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Abstract

Computational metabolite annotation in untargeted profiling aims at uncovering neutral molecular
masses of underlying metabolites and assign those with putative identities. Existing annotation
strategies rely on the observation and annotation of adducts to determine metabolite neutral
masses. However, a significant fraction of features usually detected in untargeted experiments
remains unannotated, which limits our ability to determine neutral molecular masses. Despite the
availability of tools to annotate, relatively few of them benefit from the inherent presence of in-
source fragments in liquid chromatography-electrospray ionization-mass spectrometry. In this
study, we introduce a strategy to annotate in-source fragments in untargeted data using low energy
tandem MS spectra from the METLIN library. Our algorithm, MISA (METLIN-guided in-source
annotation), compares detected features against low energy fragments from MS/MS spectra,
enabling robust annotation and putative identification of metabolic features based on low energy
spectral matching, The algorithm was evaluated through an annotation analysis of a total 140
metabolites across three different sets of biological samples analyzed with liquid chromatography-
mass spectrometry. Results showed that in cases where adducts were not formed or detected,
MISA was able to uncover neutral molecular masses by in-source fragment matching. MISA was
also able to provide putative metabolite identities via two annotation scores, These scores take into
account the number of in-source fragments matched and the relative intensity similarity between
the experimental data and the reference low energy MS/MS spectra. Overall, results showed that
in-source fragmentation is a highly frequent phenomena that should be considered for
comprehensive feature annotation, Thus, combined with adduct annotation, this strategy adds a
complementary annotation layer, enabling in-source fragments to be annotated and increasing
putative identification confidence. The algorithm is integrated into the XCMS Online platform and
is freely available at http://xcmsonline.scripps.edu.
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Metabolite annotation in liquid chromatography-electrospray ionization-mass spectrometry
(LC-ESI-MS) aims at finding m/z relationships among features that allow the determination
of neutral masses of the underlying metabolites, This process facilitates finding putative
metabolite identities based on accurate mass search, and more importantly, it facilitates
finding protonated/deprotonated species or other adducts that can be fragmented via tandem
MS to confirm their identities. However, a significant portion of features in untargeted
experiments remains unannotated after the application of established annotation algorithms?.
This results in peak redundancy, where a single analyte yields multiple MS peaks (e.g.,
adducts, dimers, isotopes or in-source fragments)? hampers this annotation process and leads
also to false annotations®.

In-source fragmentation is a natural phenomenon in LC-ESI-MS as a large number of
metabolites readily dissociate in the source®. Unlike adducts, 77/z values of in-source
fragments (ISF) are generally specific for each metabolite, but only common neutral losses
as a result of in-source fragmentation are typically annotated by established annotation
methods. By only detecting common neutral losses, current tools are missing available
information that could improve putative identification of metabolites. Despite the existence
of a wide range of tools for computational annotation, reviewed elsewhere®, relatively few
of them focus on the annotation of in-source fragments®:°. Existing tools and algorithms to
annotate ISF in LC-ESI-MS rely on computer-generated /in sifico fragments or small
databases containing low energy MS/MS spectra8-2. However, the relatively low accuracy of
in sifico spectral data still precludes them from serving as a reference for annotation
purposes.

ISF typically occurring in LC, or in other pre-ionization separation techniques such as
supercritical fluid chromatography (SFC)20, or capillary electrophoresis (CE) 11, coupled to
ESI-MS are usually similar to those fragments in low energy collision-induced dissociation
(CID) MS/MS spectra®. Both in-source and low-energy fragmentations are similar as they
are generated by collision under electric fields. In that sense, metabolite identification could
be performed similarly as in gas chromatography-mass spectrometry (GC-MS), where the
electron impact (El) source yields multiple fragments that are matched against reference
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spectral datal?. Analogously, peaks observed in LC-ESI-MS data could be matched against
low energy MS/MS spectra for the same purpose. Despite ESI yields a smaller number of
fragments compared to electron impact (El), as ESI was designed to minimize
fragmentation®3, more than 80% of molecules in METLIN readily dissociate into multiple
fragments at low collision energies®, which implies that a considerable fraction of features
usually observed in untargeted experiments are ISF. This suggests that it is possible to
achieve a more comprehensive annotation by leveraging the presence of ISF in LC-ESI-MS
experiments, particularly when adducts are not formed, detected or annotated.

