
Research Article
Detection of Subclinical Diabetic Retinopathy by Fine Structure
Analysis of Retinal Images

Maziyar M. Khansari,1,2 William D. O’Neill,3 Richard D. Penn,3,4 Norman P. Blair,5

and Mahnaz Shahidi 1

1Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
2USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California,
Los Angeles, CA, USA
3Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
4Department of Neurosurgery, Rush University and Hospital, Chicago, IL, USA
5Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA

Correspondence should be addressed to Mahnaz Shahidi; mshahidi@usc.edu

Received 7 September 2018; Revised 1 January 2019; Accepted 28 January 2019; Published 4 July 2019

Academic Editor: Hamid Ahmadieh

Copyright © 2019 Maziyar M. Khansari et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background and Objective. Diabetic retinopathy (DR) is a major complication of diabetes and the leading cause of blindness
among US working-age adults. Detection of subclinical DR is important for disease monitoring and prevention of damage to the
retina before occurrence of vision loss. )e purpose of this retrospective study is to describe an automated method for dis-
crimination of subclinical DR using fine structure analysis of retinal images. Methods. Discrimination between nondiabetic
control (NC; N� 16) and diabetic without clinical retinopathy (NDR;N� 17) subjects was performed using ordinary least squares
regression and Fisher’s linear discriminant analysis. A human observer also performed the discrimination by visual inspection of
the images. Results. )e discrimination rate for subclinical DR was 88% using the automated method and higher than the rate
obtained by a human observer which was 45%. Conclusions. )e method provides sensitive and rapid analysis of retinal images
and could be useful in detecting subclinical DR.

1. Introduction

Diabetic retinopathy (DR) is a microvascular complication
of diabetes and the leading cause of vision loss among
working-age adults in the developed world [1, 2]. A pop-
ulation-based study has shown that DR prevalence after
15 years of diabetes is over 97% [3]. Although DR is a vision-
threatening disease, its progression can be substantially
controlled with early diagnosis, intensive glycemic man-
agement, and other systemic treatments [2–4]. However,
detection of individuals in whom manifest DR is impending
is an ongoing challenge to healthcare systems worldwide.

Microaneurysms and dot hemorrhages are the earliest
signs of DR detectable by conventional clinical methods.
More severe DR stages are characterized by the presence of

hard exudates, neovascularization, capillary nonperfusion,
fluid-filled spaces, and retinal detachment [5]. Advanced
treatments, such as laser therapy, intravitreal steroid in-
jections, intravitreal anti-VEGF agent injections, or vitreous
surgery, are used to prevent vision impairment in progressed
DR [6]. )ese treatments, however, carry risks [7], and
hence, it would be advantageous to identify diabetes-related
retinal abnormalities at an earlier subclinical stage for close
monitoring and potential application of preventative
treatment to delay development of vision-threatening DR.

Since retinal abnormalities in clinical DR are well
documented, automated DR diagnosis using image analysis
methods has been reported previously [8–10]. However, to
the best of our knowledge, automated subclinical DR de-
tection has not been reported, likely due to the fact that
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retinal abnormalities at this early stage are generally not
directly discernable by visual inspection of fundus image.
However, with the recent advent of optical coherence to-
mography angiography (OCTA), studies have shown al-
terations in capillary density, foveal avascular zone (FAZ)
size, vessel diameters, tortuosity, branching angles, and the
ratio of vessel length to diameter in subclinical DR
[6, 11–14]. )ese alterations were detected based on sta-
tistical significance which does not necessarily translate to
clinical significance and does not allow detection of ab-
normalities in individual cases [15]. Nevertheless, the con-
firmed presence of retinal vascular abnormalities in
subclinical DR provides a rationale for developing image
analysis techniques for automated subclinical DR detection
which can be a potentially useful screening tool for the
already large and rapidly growing diabetic population.

