed sequences. These sequences were flagged in the list. Contamination would 
have been expected to occur mainly from bovine proteins originating from the FBS added to the culture medium, 
but there was only one mutated peptide match to a non-reviewed protein. Consequently, contamination from 
bovine proteins or other organisms was deemed unlikely, as the observed matches belonged to non-reviewed 
sequences. Contamination of biological origin, if present, would have rather returned candidates matched to 
more abundant, reviewed protein sequences.

The abundance relationship between the mutated peptides and their non-mutated counterparts was further 
explored. The mutated peptides accrued only a few spectral counts, characteristic of low abundance, while their 
non-mutated counterparts accrued from a few to hundreds or thousands of counts. The total count for the par-
ent proteins followed similar trends. For some mutated peptides, the parent protein was not identifiable in the 
canonical UniProt database. The spectral count values for the non-mutated peptide counterparts and the parent 
proteins were appended to Supplemental Table S1. The scenarios that could lead to the observed combinations of 
spectral counts are summarized in Table 2. The spectral count observed for a given peptide will be determined by 
the number of cells carrying a specific mutation in a larger population of cells, and the abundance of the protein 
carrying the mutation. In practice, the detectability of low abundance proteins is generally poor, and certain 
peptides may not be observable even if they are consistently present in the entire population of cells. Our data 
suggest that the observed peptide alterations were present in low abundance either because were originating from 
a small sub-population of cancer cells with various levels of protein abundance, or from a larger population of 
cells with low protein abundance. Low spectral counts for high-abundance peptides can also be explained. Poor 
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Sequence UniProt ID Protein Name Mutation
Cells line 
presence Pfam Domain

AFQHLSEAVQAAEEEAQPPSWSCGLAAGVIDAYMTLADFCDQQLR P78527
DNA-dependent 
protein kinase catalytic 
subunit

P3405L MCF10 FAT

AGNVSKDEIDSAVKMLVSLK P23381 Tryptophan–tRNA 
ligase, cytoplasmic A31V MCF10 WHEP-TRS

AINQSQSVQESLESLLQSIGEVEQNLEGK Q9UPN3-5
Isoform 4 of 
Microtubule-actin 
cross-linking factor 1

A2547? MCF10

ALMLQGVDLLDDAVAVTMGPK C9JL25
60 kDa heat shock 
protein, mitochondrial 
(Fragment)

A90D MCF7, MCF10, 
SKBR3 Cpn60 TCP1

AMQAAGQIPATALLPTMTPDGLSVTPTPVPVVGSQMTR P26368 Splicing factor U2AF 
65 kDa subunit A131S MCF7

ASTVKSVLELIPELNEKGEAYNSLMK P42704
Leu-rich PPR motif-
containing protein, 
mitochondrial

E1318G MCF7, MCF10

CAPLFSGTEHHASLIDSLLHTVYRLSK Q92736 Ryanodine receptor 2 A2536S MCF7

CQEKWDKLLLTSTEK Q7L0Y3 Mitochondrial 
ribonuclease P protein 1 Y262C MCF7, MCF10 tRNA m1G MT

DDLQFLADLEELITKFQVFRISQR Q9Y6X0 SET-binding protein H971Q MCF7, MCF10, 
SKBR3

DIMTYVSSFYHAFSGAQK O43707 Alpha-actinin-4 A256D MCF7, MCF10 CH

DQEGQDLLLFIDNIFR P06576 ATP synthase subunit 
beta, mitochondrial V301L SKBR3 ATP-synt ab

EAMQQADDWLGIPQVITPEEIVDPNVDEHSVMTYMSQFPK P21333 Filamin-A L261M MCF7, MCF10 CH

EAVMSFSITETEKIK Q5T4T6 Synaptonemal complex 
protein 2-like N353S MCF10

EFADSLGIPFLETSAKNAMNVEQSFMTMAAEIK P62820 Ras-related protein 
Rab-1A T159M SKBR3, MCF7 Ras

EFDTLSGKVEESPDK Q9BXX2 Ankyrin repeat domain-
containing protein 30B L760V SKBR3

EIYPYVIQERRPTLNELGISTPEELGLDKV P20674
Cytochrome c 
oxidase subunit 5 A, 
mitochondrial