In this work, we report the METLIN-guided in-source annotation (MISA) algorithm that
annotates ISF using experimental low energy MS/MS spectra from the METLIN library14,
Currently, METLIN contains experimental MS/MS spectra for more than 200,000 molecular
standards in both positive and negative mode and at different collision energies. Features
detected after XCMS Onlinel® data processing are interrogated by MISA, and features
corresponding to protonated/deprotonated or adducts ion species from available MS/MS
spectra in METLIN are assigned with a putative identity when their respective ISF are
observed, This new workflow is integrated into XCMS Online, and it reports annotated ISF
and putative metabolite identities together with adducts, isotopes and common neutral losses
reported by CAMERA®. We validated the algorithm by the annotation a total of 140
compounds across three different datasets, This strategy provided a complementary layer of
information that enabled unraveling neutral masses and putative metabolite identities with
higher confidence as a result of more metabolite-specific information provided by in-source
fragmentation.

EXPERIMENTAL SECTION

Materials.

Three different datasets were analyzed, The first dataset was generated from 39 mice plasma
samples and the second dataset corresponded to the analysis of 39 mice brain. Both plasma
and brain were analyzed using reversed-phase (RP) and hydrophilic interaction liquid
chromatography (HILIC) in a Bruker Impact Il (Bruker Corp., Billerica, MA) and a Synapt
G2-Si quadrupole time-of-flight mass spectrometer (Waters Corp. Milford, MA). The third
dataset was taken from an independent study published elsewherel?, which raw data was
made public (Metabolights accession number MTBLS20). This dataset consisted of human
urine samples analyzed in RP-LC coupled to an LTQjOrbitrap MS (Uermo Fisher Scientific,
Waltham, MA) in both positive and negative mode. Pure standards to confirm metabolite
identities were purchased from Sigma-Aldrich (St. Louis, MO).

Metabolite extraction.

Metabolites from mice plasma and brain were extracted as described elsewhere!8. Briefly,
samples were homogenized in a cold mixture of acetonitrile/methanol/water 2:2:1. Protein
was precipitated through 3 cycles of freeze/thawing and an incubation at —20 C for 1 hour.
Finally, samples were centrifuged at 13,000 rpm for 15 minutes at 4 C and supernatants
containing metabolites were dried down and stored at —80 C prior to LC-MS analysis.
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LC-MS analysis.

Plasma and tissue extracts were analyzed in both RP and HILIC using UPLC columns
ACQUITY BEH C18 (2.1 x 100 mm, 1.7 gm) and ACQUITY BEH Amide (2.1 x 100 mm,
1.7 pm, Waters Corp. Milford, MA). The gradient for RP analysis consisted of (400 z/min
flow rate) 1% B for 1 minute, 99% B over 9 minutes and held at 99% B for 3 minutes, The
gradient for HILIC analysis consisted of (400 wL/min flow rate) 99% B for 1 minute, 65% B
over 13 minutes, 40% B over 3 minutes and held at 40% B for 1 minute. All analyses were
carried out in positive ion mode, The composition for the mobile phases A and B consisted
of water + 0.1% formic acid and acetonitrile + 0.1% formic acid, respectively.

Data processing and analysis.

Datasets 1 and 2 were processed by XCMS Online, This processing consisted of peak
picking, retention time alignment and feature grouping, following annotation with
CAMERA. This processing resulted in a set of features, defined as a molecular entity with a
unique /m/z and a specific retention time, The list of metabolites used to demonstrate
MISA’s performance consisted of metabolites with a broad range of physicochemical
properties and metabolites involves in key metabolic pathways (e.g., amino acids, vitamins,
lipids, coenzymes and acylcarnitines, to name a few). All identifications (a total of 140
metabolites across datasets) were confirmed by the analysis of pure materials: a total of 45
and 37 metabolites were detected by MISA and confirmed for dataset 1 and 2, respectively.
For dataset 3, a total of 58 metabolites (35 in positive mode and 23 in negative mode) were
detected by MISA and confirmed, The following parameters were used: cent-Wave peak
picking algorithm (ppm =15 and minimum and maximum peak width of 2 sand 25 s
respectively), obiwarp retention time correction (profStep = 0.1) and alignment (mzwid =
0.01, min-frac = 0.5 and bw = 2). CAMERA parameters were: error = 5 ppm and m/z
absolute error = 0.015 Da. Parameters for dataset 3 are described in the original study?’.

RESULTS AND DISCUSSION

Computational workflow.