We showed in a previous study that fine structure
analysis of conjunctival microvascular images can be useful
for detecting clinical stages of DR [16], and this technique is
highly sensitive to changes in vessel morphology such as
tortuosity, vasodilation, and vasoconstriction [17]. )e
purpose of the current retrospective study is to test the
hypothesis that fine structure analysis of retinal images can
discriminate subclinical DR from nondiabetic controls.

2. Materials and Methods

2.1. Subjects. A total of 33 subjects (6 females and 27 males)
participated in the study. Subjects underwent a compre-
hensive clinical retinal examination and were classified into
nondiabetic control (NC; N� 16) and diabetic without
clinical retinopathy (NDR; N� 17) subjects. )e study was
conducted in accordance with the tenets of the Declaration
of Helsinki. An institutional review board of the University
of Illinois at Chicago approved the current study. )e study
was explained to the subjects, and informed consents were
obtained in accordance with the tenets of Declaration of
Helsinki. Subjects’ age (mean± standard deviation (SD)) was
56± 9 years and 53± 10 years in NC and NDR subjects,
respectively (P � 0.2). )e diabetes duration and hemo-
globin A1C levels in NDR were 10± 8 years and 8± 2%,
respectively. )ree of the NDR subjects had coronary heart
disease. )e NDR and age-matched NC subjects were se-
lected from our previous study [18], based on availability of
good quality fundus images.

2.2. Image Acquisition and Processing. Imaging was per-
formed by a commercially available fundus camera system
with a 60° field of view. Images were acquired in color, and
each one consisted of 2392× 2048 pixels covering optic
nerve head and the macula. A circular area of interest (ROI)
with a radius of 3.6mm (1000 pixels) centered on the fovea
was selected from each image and converted to grayscale for
analysis. Selection of this area allowed analysis of consistent
regions between the subjects and was based on the as-
sumption that retinal vascular alterations in subclinical DR
are more likely to be detectable in smaller vessels and
capillaries [6]. Figure 1 shows an example of selected ROI

outlined by a yellow circle overlaid on the fundus images and
converted to grayscale in a NC subject.

Fundus image discrimination was performed by a pre-
viously described fine structure image analysis method using a
custom algorithm written in MATLAB (Release 2015b,
MathWorks, Inc., Natick, MA, USA) [19]. In summary, pixels
of each fundus ROI were shifted 1- or 2-pixel column-wise,
row-wise, and along the diagonal to provide 8 different
representations of the original images. Pixels in columns of the
shifted images were stacked over each other to provide a 1D
vector representation of the original image. )e vectors
formed a matrix and a column of ones was added to the
foremost left column of this matrix to improve the dis-
crimination by removing a parameter estimate bias due to
nonzero samplemeans. Amodel image (yi,j) was defined as the
weighted sum of the shifted images plus a zero-mean random
process error term (ui,j) as shown in the following equation:

yi,j � 􏽘
2

k�0
􏽘

2

l�0
bk,lyi−k·j−l + ui,j, k + l> 0, (1)

where bk,l are the coefficients needing estimation. Ordinary
least square (OLS) regression was used to estimate the bk,l
parameters by minimizing the variance of error term. )e
estimated bk,l covariance matrices for each class are the
source of discrimination information.

For each group of subjects (i.e., NC and NDR), a rep-
resentative matrix was generated where each column of the
matrix was formed by bk,l parameters that were obtained
from each image in the group. Fisher’s linear discriminant
(FLD) analysis was used to determine a projection vector (v)
based on the 2 matrices to project bk,l parameters onto a
scalar axis (z-projection). For 2 groups of images acquired
from N1 and N2 subjects, 3 matrixes of B1, B2, and a pooled
sample Bp were formed. B1 and B2 contained OLS co-
efficients for group 1 and group 2, respectively, and Bp was
B1 stacked over B2. Finally, covariance matrices Ωs of the Bs,
s� 1, 2, and p, were estimated and used to determine the
projection vector v as shown in the FLD eigenvalue equation:

n1Ωp − n2Ω1 − n3Ω1􏼐 􏼑v � c1 n2Ω1 + n3Ω2( 􏼁v, (2)

where n1 �N1 +N1− 1, n2 �N1− 1, and n3 �N2− 1 and c1 is
the only nonzero eigenvalue. )e projection vector v pro-
vides maximum absolute difference between the sample
means of the 2 groups, while normalized by the sum of the
covariance of each group.

