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Abstract

Background: Since the number of known lncRNA-disease associations verified by biological experiments is quite limited,
it has been a challenging task to uncover human disease-related lncRNAs in recent years. Moreover, considering the fact
that biological experiments are very expensive and time-consuming, it is important to develop efficient computational
models to discover potential lncRNA-disease associations.

Results: In this manuscript, a novel Collaborative Filtering model called CFNBC for inferring potential lncRNA-disease
associations is proposed based on Naïve Bayesian Classifier. In CFNBC, an original lncRNA-miRNA-disease tripartite
network is constructed first by integrating known miRNA-lncRNA associations, miRNA-disease associations and lncRNA-
disease associations, and then, an updated lncRNA-miRNA-disease tripartite network is further constructed through
applying the item-based collaborative filtering algorithm on the original tripartite network. Finally, based on the
updated tripartite network, a novel approach based on the Naïve Bayesian Classifier is proposed to predict potential
associations between lncRNAs and diseases. The novelty of CFNBC lies in the construction of the updated lncRNA-
miRNA-disease tripartite network and the introduction of the item-based collaborative filtering algorithm and Naïve
Bayesian Classifier, which guarantee that CFNBC can be applied to predict potential lncRNA-disease associations
efficiently without entirely relying on known miRNA-disease associations. Simulation results show that CFNBC can
achieve a reliable AUC of 0.8576 in the Leave-One-Out Cross Validation (LOOCV), which is considerably better than
previous state-of-the-art results. Moreover, case studies of glioma, colorectal cancer and gastric cancer demonstrate the
excellent prediction performance of CFNBC as well.

Conclusions: According to simulation results, due to the satisfactory prediction performance, CFNBC may be an
excellent addition to biomedical researches in the future.

Keywords: lncRNA-disease associations, Original tripartite network, Item-based collaborative filtering, Updated tripartite
network, naïve Bayesian classifier

Background
Recently, accumulating evidences have indicated that
lncRNAs (Long non-coding RNAs) are involved in al-
most the entire cell life cycle through various mecha-
nisms [1, 2] and participate in close relationships in the
development of some human complex diseases [3, 4]
such as the Alzheimer’s disease [5] and many types of

cancers [6]. Hence, identification of disease-related
lncRNAs is critical to the understanding of the pathogen-
esis of complex diseases systematically and may further fa-
cilitate the discovery of potential drug targets. However,
since biological experiments are very expensive and time-
consuming, it has become a hot topic to develop effective
computational models to uncover potential disease-related
lncRNAs. Up to now, existing computational models for
predicting potential associations between lncRNAs and
diseases can be roughly classified into two major categor-
ies. Generally, in the first category of models, biological in-
formation of miRNAs, lncRNAs or diseases will be
adopted to identify potential lncRNA-disease associations.
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For example, Chen et al. proposed a prediction model
called HGLDA based on the information of miRNAs, in
which, a hypergeometric distribution test was adopted to
infer potential disease related lncRNAs [7]. Chen et al. pro-
posed a KATZ measure to predict potential lncRNA-
disease associations by utilizing the information of lncRNAs
and diseases [8]. Ping and Wang et al. proposed a method
for identifying potential disease-related lncRNAs based on
the topological information of known lncRNA-disease asso-
ciation network [9]. In the second category of models, mul-
tiple data sources will be integrated to construct all kinds of
heterogeneous networks to infer potential associations be-
tween diseases and lncRNAs. For example, Yu and Wang
et al. proposed a naïve Bayesian Classifier based probability
model to uncover potential disease-related lncRNAs by in-
tegrating known miRNA-disease associations, miRNA-
lncRNA associations, lncRNA-disease associations, gene-
lncRNA associations, gene-miRNA associations and gene-
disease associations [10]. Zhang et al. developed a computa-
tional model to discover possible lncRNA-disease associa-
tions through combining lncRNAs similarity, protein-
protein interactions and diseases similarity [11]. Fu et al.
presented a prediction model by considering the quality
and relevance of different heterogeneous data sources to
identify potential lncRNA-disease associations [12]. Chen et
al. proposed a novel prediction model called LRLSLDA by
adopting Laplacian Regularized Least Squares to integrate
known phenome-lncRNAome network, disease similarity
network and lncRNA similarity network [13].
In recent years, in order to solve the problem of scarce

known associations between different objects, an increas-
ing number of recommender systems have been devel-
oped to increase the reliability of association prediction
based on collaborative filtering methods [14], which de-
pend on prior disposals to predict user-item relationships.
Up to now, some novel prediction models have been pro-
posed successively, in which, recommender algorithms
have been appended to identify different potential disease-
related objects. For example, Lu et.al proposed a model
called SIMCLDA to predict potential lncRNA-disease as-
sociations based on inductive matrix completion by com-
puting Gaussian interaction profile kernel of known
lncRNA-disease associations, disease-gene and gene-gene
onotology associations [15]. Luo et al. modeled drug repo-
sitioning problem into a recommendation system to pre-
dict novel drug indications based on known drug-disease
associations through utilizing matrix completion [16].
Zeng et.al developed a novel prediction model called
PCFM by adopting the probability-based collaborative fil-
tering algorithm to infer gene-associated human diseases
[17]. Luo et al. proposed a prediction model named CPTL
to uncover potential disease-associated miRNAs via trans-
duction learning by integrating disease similarity, miRNA
similarity and known miRNA-disease associations [18].

In this study, a novel Collaborative Filtering model called
CFNBC for predicting potential lncRNA-disease associa-
tions is proposed on the basis of Naïve Bayesian Classifier,
in which, an original lncRNA-miRNA-disease tripartite
network is constructed first by integrating miRNA-disease
association network, miRNA-lncRNA association network
and lncRNA-disease association network, and then, con-
sidering the fact that the number of known associations
between the three objects such as lncRNAs, miRNAs and
diseases is very limited, an updated tripartite network is
further constructed by applying a collaborative filtering al-
gorithm on the original tripartite network. Thereafter,
based on the updated tripartite network, we can predict
potential lncRNA-disease associations through adopting
the Naïve Bayesian Classifier. Finally, in order to evaluate
the prediction performance of our newly proposed model,
LOOCV is implemented for CFNBC based on known ex-
perimentally verified lncRNA-disease associations. As a re-
sult, CFNBC can achieve a reliable AUC of 0.8576, which
is much better than that of previous classical prediction
models. Moreover, case studies of glioma, colorectal cancer
and gastric cancer demonstrate the excellent prediction
performance of CFNBC as well.