METLIN-guided in-source fragment annotation (MISA) is integrated into XCMS Onlinel,
where LC-MS data is processed for peak picking and alignment, resulting in a set of features
(m/z and retention time). It is worth to noting that CAMERA (which annotates adducts and
some common neutral losses) and MISA annotations are independent and the results of the
two tools are reported separately. In order to annotate ISF, MISA uses the output generated
by XCMS Online to compare the observed features in MS? data with the low energy MS/MS
spectra in the METLIN library, The latter has been generated by the analysis of analytical
standards at different collision energies. Given the low fragmentation yield of ESI as
discussed above, only low collision energies (0 and 10 eV) are taken into account for ISF
annotation.

First, the m/z value of each detected feature is searched, within a user-defined m/zerror (in
ppm), against precursor adduct ions of metabolites with experimental MS/MS spectra in
METLIN. In the cases where a match is found, co-eluting features (i.e. different m7/z but
with the same retention time), are searched against the low energy fragmentation products
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for that particular metabolite. Co-eluting features are determined based on a user-defined
retention time window in seconds. If one or more matches are found to a particular
metabolite, the feature is assigned a putative metabolite identity, and the features
corresponding to ISF are annotated as such of the corresponding molecule (Figure 2).
Considering the large number of features detected in LC-MS metabolomics experiments,
features can be assigned several putative identifications, with different levels of annotation
confidence (Figure 2). Examples of these annotations are shown below.

For each putative metabolite identification, MISA computes two scores called the ratio score
and match factor, The scores are collectively used to assess the likelihood of that feature
stemming from the metabolite reported by MISA. The ratio score is provided as a fraction
(Figure 2). The numerator is the number of peaks in MS! that matched to low energy
spectrum fragments, 7.e., the number of ISF found in the sample data, The denominator
indicates the total number of fragments in the low energy MS? reference spectrum, without
considering the precursor, This ratio score takes only the presence of ISF in MS? into
account. On the other hand, the match factor is calculated using the dot product operation,
The dot product is a spectral similarity score widely used for MS spectral comparisons that
does take relative peak intensities into account, The dot product compares the spectral
similarity of the in-source fragment peaks found in MS? against the low energy spectrum.
Specifically, we compute the so-called reverse dot product!®, where peaks in MS? that do
not match any peak in the library spectrum are not considered, i.e., only matched peaks are
considered, The dot product value ranges from 0 to 100, being 100 the highest similarity
possible. For both the ratio score and match factor computation, the reference low energy
spectra consist of the 10 eV spectra, and additional fragments unique to 0 eV spectra.
Precursors are excluded from the spectra and therefore from the score computation, The
match factor is only computed if the low-energy spectrum is composed of at least three
fragments.

Application of MISA for the annotation of metabolites in un-targeted experiments.

To illustrate the capabilities of the proposed approach, two datasets, the first comprising
mice plasma samples (dataset I) and the second comprising mice brain tissue samples
(dataset 2) were analyzed by UPLC-MS in RP and HILIC chromatography in positive mode.
Raw data files were uploaded into the XCMS Online platform and processed for peak-
detection and alignment in addition to annotation via CAMERA and the METLIN-guided
in-source annotation (MISA) algorithm. CAMERA and MISA were independently applied
1.e,, CAMERA was used to annotate adducts and common losses whereas MISA was used to
annotate ISF and provide with a putative metabolite identification. Overall, the complete
processing and annotation workflow yielded the detection of 16421 (dataset I) and 9163
(dataset 2) features in RP, and 23651 (dataset |) and 18696 (dataset 2) features in HILIC.
MISA assigned a putative metabolite identity to 1061 (dataset I) and 606 (dataset 2) features
in RP, and 1294 (dataset I) and 970 (dataset 2) features in HILIC. Identities of a total of 84
compounds across datasets and chromatographic methods were confirmed via tandem MS
and comparison with spectral reference data and the use of pure materials (see Data
Processing and Analysis section). Table 1 shows the list of correctly annotated metabolites
by MISA for datasets 1 and 2. The table also includes the ratio score and the match factor,
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the number of adducts reported by CAMERA, and the number of ISF detected by MISA that
corresponded to common neutral losses in positive ion mode (-H,0, -NHsz, -HCOOH, as
these have been shown to be the most common®).