Normality of distributions of z-projections was verified
using Kolmogorov–Smirnov (KS) test to allow Kullback–
Leibler discrimination (KLD) statistics as an indicator of
likelihood of accurate discrimination. KLD of a discrimi-
nation function L(z) was calculated as shown in the fol-
lowing equation:

L1,2(z) � Ln
f1(z)

f2(z)
􏼠 􏼡 � Ln

s2

s1
􏼠 􏼡 +

z−m2( 􏼁
2

2s22
−

z−m1( 􏼁
2

2s21
,

(3)

where f1(z) and f2(z) are 2 z-projection density functions
(Figure 2), m1 and m2 are sample means of the z-projection
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functions, and s1 and s2 are SD of the z-projection functions.
When 2 groups of images are perfectly discriminated, L1
values for all the images in group 1 are positive and L2 values
for all the images in group 2 are all negative. Consequently,
misclassified images in group 1 and misclassified images in
group 2 have negative and positive L1 and L2 values, re-
spectively. Additionally, the higher L1 value for a group 1
image and the lower L2 value for a group 2 image indicate the
higher likelihood of accurate discrimination. Discrimination
rate was determined as the percentage ratio of the number of
correctly discriminated images to the total number of the
images in the 2 groups. Additional description of the fine
structure technique may be found elsewhere [19].

2.3.HumanObserver ImageDiscrimination. An experienced
retinal specialist masked to subjects’ diagnosis, and the result
obtained by the automated discrimination, served as human
observer and performed image discrimination. Each of the

ROIs was visually inspected and assigned to one of the two
groups. )e discrimination rate for the human observer was
calculated using the same formula as that used for the au-
tomated method.

3. Results

)e KS test results showed that the distribution of z-
projects in NC and NDR subjects was normal (P< 0.001).
)e automated discrimination rate was 88% (29/33) with 1
and 3 misclassifications in NC and NDR subjects, re-
spectively. )e KLD statistics between the NC and NDR
subjects are shown in Figure 2. )e range of L1 values for
correctly classified images in group 1 was between 0.1 and
4, while the range of L2 values for correctly classified
images in group 2 was between −0.2 and −6. Discrimi-
nation rate by the human observer between NC and NDR
subjects was 45%.
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Figure 2: (a) Probability density of z-projections. (b) L1 and (c) L2 values between nondiabetic control (NC; group 1) and diabetic without
retinopathy (NDR; group 2) subjects. Correctly classified images in group 1 had positive L1 values, while correctly classified images in group
2 had negative L2 values. )e larger L1 value for an image in group 1 and the smaller L2 value for an image in group 2 are indicators of more
likely true positive and more likely true negative discrimination, respectively.

(a) (b)

Figure 1: (a) Example of a color retinal image acquired in a nondiabetic control subject. A circular region of interest (ROI) with a diameter
of 3.6mm centered on the fovea and outlined by a yellow circle was selected for discrimination analysis. )e small yellow circle in the center
of the large circle shows the center of the fovea. (b) Converted grayscale images of the ROI in the same subject.
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4. Discussion and Conclusion

In the current study, an automated fine structure discrim-
ination [19] was performed for the first time for analysis of
retinal images to detect subclinical DR. Additionally, the
likelihood of accurate discrimination for each of the images
in the 2 groups of subclinical DR and nondiabetic control
was reported.