L130R SKBR3, MCF7 COX5A

EQLQQEQALLEEIER Q15149 Plectin R1386Q SKBR3, MCF7

FGLAHLMALGLGPWMAVEIPDLIQK Q9Y3C8
Ubiquitin-fold 
modifier-conjugating 
enzyme 1

L146M MCF10 UFC1

FQSSAVMALQEGCEAYLVGLFEDTNLCAIHAK P68431 Histone H3.1 A96G SKBR3, MCF10 Histone

FTLDCTHPVEDGIMDAANYEQFLQER P35268 60 S ribosomal protein 
L22 39Y SKBR3, MCF10 Ribosomal L22e

GCIEKLSEDVEQLKK P61266 Syntaxin-1B V53L MCF7 Syntaxin

GFDFVTFESPADAK P38159-3
Isoform 3 of RNA-
binding motif protein, 
X chr

A52D MCF10 RRM 1

GFGFITFTNPEHASDAMR P98179 Putative RNA-binding 
protein 3 V62D MCF7 RRM 1

GMLDLLEVHLLDFPNIVIK Q6P2Q9 Pre-mRNA-processing-
splicing factor 8 P1871L MCF7 PRP8 domainIV

GTAAAAAAAAAAAAAK (insertion in frame) P50914 60 S ribosomal protein 
L14 A159_K160insAAA MCF7, MCF10

HQGVMVGMCQKDSYVGDEAQSK P68133 Actin, alpha skeletal 
muscle G50C MCF7, MCF10, 

SKBR3 Actin

HRILPEKYPPPTELLDLQPLPVSALR O75643
U5 small nuclear 
ribonucleoprotein 
200 kDa helicase

L1289R MCF7

IMSLVDPNHCGLVTFQAFIDFMSR O43707 Alpha-actinin-4 S823C SKBR3, MCF7

KHTLSFVDVGTGK P31040
Ubiquinone 
flavoprotein subunit, 
mitochondrial

Y629F MCF7 Succ DH flav C

KSQESLTENPSETLKPATSISSTSQTKGINVK F5GXV7 Neurobeachin I1735T MCF10

LCGLLVLGSWCISVMGFLLETLTILR O60412 Olfactory receptor 7C2 S156F MCF10 7tm 4

LCYVALYFEQEMATAASSSSLEK Q6S8J3 POTE ankyrin domain 
family member E D922Y MCF7 Actin

LDTNSDGQLDYSEFLNLIGGLAMACHDSFLK P31949 Protein S100-A11 F77Y MCF10 EF-hand 1

LFDHLESPTPNPTEPLFLAQAEVYK P49327 Fatty acid synthase P972L SKBR3 PS-DH

LFLASLAAAGSGTDAQVALENEVK Q7Z6Z7 E3 ubiquitin-protein 
ligase HUWE1 V2153E SKBR3

Continued
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enzymatic protein digestion, loss during sample preparation, physico-chemical properties that do not support 
a strong ESI signal, or the presence of PTMs, are additional factors that hamper detection even in the case of 
abundant peptides.

From a biological stance, transcriptomic and proteomic studies of aneuploid cells have shown that changes 
in mRNA and protein expression levels generally correlate with changes in the chromosome copy numbers27,28, 
albeit it appears that cellular mechanisms that can adjust the abundance of certain proteins to normal levels, do 
exist (e.g., the case of protein subunits that are part of macromolecular complexes and kinases28). Consistent with 
these findings, proteomic analysis of disome V and XIII yeast cells displayed an average of 1.8–1.9-fold increase 
in protein expression levels for genes located on these chromosomes, relative to the wild-type29. The MCF7 and 
SKBR3 cells have a complex chromosomal composition, having a modal chromosome number of 82 and 84, 
respectively. As aneuploidy drives the acquisition of various abnormal cell karyotypes and genomic instability in 
cancer cells, it would be difficult to draw straightforward correlations between chromosome copy numbers and 
protein abundances in a heterogeneous cell population. Standing genetic variations in small sample sizes would 
not be inferrable either. One can speculate only that the proteins that are detected by many spectral counts, and 
that display mutated sequences but no non-mutated counterparts, carry mutations that occurred early in the 
population. However, it is also possible that a wild-type sequence generates a peptide that cannot be cleaved 
by trypsin or detected by MS. If immunoprecipitation can generate sufficient protein for reliable analysis (e.g., 
25 fmol/mg total protein extract), targeted MRM-MS could be used to accurately quantify selected mutant and 
non-mutant peptide pairs and verify such hypotheses30. Spectral counting, on the other hand, could provide 
insights into the impact that certain mutations have on the global regulatory mechanisms that drive protein 
expression. Overall, as most of the observed alterations are expected to be stochastic in nature, mutations that are 
detected consistently in multiple cell lines should be subjected to closer scrutiny, as these mutations may repre-
sent either already known variants, or peptides, possibly chemically modified, that were erroneously matched to 
the altered sequences. The presence of such mutations should be corroborated by orthogonal technologies (e.g., 
sequencing or MRM-MS).