Results
Leave-one-out cross validation
In this section, in order to estimate the prediction per-
formance of CFNBC, LOOCV will be implemented based
on known experimentally verified lncRNA-disease associa-
tions. During simulation, for a given disease dj, each
known lncRNA related to dj will be left out in turns as the
test sample, whereas all the remaining associations be-
tween lncRNAs and dj are taken as training cases for
model learning. Thus, the similarity scores between candi-
date lncRNAs and dj can be calculated and all candidate
lncRNAs can be ranked by predicted results simultan-
eously. As a result, the higher the candidate lncRNA is
ranked, the better the performance of our prediction
model will be. Moreover, the value of area under the re-
ceive operating characteristic (ROC) curve (AUC) can be
further used to measure the performance of CFNBC. Ob-
viously, the closer the AUC value is to 1, the better the
prediction performance of CFNBC will be. Hence, by set-
ting different classification thresholds, we can calculate
the true positive rate (TPR or sensitivity) and the false
positive rate (FPR or 1-specificity) as follows:

TPR ¼ TP
TP þ FN

ð1Þ

FPR ¼ FP
FP þ TN

ð2Þ

Here, TP, FN, FP and TN denote the true positives,
false negatives, false positives and true negatives
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respectively. Specifically, TPR indicates the percentage of
candidate lncRNAs with ranks higher than a given rank
cutoff, and FPR denotes the percentage of candidate
lncRNAs with ranks below the given threshold.

The effects of α
Based on the assumption that original common neigh-
boring miRNA nodes shall deserve more credibility than
recommended common neighboring miRNA nodes, a
decay factor α is used to make our prediction model
CFNBC work more effectively. In this section, in order
to evaluate the effects of α to the predcition perform-
ance of CFNBC, we will implement a series of experi-
ments to estimate its actual effects while α is set to
different values ranging from 0.05 to 0.8. As shown in
Table 1, it is easy to see that CFNBC can achieve the
best prediction performance while α is set to 0.05.

Comparison with other state-of-the-art methods
In order to further assess the performance of CFNBC, in
this section, we will compare it with four kinds of state-
of-the-art prediction models such as HGLDA [7],
SIMLDA [15], NBCLDA [10] and the method proposed
by Yang et al. [19] in the framework of LOOCV while α
is set to 0.05. Among these four methods, since a hyper-
geometric distribution test was utilized to infer lncRNA-
disease associations by integrating miRNA-disease asso-
ciations with lncRNA-miRNA associations in HGLDA,
then we will adopt a data set consisting of 183 experi-
mentally validated lncRNA-disease associations as the
hypergeometric distribution test to compare CFNBC
with HGLDA. As illustrated in Table 2 and Fig. 1, the
simulation results demonstrate that CFNBC outperforms
HGLDA significantly. As for the model SIMLDA, since
it applied inductive matrix completion to identify
lncRNA-disease associations by integrating lncRNA-
disease associations, gene-disease and gene-gene ontol-
ogy associations, then we will collect a sub data set,

which belongs to DSld in CFNBC and consists of 101
known associations between 30 different lncRNAs and
79 different diseases, from the data set adopted by
SIMLDA to compare CFNBC with SIMLDA. As shown
in Table 2 and Fig. 2, it is easy to see that CFNBC can
achieve a reliable AUC of 0.8579, which is better than
the AUC of 0.8526 achieved by SIMLDA. As for the
model NBCLDA, since it fused multiple heterogeneous
biological data sources and adopted the naïve Bayesian
classifier to uncover potential lncRNA–disease associa-
tions, then we will compare CFNBC with it based on the
data set DSld directly. As illustrated in Table 2 and Fig. 3,
it is obvious that CFNBC can obtain a reliable AUC of
0.8576, which is higher than the AUC of 0.8519 achieved
by NBCLDA as well. Finally, while comparing CFNBC
with the method proposed by yang et al., in order to
keep the fairness in comparison, we will collect a data
set consisting of 319 lncRNA-disease associations be-
tween 37 lncRNAs and 52 diseases by deleting the nodes
with degree equal to 1 on the data set DSld. As shown in
Table 2 and Fig. 4, it is easy to see that CFNBC can
achieve a reliable AUC of 0.8915, which considerably
outperforms the AUC of 0.8568 achieved by the method
proposed by yang et al. Hence, it is easy to draw a con-
clusion that our model CFNBC can achieve better per-
formance than these classical prediction models.
Additionally, in order to further evaluate the predic-

tion performance of CFNBC, we will compare it with
above four models based on the predicted top-k associa-
tions by using F1-score measure. During simulation, we
will randomly choose 80% of known lncRNA-disease as-
sociations as the training set, whereas all remaining
known and unknown lncRNA-disease associations are
taken as testing sets. Since the sets of known lncRNA-
disease associations in these models are different, we will
set different threshold k to compare them with CFNBC.
As shown in Table 3, it is easy to see that CFNBC out-
performs these four kinds of state-of-the-art models in
terms of F1-score measure as well. Moreover, the paired
t-test also demonstrates that the performance of CFNBC
is significantly better than the prediction results of other
methods in terms of the F1-scores (p-value < 0.05, as il-
lustrated in Table 4).