MISA increases feature annotation performance.—Adducts play an important role
in peak annotation, as their observation allows the “triangulation” of protonated/
deprotonated or other ion adduct species and therefore the neutral masses of underlying
metabolites. At the same time, this annotation of protonated species facilitates the
preparation of subsequent targeted tandem MS experiments to identify these features. In 54
cases from a total of 82 metabolites in datasets 1 and 2, no adducts were formed or detected/
annotated by XCMS/CAMERA (Table 1). This implies that the feature corresponding to the
protonated/deprotonated species could not be annotated by adduct-based annotation
approaches such as CAMERA. Instead, MISA was able to annotate a larger number of
protonated species, and thus neutral masses, due to the presence of ISF (Figure 3a).
Specifically, a total of 72 metabolites dissociated into at least one specific fragment /.e., not
a common loss. Also, as observed in Table 1, only a 19% of all the ISF detected by MISA
(across datasets) corresponded to common neutral losses, 7.e. low-specificity ISF. This
demonstrates that adduct-based annotation tools lack the capability to annotate an important
fraction of ISF, as only common neutral losses as a result of in-source fragmentation can be
annotated via adduct-based annotation, This is also supported by the data shown in Figure
3b, which shows that MISA annotated twice the number of features corresponding to the
identified metabolites in comparison to adduct-based annotation. Next, we compared the
number of putative metabolite hits between the hits reported by MISA with the hits by
accurate mass search of the observed protonated species neutral mass. Figure 3c shows that
MISA was able to reduce the list putative identities up to a 32%. As discussed in the
following section, manual curation using the MISA annotation scores can be used to further
reduce the list and putative metabolites.

Due to low intensity peaks and noise, adducts and common losses might not be detected by
XCMS or annotated by CAMERA. To demonstrate the advantage of our approach, we
additionally evaluated the algorithm through the annotation of human urine samples
analyzed by UPLC in RP coupled to a linear quadrupole ion trap-Orbitrap MS in both
positive and negative mode (dataset 3, previously published elsewherel?). This dataset
underwent a manual inspection of peaks, and common adducts and losses that were not
detected by XCMS or annotated by CAMERA were searched in the raw data. From all the
metabolites identified in the original study’, a total of 65 (positive mode, +) and 58
(negative mode, -) had experimental MS/MS data in METLIN. From those, MISA’s putative
identification reported the correct identity for 35 (+) and 23 (—) metabolites, based on ISF.
On the other hand, 25 of 65 (+) and 30 of 58 (=) from all the metabolites with spectral data
in METLIN formed common adducts (K*, Na*, CI-, etc.) or dimers (Figure 3d,e). It is
important to highlight that some molecules did not form any adduct, but dissociated into ISF,
and vice versa (Figure 3d,e). This demonstrates that each type of annotation (iSF-based and
adduct-based) provide a complementary annotation coverage, and that the combination of
adduct and in-source fragment annotation is more effective than traditional computational
annotation strategies relying on adducts and common neutral losses alone. Finally, more than
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67% (+) and 50% (=) of fragments detected by our approach corresponded to specific ISF of
each metabolite, whereas the remaining corresponded to common neutral losses (Figure

Robust metabolite annotation based on low-energy fragmentation.—As
mentioned before, the combined use of adduct and in-source annotation allowed uncovering
a larger number of neutral masses compared to adduct annotation alone, These neutral
masses could be searched against databases to find putative metabolite identifications.
However, this is considered as a weak metabolite annotation method20. Instead, MISA
provides with robust putative identifications based on in-source fragment matching,
consisting of the name of the candidate with two matching scores namely ratio score and
match factor (see Computational workflow), The ratio score reported by MISA (number of
fragments found out of the total number of fragments in low energy spectra in METLIN) is
given as a fraction and it serves as an indicator of how reliable putative identifications are.
Intuitively, there is a high likelihood that a putative identity is correct in cases where a
molecule dissociates into multiple fragments and the majority of those fragments in low
energy spectra are found in MS? data (e.g., tryptophan (10/12), citrulline (9/12), NAD (9/14)
or oxidized glutathione (10/16) in Table 1). This is also supported by the false discovery rate
(FDR) decrease at high score ratios (see Supplementary Figure S1, and Supplementary Data
for details on the FDR calculation). However, not all metabolites readily dissociate into
multiple fragments and these are usually low-intensity peaks that can be easily masked by
noise. For all these reasons, it is not possible to establish a score threshold to consider a
putative identification as correct, and all tentative identifications have to be confirmed via
tandem MS.