The exploration of aggregate results from large sequencing projects of cancer tissues and cell lines that have 
been deposited in public databases31–34 enabled so far the advance of several panels of genes and proteins believed 
to play a significant role in the development of cancer. The peptide-level alterations that were identified in this 
work were compared to the COSMIC CGC27, OncoKB29, and CCLE28 databases, and to the proposed 579 driver 
genes14 and 137 oncogene/suppressor1 datasets. Gene names were matched to UniProt entries based on nomen-
clature provided by HGNC (HUGO Gene Nomenclature Committee35). Protein matches have been found mainly 

Sequence UniProt ID Protein Name Mutation
Cells line 
presence Pfam Domain

LTENLSALQR Q8TD16-2 Isoform 2 of Protein 
bicaudal D homolog 2 R398Q MCF7 BicD

LTQAQIFDYSEIPNFPR P00491 Purine nucleoside 
phosphorylase G51S MCF7 PNP UDP 1

MDATFIGNSTAIQELFK P04350 Tubulin beta-4A chain A364D MCF7, MCF10, 
SKBR3 Tubulin C

MHDMNTDQENLVGTHDAPIR O43684 Mitotic checkpoint 
protein BUB3 L84M MCF7

MLVVLRQGTREEDDVVSEDLVQQDVQDLYEAGELK P08133 Annexin A6 L162R SKBR3

QVHPDTGISSKVMGIMNSFVNDIFER P23527 Histone H2B type 1-O A59V SKBR3, MCF7 Histone

QVYPDTGISSKAMGIMNSFVNDIFER O60814 Histone H2B type 1-K H50Y SKBR3, MCF7 Histone

SDASSGQSGSRSASRTTR P20930 Filaggrin R884S SKBR3

SLGQNPTEAELQDMINEVDADGNGTIDFPEFFTMMAR P62158 Calmodulin L70F MCF7, MCF10, 
SKBR3 EF-hand 7

SMGIMNSFVNDIFER Q8N257 Histone H2B type 3-B A59S MCF7, MCF10, 
SKBR3 Histone

SVIVVLRLNVDLQAVVIFELVY (del/frame shift) Q8TC27
Disintegrin and 
metalloproteinase 
domain protein 32

K388fs*39 SKBR3, MCF7

SYELPDGQVITIGKER P68133 Actin, alpha skeletal 
muscle N254K MCF7, MCF10, 

SKBR3 Actin

TSPDPLPVSAAPSKAGLPR Q13469
Nuclear factor of 
activated T-cells, 
cytoplasmic 2

S330L MCF7

TTGIVMDSGDGVTHTVPIYEAYALPHAILR P63261 Actin, cytoplasmic 2 G168A MCF7, MCF10, 
SKBR3 Actin

TVSLGAGSKDELHIVEAEAMNYEGSPIK P06748-3 Isoform 3 of 
Nucleophosmin A53S SKBR3, MCF10 Nucleoplasmin

VSELEEFINGPNNAHIQQVGDR P53675 Clathrin heavy chain 2 D1188E MCF10 Clathrin

VTNGAFTGEISLGMIK P60174-1
Isoform 2 of 
Triosephosphate 
isomerase

P81L SKBR3, MCF7 TIM

Table 1.  Selected peptides with mutated sequences.
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to the proteins included in the CGC and the OncoKB, and a few to the list of 137 oncogenes and suppressors (35 
total)1. Supplemental Table S2 provides the full list of mutated proteins in each cell line, the matches to the cancer 
genes and their locus, as well as the total number of catalogued mutations for these genes. Specific missense muta-
tion matches have been found to six proteins from the COSMIC Cancer Gene Census database (FLNA, RPL22, 
SDHA, NFATC2, NPM1, and CLTCL1). Five of these mutations carried a high pathogenicity score (0.81–0.99), 
with potential relevance to cancer, and three were also present in the TCGA datasets. These mutations were 
identified in a variety of tissues (endometrium, pancreas, skin), and one mutation in the SDHA protein (Y629F) 
was observable in eight different cancerous samples (adrenal gland, lung, haematopoietic and lymphoid, and soft 
tissues). In addition, two matches have been found to the mutations from the COSMIC Cancer Cell Line project, 