Table 1 The comparison results of AUCs achieved by our
model by setting different values of α
α AUCs

0.05 0.8576

0.1 0.8551

0.2 0.8482

0.3 0.8412

0.4 0.8344

0.5 0.8283

0.6 0.8228

0.7 0.8177

0.8 0.8129

0.9 0.8042

Table 2 Performance comparisons between CFNBC and some
state-of-the-art models in terms of AUCs based on the different
data sets of known lncRNA-disease association in the framework
of the LOOCV

Methods AUCs Methods AUCs

CFNBC 0.8674 CFNBC 0.8576

HGLDA 0.7621 NBCLDA 0.8519

CFNBC 0.8579 CFNBC 0.8915

SIMLDA 0.8526 Yang et al.’s method 0.8568
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Case studies
In order to further demonstrate the capability of CFNBC
in inferring new lncRNAs related to a given disease, in
this section, we will implement case studies of glioma,
colorectal cancer and gastric cancer for CFNBC based
on the data set DSld. As a result, the top 20 disease-
related lncRNAs predicted by CFNBC have been con-
firmed by manually mining relevant literatures, and cor-
responding evidences are listed in the following Table 5.
Additionally, among these three kinds of cancers chosen
for case studies, the glioma is one of the most lethal pri-
mary brain tumors with a median survival of less than
12months, and 6 out of 100000 people may have gli-
omas [20], hence it is important to find potential

associations between glioma and dysregulations of some
lncRNAs. As illustrated in Table 5, while applying
CFNBC to predict candidate lncRNAs related to glioma,
it is easy to see that there are six out of the top 20 pre-
dicted glioma-related lncRNAs having been validated by
recent literatures on biological experiments. For in-
stance, the lncRNA XIST has been demonstrated to be
an important regulator in tumor progression and may be
a potential therapeutic target in the treatment of glioma
[21]. Ma et al. found that the lncRNA MALAT1 plays an
important role in glioma progression and prognosis and
may be considered as a convictive prognostic biomarker
for glioma patients [22]. Xue et al. provided a

Fig. 1 the performance of CFNBC in terms of ROC curves and AUCs
based on 183 known lncRNA-disease associations under the
framework of LOOCV

Fig. 2 the performance of CFNBC in terms of ROC curves and AUCs
based on 101 known lncRNA-disease associations under the
framework of LOOCV

Fig. 3 the performance of CFNBC and NBCLDA in terms of ROC
curves and AUCs based on the data set DSld under the framework
of LOOCV

Fig. 4 the performance of CFNBC and the method proposed by
Yang et al. in terms of ROC curves and AUCs based on a data set
consisting of 319 known lncRNA-disease associations under the
framework of LOOCV
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comprehensive analysis of KCNQ1OT1-miR-370-
CCNE2 axis in human glioma cells and a novel strategy
for glioma treatment [23].
As for the colorectal cancer (CRC), it is the third most

common cancer and the third leading cause of cancer
death in men and women in the United States [24]. In re-
cent years, accumulating evidences have shown that many
CRC-related lncRNAs have been reported based on bio-
logical experiments. For example, Song et al. demon-
strated that the higher expression of XIST was correlated
with worse disease free survival of CRC patients [25].
Zheng et al. proved that the higher expression level of
MALAT1 may serve as a negative prognostic marker in
stage II/III CRC patients [26]. Nakano et al. found that the
loss of imprinting of the lncRNA KCNQ1OT1 may play
an important role in the occurrence of CRC [27]. As illus-
trated in Table 5, while applying CFNBC to uncover can-
didate lncRNAs related to CRC, it is obvious that there
are 6 out of the top 20 predicted CRC-related lncRNAs
having been verified in the Lnc2Cancer database.
Moreover, the gastric cancer is the second most fre-

quent cause of cancer death [28]. Up to now, lots of
lncRNAs have been reported to be associated with gas-
tric cancer. For instance, XIST, MALAT1, SNHG16,
NEAT1, H19 and TUG1 were reported to be upregu-
lated in gastric cancer [29–34]. As illustrated in Table 5,
while applying CFNBC to uncover candidate lncRNAs
related to gastric cancer, it is obvious that there are 6
out of the top 20 newly identified lncRNAs related to
gastric cancer having been validated by the lncRNADi-
sease and Lnc2Cancer database respectively.

Discussion
Accumulating evidences have shown that prediction of
potential lncRNA-disease associations is helpful in under-
standing crucial roles of lncRNAs in biological process,
complex disease diagnoses, prognoses and treatments. In

this manuscript, we constructed an original lncRNA-
miRNA-disease tripartite network by combining miRNA-
lncRNA, miRNA-disease and lncRNA-disease associations
first. And then, we formulated the prediction of potential
lncRNA-disease associations as a problem of recom-
mender system and obtained an updated tripartite net-
work through applying a novel item-based collaborative
filtering algorithm to the original tripartite network. Fi-
nally, we proposed a prediction model called CFNBC to
infer potential associations between lncRNAs and diseases
by applying the naïve Bayesian Classifier on the updated
tripartite network. Comparing with state-of-the-art pre-
diction models, CFNBC can achieve better performs in
terms of AUC values without entirely relying on known
lncRNAs-disease associations, which means that CFNBC
can predict potential associations between lncRNAs and
diseases even as these lncRNAs and diseases are not in
known data sets. Additionally, we implemented LOOCV
to evaluate the prediction performance of CFNBC, and
the simulation results showed that the problem of limited
positive samples existed in state-of-the-art models has
been significantly solved in CFNBC by the addition of col-
laborative filtering algorithm and the predictive accuracy
has been improved by adopting the disease semantic simi-
larity to infer potential associations between lncRNAs and
diseases. Moreover, case studies of glioma, colorectal can-
cer and gastric cancer were implemented to further esti-
mate the performance of CFNBC, and simulation results
demonstrated that CFNBC could be a useful tool for pre-
dicting potential relationships between lncRNAs and dis-
eases as well. Of course, despite the reliable experimental
results achieved by CFNBC, there are still some biases in
our model. For example, it is noteworthy that there are
many other types of data that can be utilized to uncover
potential lncRNA-disease associations, therefore, the pre-
diction performance of CFNBC would be improved by the
addition of more types of data. In addition, the results of
CFNBC may be affected by the quality of datasets and the
numbers of known lncRNA-disease relationships as well.
Furthermore, successfully established models in the other
computational fields would inspire the development of
lncRNA-disease association prediction, such as microRNA-
disease association prediction [35–37], drug-target inter-
action prediction [38] and synergistic drug combinations
prediction [39].