)e rate of subclinical DR discrimination using the
automated technique was higher than the rate obtained by
the human observer, suggesting that the method can detect
retinal alterations which cannot be visually discerned by a
trained observer. DR diagnosis and progression monitoring
are currently based on presence of vascular pathologies, such
as microaneurysms and vascular leakage. Detection of ab-
normalities in this early stage may prompt assessment to
optimize glycemic control and possibly add new treatment
to prevent or delay DR progression. It can also be used as a
basis to urge patients to optimize their diabetic control.
Moreover, these early-stage alterations may suggest presence
of undetectable microvascular alterations in other critical
organs such as the kidney or brain. In fact, association
between diabetes and presence of microvascular alterations
in various tissues such as brain, nail fold, and conjunctiva
have been reported previously [18, 20–25]. )erefore, the
method shows promise to improve monitoring and man-
aging diabetic-related disorders throughout the body.

DR is a progressive complication of diabetes that causes
vision impairment by affecting retinal vessels that supply
inner retinal layers [26]. Alterations in intercapillary area,
capillary density, and FAZ size were shown to be correlated
with the progression of DR [6, 27, 28]. Furthermore, retinal
imaging by an adaptive optics confocal scanning laser
ophthalmoscope [29] showed a significant increase in
tortuosity of retinal arteriovenous channels at subclinical
DR [6]. Furthermore, changes in retinal oxygenation, resistive
index, and blood flow have been reported in subclinical DR
[27, 28, 30]. )ese and other retinal physiological alter-
ations can cause vasodilation, vessel wall stiffening, and
tortuosity alterations in subclinical DR which may not be
visually detected by clinical evaluations. However, tech-
niques such as fine structure analysis which use all the
information in the image rather than specific micro-
vasculopathies might be able to provide automated sub-
clinical DR detection.

At subclinical DR stage, there are previously reported
changes in the retinal vasculature, including alterations in
tortuosity of retinal arteriovenous channels, retinal oxy-
genation, resistive index, blood flow, vessel caliber, and
vessel wall stiffness [6, 26–30]. It is likely that the fine
structure analysis of the retinal images detects such pa-
thologies as a basis for discrimination. Detection of global
alterations by fine structure is based on statistical and
mathematical analysis at pixel level. Hence, each of the
3×106 ROI pixels is treated as a feature that can influence
the discrimination result. )is provides detection of global
alterations such as vascular integrity and their pattern at an
early stage, prior to visualization by clinical examination in
which gross vascular changes are detectable. However,

further studies are needed to determine which of these
changes have greater influence on the fine structure analysis.

We believe that shortly after diabetes, abnormalities
begin to develop and reach a threshold over years manifested
by DR. )e fine structure analysis is highly sensitive to these
premature abnormalities and hence provides early diagnosis
on the course of the disease. Moreover, the KLD statistics
provide quantitative representation of severity of abnor-
malities rather than only on an ordinal scale. Furthermore,
the algorithm has the advantage of requiring short com-
putational time (e.g., less than 5 seconds on a 1.3GHz system
with 8GB RAM) which offers substantial potential for its
application to very large image sets. In fact, the method may
have a significant clinical impact for subclinical DR de-
tection, particularly due to the expected increase in the
prevalence of diabetes and shortage in the number of
qualified screening healthcare providers [31].

In the current study, the macular region selected for
analysis contains mostly smaller caliber vessels that are more
vulnerable to the disease than the larger ones [6]. Selection of
this region also allowed analysis of a consistent area among
the subjects. In future, inclusion of different size retinal
regions in the analysis can be useful for determining the
effect of regional differences on the discrimination rates.
Also, the specificity of the current technique was not de-
termined in the current study and future research is needed
to determine whether it can discriminate between DR and
other retinal diseases. It is important to note that since it
takes time for diabetes-related abnormalities to develop [32],
it is expected that there will be an interval between the onset
of diabetes and the development of abnormal test results
using the fine structure method. Hence, future studies are
needed to determine the performance of the automated
discrimination with changes over time and investigate po-
tential correlation between the KLD values and duration of
diabetes. Such a study can also demonstrate whether the
glycemic treatment can reverse the level of abnormalities
detected by the automated method. Finally, future studies
are needed to determine the clinical utility of the current
technique in evaluating, monitoring, and treating subclinical
DR. Nevertheless, the finding of the current study dem-
onstrates the potential for fine structure analysis to detect
subclinical DR based on retinal images.
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