Figure 2.  Comparison of chromosomal distributions of missense mutations in various datasets to the human 
genome. The left panels (blue) represent mutations in the human genome (18,864 genes), and the right panels 
(orange) represent mutations in various protein or gene datasets. Comparisons to the human genome are 
provided for: (a–c) an aggregate list of 9,046 genes coding for proteins detected in the proteome profile of 
MCF7, MCF10 and SKBR3 cells; (d–f) the list of 980 genes in the OncoKB database33; (g–i) the list of 137 
oncogenes and tumor suppressors proposed in ref.1. (j–l) the list of 194 mutated proteins detected in SKBR3 and 
MCF7 cells. The 1st column of histograms represents the % distribution of genes or proteins per chromosome 
in the human genome and in the various datasets; the 2nd column represents the % distribution of missense 
mutations per chromosome in the human genome and in various datasets; the 3rd column represents the 
distribution of the total number of mutations per gene or protein and per chromosome. The numbers of genes 
or proteins for each dataset are provided for each panel, and the 2nd column provides the total mutation counts 
per dataset, as well. All mutation counts represent the catalogued values for the existing genes in the mutation 
database that was used in this study.
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of which one pathogenic missense in the WARS protein, and one neutral insertion in RPL14. These eight mutated 
peptides were highlighted in bold in Table 1, and a description of the mutations was provided in Supplemental 
Table S3, including their COSMIC and TCGA IDs. The identification of only a few specific mutation matches, 
out of 52, was not unexpected. Previous reports have also noted that peptide-level confirmation of genomic 
and transcriptomic variants via MS is generally low19. Multiple reasons can be invoked to explain this outcome, 
including low protein sequence coverage by tandem MS, the presence of PTMs that hamper MS detection, protein 
degradation, poor correlation between mRNA and protein levels, and the very absence of these mutations from 
the XMAn-v1 database, to start with. For example, only ~100 MCF7 and 5 SKBR3 unique amino acid muta-
tions, from the total of 670 and 275 mutations, respectively, that were included in the CCLE database, were also 
present in XMAn-v1. It must be also emphasized that cancer cells represent a heterogeneous population with an 
unstable genome that evolve new mutations at much higher rates than normal cells (~10–10,000X)36, with 2–8 
driver mutations per cell being predicted to be necessary for tumor formation1,37. Therefore, correlations between 
genomic, transcriptomic and proteomic results that describe somatic mutations would be best pursued from 
data generated from the same cell population, not from populations that have diverged during a large number of 
doublings.

A variety of scoring systems have been developed to assess the probability of a substitution. The BLOSUM 
(BLOcks SUbstitution Matrix) scores reflect the frequency of amino acid substitutions in conserved regions of 
protein families22. The scores are log-odd ratios of observed per expected-by-chance substitution frequencies 
obtained from local alignments of evolutionarily divergent protein sequences. The advantage of using BLOSUM 
scores is that the likelihood of a substitution can be assessed based on the % similarity of the protein alignments. 
For example, the commonly used BLOSUM62 matrix, was built using protein sequences with <62% similarity. 
The scores range from (−4) to (+11). For a score of zero, the observed frequency of substitution equals the 
expected one. Scores that are less or larger than zero are reflective of lower or higher observation frequencies, 
respectively. Mutations that lead to significant differences in the physico-chemical properties of an amino acid 
upon substitution are less conservative and will have lower BLOSUM scores (i.e., are less likely to be preserved 
in conserved protein regions where the functional impact of the substitution can be high). Espinosa et al. have 
proposed that cancer driver mutations, in comparison to neutral ones, will be less conservative, have higher 
functional impact, and will be characterized by lower BLOSUM scores38. Calculation of BLOSUM62 scores for 
the observed mutations in this work led to the column chart from Fig. 3, with many amino acid substitutions clus-
tering around zero, but also with a group of negative scores, (−2)-(−3), reflective of non-conservative mutations 
with potentially profound impact on protein structure and function.

To uncover whether the mutated sequences have any impact on biological function, GO annotations were 
retrieved with DAVID (Database for Annotation, Visualization and Integrated Discovery)39,40 bioinformatics 
tools. The list of proteins included preponderantly structural components of the cytoskeleton, and proteins asso-
ciated with the cytoplasm, nucleosome, plasma membrane, ribonucleoprotein complex, mitochondrion and the 
extra cellular matrix and exosomes. Aggregate data representing a few biological processes of potential relevance 
to cancer, matched by more than 4–5 proteins, were captured in Fig. 4. As it would be expected for the outcome 
of random mutation events, significant enrichment in specific processes could not be observed, the results being 
rather reflective of categories supported by the more abundant proteins that are easier to detected. It must be also 
noted that if the variants were SNPs, their likely role in cancer development may no longer be relevant. Out of 
the 52 selected peptides, six presented mutations that could be matched to one or more databases that compile 
natural variants, SNPs and clinically relevant mutations41–46. The availability of such protein-level alterations may 
prove to be useful, however, to predicting an individual’s susceptibility to disease or therapeutic response.