Conclusion
Finding out lncRNA-disease relationships is essential for
understanding human disease mechanisms. In this
manuscript, our main contributions are as follows: (1)
An original tripartite network is constructed by integrat-
ing a variety of biological information including miRNA-
lncRNA, miRNA-disease and lncRNA-disease associa-
tions. (2) An updated tripartite network is constructed

Table 3 F1-score of CFNBC, SIMCLDA, NBCLDA, Yang et al.’s
method at different top-k cutoffs

Methods F1-Score

CFNBC 0.1685(k = 15) 0.1582(k = 20) 0.1422(k = 25)

SIMCLDA 0.1577(k = 15) 0.1482(k = 20) 0.1422(k = 25)

CFNBC 0.1101(k = 20) 0.1179(k = 30) 0.1079(k = 40)

NBCLDA 0.0876(k = 20) 0.0823(k = 30) 0.0875(k = 40)

CFNBC 0.2987(k = 20) 0.2778(k = 30) 0.2844(k = 40)

Yang et al.’s method 0.2678(k = 20) 0.2821(k = 30) 0.2844(k = 40)

Table 4 P-values Achieved by paired t-Test the F1-scores from
top-1 to top-20 cutoffs

SIMCLDA NBCLDA Yang et al.’s method

p-values 5.48988E-03 3.40847E-03 3.01462E-05
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by applying a novel item-based collaborative filtering al-
gorithm on the original tripartite network. (3) A novel
prediction model called CFNBC is developed based on
the naïve Bayesian Classifier and applied on the updated
tripartite network to infer potential associations between
lncRNAs and diseases. (4) CFNBC can be adopted to
predict a potential disease-related lincRNA or an poten-
tial lncRNA-related disease without relying on any
known lncRNA-disease associations. (5) A recommenda-
tion system is applied in CFNBC, which guarantees that
CFNBC can achieve effective prediction results in condi-
tion of scarce known lncRNA-disease associations.

Data collection and preprocessing
In order to construct our novel prediction model
CFNBC, we combined three kinds of heterogeneous data
sets such as the miRNA-disease association set, the
miRNA-lncRNA association set and the lncRNA-disease
association set to infer potential associations between
lncRNAs and diseases, which were collected from differ-
ent public databases including the HMDD [40], the star-
Base v2.0 [41], and the MNDR v2.0 databases [42], etc.

Construction of the miRNA-disease and miRNA-lncRNA
association sets
Firstly, we downloaded two datasets of known miRNA-
disease associations and miRNA-lncRNA associations
from the HMDD [40] in August 2018 and the starBase
v2.0 [41] in January 2015 respectively. Then, we removed
duplicated associations with conflicting evidences on

these two data sets separately, manually picked out the
common miRNAs existing in both the dataset of
miRNA-disease associations and the dataset of miRNA-
lncRNA associations, and retained only the associations
related with these selected miRNAs in these two data
sets. As a result, we finally obtained a data set DSmd in-
cluding 4704 different miRNA-disease interactions be-
tween 246 different miRNAs and 373 different diseases,
and a data set DSml including 9086 different miRNA-
lncRNA interactions between 246 different miRNAs and
1089 different lncRNAs (see Supplementary Materials
Table 1and Table 2).

Construction of the lncRNA-disease association set
Firstly, we downloaded a dataset of known lncRNA-
disease associations from the MNDR v2.0 databases [42]
in 2017. Then, once the dataset was collected, in order
to keep the uniformity of disease names, we transformed
some diseases names included in the set of lncRNA-
disease associations into their aliases in the data set of
miRNA-disease associations, and unified the names of
lncRNAs in the datasets of miRNA-lncRNA associations
and lncRNA-diseases associations. By this means, we se-
lected out these lncRNA-disease interactions associated
with both lncRNAs belonging to DSml and diseases be-
longing to DSmd. As a result, we finally obtained a data
set DSld including 407 different lncRNA-disease interac-
tions between 77 different lncRNAs and 95 different dis-
eases (see Supplementary Materials Table 3).

Table 5 The lncRNAs in the top 20 for the three case studies

Diseases lncRNAs Evidence (PMID) Rank

Glioma XIST 28287613, 29187887, 28469789, 28831025 1

Glioma MALAT1 27134488,28551849,26649728, 25613066,27904771 3

Glioma KCNQ1OT1 28381990 5

Glioma SNHG16 29529599 6

Glioma NEAT1 27556696 8

Glioma H19 29391808,26983719,29422115,27543358,27981546 19

Colorectal cancer XIST 17143621,29495975,29137332,17143621 1

Colorectal cancer MALAT1 21503572,27777857,27165481,26887056,25446987 3

Colorectal cancer KCNQ1OT1 16965397,23660942,26868975 4

Colorectal cancer NEAT1 26549670 7

Colorectal cancer SNHG16 27693121 9

Colorectal cancer H19 27027436,26989025,26068968 15

Gastric cancer XIST 29053187,29212249,27911852,27620004 1

Gastric cancer MALAT1 29162158,28942451,26871474,24857172,27887846 3

Gastric cancer SNHG16 29081409 8

Gastric cancer NEAT1 29363783,28401449,27095450 9

Gastric cancer H19 29687854,27592063,26160158,28105222,29207111 13

Gastric cancer TUG1 27983921,29719612,28927144,27261864,26913601 17
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Analysis of relational data sources
In CFNBC, the newly constructed lncRNA-miRNA-
disease tripartite network (LMDN for abbreviation) con-
sists of three kinds of objects such as lncRNAs, miRNAs
and diseases. Therefore, we collected three kinds of rela-
tional data sources from different databases based on
these three kinds of objects. As illustrated in Fig. 5, the
numbers of diseases are 373 in the data set of miRNA-
disease associations (m-d for abbreviation) and 95 in the
data set of lncRNA-disease associations (l-d for abbrevi-
ation) respectively. The numbers of lncRNAs are 1089
in the data set of miRNA-lncRNA associations (m-l for
abbreviation) and 77 in l-d respectively. The numbers of
miRNAs are 246 in both m-l and m-d. Moreover, it is
clear that the set of 95 diseases in l-d is a subset of the
set of 373 diseases in m-d, and the set of 77 lncRNAs in
l-d is a subset of the set of 1089 lncRNAs in m-l.

Method
As illustrated in Fig. 6, our newly proposed prediction
model CFNBC consists of the following four main stages:

Step1: As illustrated in Fig. 6(a), we can construct a
miRNA-disease association network MDN, a miRNA-
lncRNA association network MLN, and an lncRNA-
disease association network LDN based on the data
sets DSmd, DSml and DSld respectively.
Step2: As illustrated in Fig. 6(b), through integrating
these three newly constructed association networks
MDN, MLN, and LDN, we can further construct an
original lncRNA-miRNA-disease association tripartite
network LMDN.
Step3: As illustrated in Fig. 6(c), after applying the
collaborative filtering algorithm on LMDN, we can
obtain an updated lncRNA-miRNA-disease association
tripartite network LMDN′.

Step4: As illustrated in Fig. 6(d), after appending the
naïve Bayesian classifier to LMDN′, we can obtain our
final prediction model CFNBC.

In the original tripartite network LMDN, owing to the
sparse known associations between lncRNAs and dis-
eases, for any given lncRNA node a and disease node b,
it is obvious that the number of miRNA nodes that asso-
ciate with both a and b will be very limited. Hence, in
CFNBC, we designed a collaborative filtering algorithm
for recommending suitable miRNA nodes to corre-
sponding lncRNA nodes and disease nodes respectively.
And then, based on these known and recommended
common neighboring nodes, we can finally apply the
Naïve Bayesian Classifier on LMDN′ to uncover poten-
tial lncRNA-disease associations.

Construction of LMDN
Let matrix R0

MD be the original adjacency matrix of known
miRNA-disease associations and the entity R0

MDðmk ; d jÞ
denote the element in the kth row and jth column of R0

MD,
then there is R0

MDðmk ; d jÞ =1 if and only if the miRNA
node mk is associated with the disease node dj, otherwise,
there is R0

MDðmk ; d jÞ =0. In the same way, we can obtain
the original adjacency matrix R0

ML of known miRNA-
lncRNA associations as well, and in R0

ML, there is R
0
MLðmk

; liÞ =1 if and only if the miRNA node mk is associated
with the lncRNA node li, otherwise, there is R0

MLðmk ; liÞ =
0. Additionally, considering that a recommender system
may involve various input data including users and items,
therefore, in CFNBC, we will take lncRNAs and diseases
as users, while miRNAs as items. Thereafter, as for these
two original adjacency matrices R0

MD and R0
ML obtained

above, since their row vectors are the same, it is easy to
see that we can construct another adjacency matrix R0

MLD

¼ ½R0
ML;R

0
MD� by splicing R0

MD and R0
ML together. More-

over, it is obvious that the row vector of R0
MLD is exactly

the same as the row vector in R0
MD or R0

ML, while the col-
umn vector of R0

MLD consists of the column vector of
R0
MD and the column vector of R0

ML.

Applying the item-based collaborative filtering algorithm
on LMDN
Since CFNBC is based on the collaborative filtering algo-
rithm, then the relevance scores between lncRNAs and
diseases predicted by CFNBC will depend on the com-
mon neighbors between these lncRNAs and diseases.
However, owing to the scarce known lncRNA-miRNA,
lncRNA-disease and miRNA-disease associations, the
number of common neighbors between these lncRNAs
and diseases in LMDN will be very limited as well.
Hence, in order to improve the number of common

Fig. 5 The relationships among three kinds of different data sources
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neighbors between lncRNAs and diseases in LMDN, we
will apply the collaborative filtering algorithm on LMDN
in this section.
First, on the basis of R0

MLD and LMDN, we can obtain
a co-occurrence matrix Rm ×m, in which, let the entity
R(mk,mr) denote the element in the kth row and rth col-
umn of Rm ×m, then there is R(mk,mr) =1 if and only if
the miRNA node mk and the miRNA node mr share at
least one common neighboring node (a lncRNA node or
a disease node) in LMDN, otherwise, there is R(mk,mr)
=0. Hence, a similarity matrix R′ can be calculated after
normalizing Rm ×m as follows:

R
0
mk ;mrð Þ ¼ j N mkð Þ∩N mrð Þ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N mkð Þj j� j N mrð Þ jp k; r∈ 1; 246½ �ð Þ

ð3Þ

Where ∣N(mk)∣ represents the number of known
lncRNAs and diseases associated to mk in LMDN, that
is, the number of elements with value equaling to 1 in
the kth row of R0

MLD , |N(mr)| represents the number of
elements with value equaling to 1 in the rth row of R0

MLD,
and ∣N(mk) ∩N(mr)∣ denotes the number of known

lncRNAs and diseases associated with both mk and mr

simultaneously in LMDN.
Next, for any given lncRNA node li and miRNA node

mh in LMDN, if the association between li and mh is
known already, then, for a miRNA node mt other than
mh in LMDN, it is obvious that the higher the relevance
score between mt and mh, the bigger the possibility that
there may exist potential association between li and mt.
Hence, we can obtain the relevance score between li and
mt based on the similarities between miRNAs as follows:

p
limt¼

X
mt∈N lið Þ∩S K ;mt−topð Þ

R
0
t � uit

ð4Þ

Here, N(li) represents the set of neighboring miRNA
nodes that are directly connected to li in LMDN, and S(K,
mt − top) denote the set of top-K miRNAs that are most

similar to mt in LMDN. R
0
t is a vector consisting of the tth

row of R′. In addition, there is uit = 1 if and only if li is
interacted with mt in ML, otherwise, there is uit =0.
Similarly, for any given disese node dj and miRNA

node mh in LMDN, if the association between dj and mh

is known already, then, for a miRNA node mt other than
mh in LMDN, we can obtain the relevance score

(a) (b)

(d)

(c)

Fig. 6 Flowchart of CFNBC. In the diagram, the green circles, blue squares, and orange triangles represent lncRNAs, diseases and miRNAs
respectively. a construction of MDN, MLN and LDN; (b) construction of the original tripartite network LMDN and its corresponding adjacency
matrix; (c) construction of the updated tripartite network LMDN′ and its corresponding adjacency matrix; (d) prediction of potential lncRNA-
disease associations through applying the naïve Bayesian classifier on LMDN′