To assess whether the observed peptide alterations can affect protein function, the domains associated with 
the mutated sequences were extracted from the Pfam47, PROSITE48, and InterPro49 databases. A total of 139 
unique domains were identified for the 294 mutated peptides sequences. The domains and their associated func-
tions were included in Table 1 and Supplemental Tables S1 and S3. These domains included: chaperone/heat 
shock domains (Cpn60 TCP1), structure stability and filament formation (CH, Tubulin C, Actin), DNA/RNA 
synthesis, folding and processing (Histone, WHEP-TRS, RRM 1, PRP8 domainIV), and catalytic functions asso-
ciated with metabolic pathways, redox, and transport (ATP-synt ab, COX5A, Succ DH flav C, PS-DH, TIM, 
BicD). Other domains were associated with DNA repair (Ku C), cytokinesis (Dynamin N), apoptosis and cell 
migration (Death, Peptidase C2), and zinc fingers or zinc dependent catalytic activities (zf-C2H2, ADH zinc N, 
carb anhydrase). Several domains were linked to functions related to peptide cleaving (Reprolysin), protein deg-
radation (Rad4), and ubiquitination (UQ_con, UFC1). Protein kinase domains (Pkinase_Tyr) with involvement 

Small cell number/Low 
abundance protein

Large cell number/Low 
abundance protein

Small cell number/High 
abundance protein

Large cell number/High 
abundance protein

Spectral counts of the 
mutated peptides Zero-to-low Low Low High

Spectral counts of the non-
mutated counter-peptides Low Zero-to-low High Low

Spectral counts of the 
mutated protein Low Low High High

Table 2.  Hypothetical spectral count scenarios that reflect the detectability of mutated peptides and proteins in 
a subpopulation of cancer cells that carry the mutation. Two scenarios, low and high, of the number of cancer 
cells carrying a specific mutation in a larger population of cancer cells, and of the abundance of the protein 
carrying the mutation, are considered.
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in proliferation, differentiation, and apoptosis, were also identified. A recurring domain across these mutated 
sequences included the different EF-hand motifs. Upon calcium binding, the conformational change of the 
EF-hand domain is responsible for the activation or inactivation of the specific protein. Experimental analysis 
and computational predictions can be used to assess whether the implicated alterations have any impact on pro-
tein function, as evidenced by protein folding, stability, cellular localization, gain/loss or switch of function, ability 
to form PPIs, and druggability50. To begin with, it has been shown, for example, that α-helices are more tolerant 
toward single amino acid substitutions than β-sheets51. In the absence of physico-chemical and structural data, 
evolutionary analysis can provide insights into the aggregate impact of a mutation not just on cellular function, 
but also on organ physiology50.

A few substitutions of potential relevance are discussed in the followings. The DNA-dependent protein kinase 
catalytic subunit (PRKDC/P78527) carried a mutation (p.P3405 → L) in its FAT domain, which has Tyr kinase 
activity. PRKDC is involved in nonhomologous end-joining, a repair mechanism that targets double strand 
breaks mainly in the G1 stage of the cell cycle52. The Ras-related protein RAB1A carried a mutation at T159 → M. 
The protein has GTPase activity and has multiple roles in cell adhesion/migration, protein trafficking, and cellular 
defense against pathogenic bacteria (P62820)53. It has been suggested that RAB1A is an mTORC1 activator and an 
oncogene54. Tryptophanyl-tRNA synthetase (WARS) has been shown to regulate the ERK, Akt and eNOS path-
ways (UniProt P23381), and it is believed to be involved as a negative regulator of cell proliferation55–57. Succinate 
dehydrogenase A (SDHA) represents the flavoprotein catalytic subunit of the succinate dehydrogenase complex II 
of the mitochondrial electron transport chain (P31040). The substitution of Y629 with F in SDHA was catalogued 

Figure 3.  Column chart representing BLOSUM62 scores associated with the observed amino acid 
substitutions. The scores were assigned based on the BLOSUM62 substitution matrix and reflect the frequency 
of amino acid substitutions in conserved regions of protein families. More negative scores reflect less likely 
substitutions, while more positive scores reflect more likely substitutions. For scores close to zero, the observed 
frequency of a substitution approaches the expected value.