Yu et al. BMC Bioinformatics          (2019) 20:396 Page 8 of 13



between dj and mt based on the similarities between
miRNAs as follows:

p
d jmt¼

X
mt∈N d jð Þ∩S K ;mt−topð Þ

R
0
t � ujt

ð5Þ

Where N(dj) denotes the set of neighboring miRNA
nodes that are directly connected to dj in LMDN. In
addition, there is ujt =1 if and only if dj is interacted with
mt in MD, otherwise, there is ujt =0.
Obviously, based on the similarity matrix R′ and the

adjacency matrix R0
MLD , we can construct a new recom-

mender matrix R1
MLD as follows:

R1
MLD ¼ R

0 � R0
MLD ð6Þ

In particular, for a certain lncRNA node li or a disease
node dj in LMDN, if there is a miRNA mk satisfying
R0
MLDðmk ; liÞ ¼ 1 or R0

MLDðmk ; d jÞ ¼ 1 in R0
MLD , then, we

will first sum up the values of all elements in the ith or
jth column of R1

MLD respectively. Thereafter, we will ob-
tain its average value p. Finally, if there is a miRNA node
mθ in the ith or jth column of R1

MLD satisfying R1
MLDðmθ;

liÞ > p or R1
MLDðmθ; d jÞ > p , then we will recommend

the miRNA mθ to li or dj respectively. And in the same
time, we will as well add a new edge between mθ and li
or mθ and dj in LMDN separately.

For instance, according to Fig. 6 and the given matrix

R0
MLD ¼

1 1
1 0

1 0
1 0

0 1
0
0

0
0

0 1
0
1

1
1

2
6664

3
7775 , we can obtain its corre-

sponding matrices Rm ×m, R′ and R1
MLD as follows:

Rm�m ¼

n 1 1 0 1
1 n 0 0 1
1 0 n 1 1
0 0 1 n 1
1 1 1 1 n

2
66664

3
77775 ð7Þ

R1
MLD ¼

n 0:81 0:405 0 0:405
0:81 n 0 0 0:5
0:405 0 n 0:7 0:5
0 0 0:7 n 0:7

0:405 0:5 0:5 0:7 n

2
66664

3
77775 ð8Þ

R1
MLD ¼

0:81 0:405 1:215 0:81
0:81 0:81 1:31 0:5
0:405 0:405 0:905 1:2
0 0:7 0:7 1:4

0:905 0:905 0:905 1:2

2
66664

3
77775 ð9Þ

To be specific, as illustrate in Figure 6, if taking the
lncRNA node l1 as an example, then from the matrix
R0
MLD , it is easy to see that there are two miRNA nodes

such as m1 and m2 associated with l1. In addition,
according to formula (9), we can know as well that there

is R1
MLDðm5; l1Þ ¼ 0:905 > p ¼ R1

MLDðm1;l1ÞþR1
MLDðm2;l1Þ

2 ¼
0:81þ0:81

2 ¼ 0:81. Hence, we will recommend the miRNA
node m5 to l1. In the same way, the miRNA nodes m2,
m4 and m5 will be recommended to l2 as well. Moreover,
according to previous description, it is obvious that
these new edges between m5 and l1, m2 and l2, m4 and
l2, and m5 and l2 will be added to the original tripartite
network LMDN in the same time. Thereafter, we can
obtain an updated lncRNA-miRNA-disease association
tripartite network LMDN′ on the basis of the original
tripartite network LMDN.

Construction of the prediction model CFNBC
The naïve Bayesian classifier is a kind of simple prob-
abilistic classifier with a conditionally independent as-
sumption. Based on this probability model, the posterior
probability can be described as follows:

p CjF1; F2;⋯; Fnð Þ ¼ p F1; F2;⋯; FnjCð Þp Cð Þ
p F1; F2;⋯; Fnð Þ ð10Þ

Where C is a dependent class variable and F1, F2, …,
Fn are the feature variables of class C.
Moreover, since each feature Fi is conditionally inde-

pendent to any other feature Fj (i ≠ j) in class C, then the
above formula (10) can as well be expressed as follows:

p CjF1; F2;⋯; Fnð Þ ¼
p Cð Þ

Yn
i¼1

p FijCð Þ

p F1; F2;⋯; Fnð Þ ð11Þ

In our previous work, we proposed a probability
model called NBCLDA based on the Naïve Bayesian
classifier to predict potential lncRNA-disease associa-
tions [10]. However, in NBCLDA, there exist some cir-
cumstances where it happens to be no relevance scores
between a certain pair of lncRNA and disease nodes,
and the reason is that there are no common neighbors
between them owing to the scarce known associations
between the pair of lncRNA and disease. Hence, in order
to overcome this kind of drawback existing in our previ-
ous work, in this section, we will design a novel predic-
tion model called CFNBC to infer potential associations
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between lncRNAs and diseases through adopting the
item-based collaborative filtering algorithm on LMDN
and applying the Naïve Bayesian classifier on LMDN′. In
CFNBC, for a given pair of lncRNA and disease nodes, it
is obvious that they will have two kinds of common
neighboring miRNA nodes such as the original common
miRNA nodes and the recommended common miRNA
nodes. In order to illustrate this case more intuitively, an
example is given in Figure 7, in which, the node m3 is an
original common neighboring miRNA node since it has
known associations with both l2 and d2, while the nodes
m4 and m5 belong to recommended common neighbor-
ing miRNA nodes since they do not have known associa-
tions with both l2 and d2. And in particular, while
applying the Naïve Bayesian classifier on LMDN′, for a
given pair of lncRNA and disease nodes, we will con-
sider that their common neighboring miRNA nodes, in-
cluding both the original and recommended common
neighboring miRNA nodes, are all conditionally inde-
pendent of each other, since they are different nodes in
LMDN′. That is, for a given pair of lncRNA and disease
nodes, it is assumed that all their common neighboring
nodes will not interfere with each other in CFNBC.

Method for applying the Naïve Bayesian theory on LMDN′

For any given lncRNA node li and disease node dj in
LMDN′, let CN1(li, dj) = {m1 − 1,m2 − 1,⋯mh − 1} denote a
set consisting of all original common neighboring nodes
between them, and CN2(li, dj) = {m1 − 2,m2 − 2,⋯mh − 2}
denote a set consisting of all recommended common
neighboring nodes between them in LMDN′, then, the
prior probabilities pðeli−d j ¼ 1Þ and pðeli−d j ¼ 0Þ can be
calculated as follows:

p eli−d j ¼ 1
� � ¼ Mcj j

Mj j ð12Þ

p eli−d j ¼ 0
� � ¼ 1−p eli−d j ¼ 1

� � ð13Þ

Where |Mc| denotes the number of known lncRNA-
disease associations in LDN and |M| = nl × nd. Here, nl
and nd represent the number of different lncRNAs and
diseases in LDN respectively.
Furthermore, based on these two kinds of common

neighboring nodes, the posterior probabilities between li
and dj can be calculated as follows:

p eli−d j ¼ 1jCN1 li;d j
� �

;CN2 li; d j
� �� � ¼ p eli−d j ¼ 1

� �
p CN1ðli; d j
� �

;CN2 li;d j
� �Þ

Y
mδ−1∈CN1 li;d jð Þ

p mδ−2jeli−d j ¼ 1
� �� Y

mδ−2∈CN2 li;d jð Þ
p mδ−2jeli−d j ¼ 1
� �

ð14Þ

p eli−d j ¼ 0jCN1 li; d j
� �

;CN2 li; d j
� �� � ¼ p eli−d j ¼ 0

� �
p CN1ðli; d j
� �

;CN2 li; d j
� �Þ

Y
mδ−1∈CN1 li;d jð Þ

p mδ−2jeli−d j ¼ 0
� �� Y

mδ−2∈CN2 li;d jð Þ
p mδ−2jeli−d j ¼ 0
� �

ð15Þ
Obviously, comparing formula (14) with formula (15),

it can be easily identified that whether an lncRNA node
is related to a disease node or not in LMDN′. However,
since it is too difficult to obtain the value of p(CN1(li,
dj)) and p(CN2(li, dj)) directly, the probability of potential
association existing between li and dj in LMDN′ can be
defined as follows:

S li; d j
� � ¼ p eli−d j ¼ 1jCN1 li; d j

� �
;CN2 li; d j

� �� �
p eli−d j ¼ 0jCN1 li; d j

� �
;CN2 li; d j

� �� �
¼ p eli−d j ¼ 1

� �
p eli−d j ¼ 0
� � Y

mδ−1∈CN1 li;d jð Þ
p mδ−1jeli−d j ¼ 1
� �

p mδ−1jeli−d j ¼ 0
� � Y

mδ−2∈CN2 li;d jð Þ
p mδ−2jeli−d j ¼ 1
� �

p mδ−2jeli−d j ¼ 0
� �

ð16Þ
Here pðmδ−1jeli−d j ¼ 1Þ and pðmδ−1jeli−d j ¼ 0Þ denote

the conditional possibilities that whether the node mδ − 1

is a common neighboring node between li and dj or not
in LMDN′ separately, and pðmδ−2jeli−d j ¼ 1Þ and pðmδ−2j
eli−d j ¼ 0Þ represent whether the node mδ − 2 is a com-
mon neighboring node between li and dj or not in
LMDN′ respectively. Moreover, according to the Bayes-
ian theory, these four kinds of conditional probabilities
can be defined as follows:

p mδ−1jeli−d j ¼ 1
� � ¼ p eli−d j ¼ 1jmδ−1

� �
p mδ−1ð Þ

p eli−d j ¼ 1
� � ð17Þ

p mδ−1jeli−d j ¼ 0
� � ¼ p eli−d j ¼ 0jmδ−1

� �
p mδ−1ð Þ

p eli−d j ¼ 0
� � ð18Þ

Fig. 7 a subnetwork of Figure 6(d), in which, a solid line between a
lcnRNA (or disease) node and a miRNA node means that there is a
known association between these two nodes, while a dotted line
between a lcnRNA (or disease) node and a miRNA node means that
the association between these two nodes is obtained by our item-
based collaborative filtering algorithm, then, it is easy to know that
the common neighboring node m3 is an original common
neighboring miRNA node of l2 and d2, while m4, m5 are
recommended common neighboring miRNA nodes of l2 and d2

Yu et al. BMC Bioinformatics          (2019) 20:396 Page 10 of 13



p mδ−2jeli−d j ¼ 1
� � ¼ p eli−d j ¼ 1jmδ−1

� �
p mδ−2ð Þ

p eli−d j ¼ 1
� � ð19Þ

p mδ−2jeli−d j ¼ 0
� � ¼ p eli−d j ¼ 0jmδ−2

� �
p mδ−2ð Þ

p eli−d j ¼ 0
� � ð20Þ

Where pðeli−d j ¼ 1jmδ−1Þ and pðeli−d j ¼ 0jmδ−1Þ are
the probability of whether the lncRNA node li is con-
nected to the disease node dj or not respectively, while
mδ − 1 is a common neighboring miRNA node between li
and dj in LMDN′. And similarly, pðeli−d j ¼ 1jmδ−2Þ and
pðeli−d j ¼ 0jmδ−2Þ represent the probability of whether
the lncRNA node li is connected to the disease node dj
or not respectively, while mδ − 2 is a common neighbor-
ing miRNA node between li and dj in LMDN′. More-
over, supposing that mδ − 1 and mδ − 2 are two common
neighboring miRNA nodes between li and dj in LMDN′,
let Nþ

mδ−1
and N−

mδ−1
represent the number of known as-

sociations and the number of unknown associations be-
tween disease nodes and lncRNA nodes in LMDN′ that
have mδ − 1 as a common neighboring miRNA node be-
tween them, and Nþ

mδ−2
and N−

mδ−2
represent the number

of known associations and the number of unknown as-
sociations between disease nodes and lncRNA nodes in
LMDN′ that have mδ − 2 as a common neighboring
miRNA node between them, then, it is obvious that pð
eli−d j ¼ 1jmδ−1Þ and pðeli−d j ¼ 1jmδ−2Þ can be calculated
as follows:

p eli−d j ¼ 1jmδ−1
� � ¼ Nþ

mδ−1

Nþ
mδ−1

þ N−
mδ−1

ð21Þ

p eli−d j ¼ 1jmδ−2
� � ¼ Nþ

mδ−2

Nþ
mδ−2

þ N−
mδ−2

ð22Þ

Obviously, according to above formula (17), formula
(18), formula (19) and formula (20), the formula (16) can
be modified as follows:

S li;d j
� � ¼ p eli−d j ¼ 1

� �
p eli−d j ¼ 0
� � Y

mδ−1∈CN1 li;d jð Þ
p eli−d j ¼ 0
� �

p eli−d j ¼ 1jmδ−1
� �

p eli−d j ¼ 1
� �

p eli−d j ¼ 0jmδ−1
� �Y

mδ−2∈CN2 li;d jð Þ p eli−d j ¼ 0
� �

p eli−d j ¼ 1jmδ
� �

p eli−d j ¼ 1
� �

p eli−d j ¼ 0jmδ
� �

ð23Þ
Furthermore, for any given lncRNA node li and disease

node dj, since the value of
pðeli−d j¼1Þ
pðeli−d j¼0Þ is a constant, then

for convenience, we will denote the value of
pðeli−d j¼1Þ
pðeli−d j¼0Þ as

ϕm. In addition, for each common neighboring node mδ

− 1 between li and dj, let Nl − 1 and Nd − 1 denote the
numbers of lncRNAs and diseases associated to mδ − 1 in
LMDN′ respectively, then it is obvious that there is

Nþ
mδ−1

þ N−
mδ−1

¼ Nl−1 � Nd−1 . And similarly, for each
common neighboring miRNA node mδ − 2 between li and
dj, let Nl − 2 and Nd − 2 represent the numbers of
lncRNAs and diseases associated to mδ − 2 in LMDN′ re-
spectively, then it is obvious that there is Nþ

mδ−2
þ N−

mδ−2

¼ Nl−2 � Nd−2 . Thereafter, the above formula (16) can
be further modified as follows:

S li; d j
� � ¼ ϕm

Y
mδ−1∈CN1 li;d jð Þ

Y
mδ−2∈CN2 li;d jð Þ

ϕm
−2 N

þ
mδ−1

N−
mδ−1

Nþ
mδ−2

N−
mδ−2

ð24Þ

Besides, since Nþ
mδ−1

and Nþ
mδ−2

may be zero, then we
introduce the Laplace calibration to guarantee that the
value of S(li, dj) will not be zero. Hence, the above for-
mula (16) can once again be modified as follows:

S li; d j
� � ¼ ϕm

Y
mδ−1∈CN1 li;d jð Þ

Y
mδ−2∈CN2 li;d jð Þ

ϕm
−2 N

þ
mδ−1

þ 1

N−
mδ−1

þ 1

Nþ
mδ−2

þ 1

N−
mδ−2 þ 1

ð25Þ
Next, for any given lncRNA node and disease node,

since the original common neighboring miRNA nodes
between them are obtained from the known associa-
tions, while the recommended common neighboring
miRNA nodes between them are obtained by our item-
based collaborative filtering algorithm, then it is reason-
able to consider that the original common neighboring
miRNA nodes shall deserve more credibility than the
recommended common neighboring miRNA nodes.
Hence, in order to make our prediction model be able to
work more effectively, we will add a decay factor α in
the range of (0, 1) to the above formula (25). Thereafter,
the formula (25) can be rewritten as follows:

S li;d j
� � ¼ ϕm

Y
mδ−1∈CN1 li;d jð Þ

Y
mδ−2∈CN2 li;d jð Þ

ϕm
−2 N

þ
mδ−1

þ 1

N−
mδ−1

þ 1

Nþ
mδ−2

þ 1

N−
mδ−2 þ 1

 !α

ð26Þ
Additionally, it has been reported that the degree of

common neighboring nodes will play a significant role
in the link prediction, and the common neighboring
nodes with high degrees can improve the prediction ac-
curacy [43]. Hence, we will further add an index Re-
source (RA) [44] and Logarithmic function for
standardization to the above formula (26). Thereafter,
for any given lncRNA node li and disease node dj in
LMDN′, we can obtain the probability that there may
exist a potential association between them as follows:

S0 li; d j
� � ¼ logS li; d j

� �
kmδ−1kmδ−2

ð27Þ

Here, kmδ−1 and kmδ−2 represent the degree of mδ − 1

and mδ − 2 in LMDN′ respectively.
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Method for appending the disease semantic similarity
into CFNBC
Each disease can be described as a Directed Acyclic Graph
(DAG), in which, the nodes represent the disease MeSH
descriptors and all MeSH descriptors in the DAG are
linked from parent nodes to child nodes by a direct edge.
By this way, a disease dj can be denoted as DAG(dj) = (dj,
T(dj), E(dj)), where T(dj) is the set consisting of node dj
and its ancestor nodes, E(dj) represents the set of edges
between parent nodes and child nodes [45]. Thereafter, by
adopting the scheme of DAG, we can define the semantic
value of dj as follows:

DV d j
� � ¼X

t∈Td j

Dd j tð Þ ð28Þ

Where,

Dd j tð Þ ¼
1 if t≠d j

Dd j tð Þ ¼ max δ � Dd j ctð Þjct∈children of t
� �

if t≠d j

�

ð29Þ
Here, δ is the semantic contribution factor with the

value between 0 and 1, and according to previous work,
δ will be set to 0.5 in this paper. Thus, based on above
formula (28) and formula (29), the semantic similarity
between diseases dj and di can be calculated as follows:

SD d j; di
� � ¼

X
t∈Td j∩Tdi

Dd j tð Þ þ Ddi tð Þ� �
DV d j
� �þ DV dið Þ ð30Þ

Based on above formula (25) and formula (30), for any
given lncRNA node li and disease node dj in LMDN′, we
can finally obtain the probability that there may exist a
potential association between them as follows:

S ¼ S0 � SD ð31Þ
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