Figure 4.  Column chart representing a few GO biological processes of relevance to cancer. Assignments of 
proteins to a particular category were made with DAVID tools. The selection of biological processes was made 
based on relevance and number of protein components per category (>4).
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as variant rs6960. It has not been associated yet with disease (dbSNP and Ensemble). Nevertheless, it was cata-
logued as pathogenic in the CGC database (pathogenicity score of 0.81), and has been suggested that SDHA can 
act as a tumor suppressor gene58,59. The nuclear factor of activated T-cells cytoplasmic 2 protein (Q13469) is a 
transcription factor that plays a role in activating the expression of cytokine genes in T-cells60. The protein also 
supports invasiveness61. Phosphorylation at the mutation site (S330 → L) has been documented, but polymor-
phism was not, and Ser 330 is not part of a functional domain. The protein subcellular localization, however, is 
controlled by phosphorylation at multiple sites in the 99–363 region, and has a regulatory role in gene transcrip-
tion. The RRM1 (RNA-recognition motif 1) domain, which was mutated in P38159 (A52 → D), has been found 
to be essential for the oncogenic activity of the proto-oncogene SRSF1 splicing factor that is required for the 
activation of the B-Raf-MEK-ERK pathways and cellular transformation62. Altogether, while based solely on these 
data direct oncogenic roles cannot be associated with the observed amino acid substitutions, their protein-level 
identification can support a more refined interpretation of the mutational landscapes that are considered when 
assessing pathogenicity. An interruption of their PPIs, as a result of a change in structure, would be one of the first 
effects with direct impact on function.

Genome instability leads to alterations that affect randomly gene integrity. The heterogeneous genome profile 
of cancer cell populations is defined by an ensemble of mutations that lead to gain or loss of function in oncogenes 
and tumor suppressors, respectively63. Most often, such mutations overlap an aneuploid state that can further 
trigger changes in chromosome numbers, and losses or gains in critical chromosome regions that harbor such 
genes. Alterations in the structure of oncogenes and tumor suppressors lead to abnormal protein expression, loss 
of protein function, perturbed protein-protein interactions, and ultimately to an abnormal cellular response that 
supports uncontrolled cell proliferation and behavior. To gain a global view over our ability to map genome-scale 
mutations at the protein level, in Fig. 2 we compared the chromosomal profile of the catalogued missense sub-
stitutions in various datasets with that of the entire Homo sapiens database. The first row of panels in Fig. 2a–c 
compares an aggregate list of 9,046 proteins that were identified in the MCF7, SKBR3 and MCF10 cell lines, to the 
entire human genome. These panels also served as a control, to confirm that an all-inclusive list of experimentally 
detectable proteins can mirror the chromosomal distribution of the entire human genome (and, accordingly, of 
the associated hypothetical mutations), with no bias induced by the protein-level detection process. Histograms 
generated from smaller datasets (1,550–4,000 proteins), representing one cell line proteome as a whole or just 
nuclear or cytoplasmic cellular sub-fractions, led to similar results (data not shown). The 2nd and 3rd rows in the 
figure display the mutation distribution results for the previously reported OncoKB (Fig. 2d–f)33 and the list of 
137 oncogenes and suppressors (Fig. 2g–i)1, while the 4th row provides actual protein-level MS mutation data for 
the combined MCF7/SKBR3 cell lines (Fig. 2j–l).

We hypothesized that a non-inclusive list of genes or proteins encompassing only components that share a 
particular attribute (e.g., oncogenes) would not mirror the whole genome, but rather display a pattern-like behav-
ior. As expected, for the gene-per-chromosome distributions (1st column, Fig. 2d,g, j), the symmetry between 
each dataset and the whole genome was generally preserved, with somewhat larger discrepancies for the smaller 
datasets (Fig. 2g,j). The symmetry started to break in the histograms that displayed the % mutations per chro-
mosome (2nd column, Fig. 2e,h; note chromosome 17 that carries p53 and many other cancer molecular mark-
ers64 with a large number of mutations), and the differences became most pronounced for the histograms that 
compared the number of mutations per gene and per chromosome to the whole genome (3rd column, Fig. 2f,i; 
note chromosomes 4, 7, 17 for the OncoKB, and 4, 10, 17, 22 for the list of 137). These chromosomes harbor 
many known or potential tumor suppressors and oncogenes, for which a large number of mutations have been 
catalogued (e.g., chromosome 4: KIT, FAT1, FAT4, TET2; chromosome 7: RELN, EGFR, KMT2C, PCLO; chro-
mosome 10: PTEN, MKI67, RET; chromosome 17: TP53, NF1; chromosome 22: NF2, EP300). The chromosomes 
carrying many mutations became most strongly defined in the refined list of driver oncogenes and suppressors 
(Fig. 2i)1. The mutated profiles of the SKBR3 and MCF7 cell lines that were processed in this work, as determined 
by mass spectrometry, were each represented by only a limited dataset of 110–125 proteins with ~8,000–11,000 
catalogued gene or transcript-level mutations (Fig. 2l). These profiles displayed a rather random pattern of peaks 
governed by a protein selection process that was based on the sole detection of one or just a few mutated peptides 
per protein. A total of 26 cancer genes, combined for the two cell lines, and distributed over all chromosomes, 
were part of the dataset that matched this profile. Chromosomes 4 (MCF7 and SKBR3) and 17 (SKBR3) emerged 
as potential mimics of the upper cancer gene histograms from Fig. 2f,i. The MCF10 data did not match the cancer 
gene profiles, however, oncogenes with mutations were identified in these cells, as well (Supplemental Fig. 1). 
While it is clear that whole proteome profiling can provide a comprehensive coverage of protein identifications 
across all chromosomes (see panels 2a–c), and that the data confirms our hypothesis that the cancer genes could 
generate chromosomal mutational profiles, the small datasets of experimentally detected peptide mutations did 
not allow for formulating quantitative inferences at this stage. Nevertheless, similar to gene-level alterations, it is 
expected that the impending accumulation of MS data will support the development of extensive protein muta-
tion databases that will define a landscape that can corroborate or complement the gene profiles and support the 
advance of novel driver gene and protein mutation patterns.

Altogether, while incomplete sequence coverage hampers at present the confirmation efforts and calls for con-
servative data interpretation approaches, the future use of combined genome- and proteome-level mutation data, 
complemented with protein abundance measurements, will help establish correlations between certain mutations 
and protein expression profiles, assess the cumulative effect of mutational hotspots, and identify genome-scale 
alterations that trigger abnormal cell behavior. The availability of multi-scale data will also facilitate the identifica-
tion of chromosomal mutation patterns (e.g., see Fig. 2f,i) that could reveal susceptibility to cancer development, 
and help expand the range of predictable drug targets, recognize propensity for evolving drug resistance, and 
guide the choice of effective therapeutic decisions.
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Methods
Materials.  The breast cancer (MCF7, SKBR3) and nontumorigenic (MCF10) cell lines were purchased 
from ATCC (Manassas, VA). Cell culture reagents and media (EMEM, PBS, trypsin 0.25%/EDTA) were from 
ATCC, DMEM/F12 1:1 phenol-red free and horse serum from Invitrogen (Carlsbad, CA), and McCoy from Life 
Technologies (Carlsbad, CA). FBS was purchased either from Gemini Bio-Products (West Sacramento, CA) or 
from ATCC. Charcoal/dextran treated FBS was from Hyclone (Logan, UT). Cell culture media additives (chol-
era toxin, hydrocortisone, 17-β estradiol, L-glutamine, bovine insulin), various other reagents (NH4HCO3, NaF, 
Na3VO4, protease inhibitor cocktail, DTT, urea, and acetic and trifluoroacetic acids), as well as the nuclear/cyto-
plasmic separation Cell Lytic™ NuCLEAR™ kit were from Sigma (St. Louis, MO). Sequencing grade trypsin for 
enzymatic digestion of cell extracts was from Promega (Madison, WI). C18 and SCX sample cleanup cartridges 
(SPEC-PTC18 and SPEC-PTSCX) were acquired from Agilent Technologies (Palo Alto, CA). DI water was from 
an in-house MilliQ Ultrapure water system (Millipore, Bedford, MA), and all solvents were HPLC grade from 
Fisher Scientific (Fair Lawn, NJ).

Cell culture.  Detailed conditions for cell culture and processing were described in previous work65. Three 
biological replicates were produced for each cell state. Briefly, the cells were cultured per manufacturer’s protocol 
in their optimal growth medium supplemented with various factors: SKBR3 in McCoy 5 A + FBS 10%; MCF7 
in EMEM + bovine insulin 10 μg/mL + FBS 10%; and MCF10 in DMEM/F12 + horse serum 5% + EGF 20 ng/
mL + hydrocortisone 0.5 μg/mL + cholera toxin 0.1 μg/mL + insulin 10 μg/mL. The culture incubator was main-
tained at 37 °C with 5% CO2. The cells were arrested for 48 h in serum free medium, and then released for 24–36 h 
with medium supplemented with serum and growth factors. After harvesting, the cells were frozen at −80 °C.

Cell extract preparation.  The nuclear and cytoplasmic fractions of the cells were separated with the Cell 
Lytic™ NuCLEAR™ kit, in the presence of phosphatase/protease inhibitors and DTT, by following the manufac-
turer’s recommendations. The cell extracts were aliquotted in 500 µg batches based on concentration measure-
ments performed with the Bradford assay and a SmartSpec Plus spectrophotometer (Bio-Rad, Hercules, CA). 
The protein extracts were reduced with DTT 4.5 mM in the presence of urea 8 M, at 55–60 °C for 1 h. After dilu-
tion 10-fold with NH4HCO3 50 mM, the extracts were subjected to enzymatic digestion overnight, at 37 °C, with 
trypsin (~30–50:1 substrate:enzyme ratio). Sample cleanup was performed with SPEC-PTC18 and SPEC-SCX 
cartridges, and the samples were dissolved in acidified (0.01% TFA) aqueous solution (2–5% CH3CN) at 2 μg/μL.

Liquid chromatography (LC)-MS/MS analysis.  A micro-LC 1100 system (Agilent Technologies) was 
used for performing nano-LC separations with columns prepared in-house (100 μm i.d. × 360 o.d. × 12 cm 
long, packed with Zorbax SB-C18 particles/5 μm), and operated at ~180 nL/min. The experimental set-up 
was described in detail in previous work66,67. The composition of the mobile phases A and B was 95:5:0.01 and 
20:80:0.01 v/v, H2O:CH3CN:TFA, respectively. The eluent gradient was 200 min long, from 10% to 100% B65. 
A linear trap quadrupole (LTQ) MS system (Thermo Fisher, San Jose, CA), with electrospray ionization (ESI) 
operated at 2 kV, was used for performing mass analysis. ESI was produced with the aid of a fused silica capillary 
(20 μm i.d. × 90 μm o.d. × 10 mm long) that was inserted in the outlet of the nano-LC column. Data acquisition 
occurred by using a triple play data-dependent analysis method. Zoom/MS2 scans were retrieved for the five 
most intense peaks of a prior MS scan (500–2,000 m/z), with the following settings: ±5 m/z zoom scan width, 
60 s exclusion duration, ±1.5 m/z exclusion width, exclusion list 200, dynamic exclusion at repeat count 1, repeat 
duration 30 s; collision induced dissociation at 35% normalized collision energy, Q 0.25, 30 ms activation time, 
3 m/z isolation width, and MS2 trigger threshold 100 counts. Five LC-MS/MS replicates were performed for each 
sample.

Bioinformatics analysis.  The raw MS data were processed by Proteome Discoverer 1.4 (Thermo Fisher) 
using Sequest HT as a search engine, and a Homo sapiens non-redundant, canonical, reviewed database with 
20,198 entries (January 2015 download). The search allowed for matches only to fully tryptic peptides with maxi-
mum two missed cleavages, in a mass range of 500–5,000 Da, with a minimum and maximum peptide length of 6 
and 144 amino acids, and with tolerances of 2 Da and 1 Da for precursor and fragment ions (b/y/a), respectively. 
The peptide FDRs (calculated with the Target Decoy PSM Validator node) were set to <3% and <1% relaxed and 
stringent matches, respectively. No posttranslational modifications were included. To enable the identification 
of mutated peptide sequences, the database search process was devised such that the experimental tandem mass 
spectra that could not be matched to the canonical Homo sapiens database, were searched against a database 
containing only altered peptide sequences (XMAn-v1)21. The database comprised over 700,000 mutated peptide 
entries, and was developed in previous work based on information extracted from public resources (COSMIC, 
IARC P53, OMIM and UniProtKB), mostly from COSMIC (v. 66). For the purpose of this work, data from all 
LC-MS/MS experiments performed for a cell line were combined into one aggregate list. Protein annotations and 
functional classification of proteins were performed with DAVID 6.839,40.

Data Availability
Data analyzed in this study are included in the Supplementary Information files that include: full list of peptides 
with altered amino acid sequences, peptide characteristics and Proteome Discoverer search parameters; spectral 
count data for the mutated peptides, non-mutated counterparts and parent proteins; matches to cancer driver 
genes and protein variants; full tandem mass spectra of selected peptides. The mass spectrometry raw files that 
generated high quality mutated peptide tandem mass spectra have been deposited to the ProteomeXchange Con-
sortium via the PRIDE68 partner repository with the dataset identifier PXD014458.
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