Next, we focused on intensity similarities between ISF and low energy MS/MS spectra,
These intensity similarities are assessed by the match factor score calculated by MISA.
Figure 4 shows examples of correct identifications provided by MISA of compounds with
multiple ISF together with their corresponding low energy MS/MS spectra. Some
metabolites like tyrosine, citrulline or linoleic acid readily dissociate in the source into
multiple fragments. As observed in the figure, fragment relative intensities between MS/MS
low energy spectra (0 eV or 10 eV) and MS? pseudo-spectra can vary. In these examples,
most ISF are observed in the 10 eV spectra. While relative intensities are similar in some
cases (sphingosine, oxidized glutathione, phosphocholine, and thiamine), these are not
similar for other metabolites (citrulline). It might occur that the best intensity similarity is at
0 eV (coumaric acid). Other metabolites such as tyrosine and linoleic acid show the best
similarity at 5 eV (for illustrative purposes, we computed the 5 eV spectra by intensity
interpolation between 0 and 10 eV). These similarities will depend on experimental
conditions and instruments. Co-elution of compounds with similar structures, mass selective
transmission, ESI needle and lens voltages or temperature can also affect relative intensities.

Despite the variability of relative intensities, the match factor provided by MISA can be used
to rank candidates sharing the same fragments. Similar compounds like glutamic acid,
acetylserine and 3-methylaspartic acid considerably dissociate at low energy and at the same
time they share common fragments (Figure 5). These three metabolites will have different
elution times; however without the analysis of pure standards, the retention time remains
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unknown and cannot be taken into account by MISA. In these cases, MISA will report
multiple candidates per feature, as peaks found in MS! might originate from any of those
three metabolites. In these cases the match factor can be used to rank the candidates. As an
example. Figure 5 shows glutamic acid has a high similarity between its ISF and the low
energy spectrum (84%) whereas the other two candidates, acetylserine and 3-methylaspartic
acid show a low similarity and low match factor values (7% and 13%, respectively).
Glutamic acid was confirmed as the correct identity using MS/MS on the annotated feature.
It is worth noting that the match factor measures spectral similarity and, in effect, it performs
a correlation between ISF and low-energy spectra. It is well known that the correlation
reliability depends on how many data points are used; /.e., how many ISF are being
compared, This might lead to non-significant match factors in cases where molecules
dissociate into a few fragments at low energy, or few ISF are detected. Examples of this
include isoleucine or leucine (Table 1, row number 23 and 29), that dissociate into three
fragments at low energy. Other cases include histidine or phenylalanine (Table 1, row
number 13 and 14), where despite that they dissociate into multiple fragments, only one or
two ISF were detected, since the remaining fragments in the low energy spectrum are low
intensity fragments, This is why it is important to use the match factor in combination with
the ratio score, as the ratio score indicates the number of fragments involved in the match
factor computation.

Some limitations of MISA include the report of false positive putative identifications.
Examples of false positives reported by MISA are shown in Table 2, where the correct
identifications together with false positive identifications are reported for the same feature.
When the same ISF are shared by different molecules, all these molecules are going to be
reported as putative identifications. In many cases, these molecules will be similar or will
share a substructure, This can be illustrated also with the same example shown in Figure 5,
where similar compounds like glutamic acid, acetylserine and 3-methylaspartic acid are
reported as potential identity candidates for the observed feature. Following the same
example, it could also occur that none of the candidates proposed by MISA corresponds to
the true metabolite identity, This will occur when a molecule that lacks of experimental
spectral data in METLIN is being detected and shares fragments with similar molecules in
METLIN (e.g., if glutamic acid spectra were not included in METLIN, MISA would only
report acetylserine and 3-methylaspartic acid as putative candidates). In this case, the
detection of four distinctive fragments shared by these molecules would have suggested that
the true molecule shared a certain degree of similarity or a common substructure with
molecules reported by MISA. Another scenario where false positives are likely to occur is
during short LC gradients. In such cases, co-elution of different molecules would increase
both the number of features and possible ISF, increasing the match possibilities.

Overall, according to the guidelines by the Metabolomics Standards Initiative (MS1)22,
MISA can be used to retrieve level 2 putative identifications in cases where diagnostic
fragments or neutral losses consistent with a specific structure are observed?2. Moreover,
despite the fact that METLIN is one of the largest libraries of experimental MS/MS spectra,
an extensive number of metabolites lack of experimental spectra?3.24. For these reasons,
MISA putative identifications require a level 1 confirmation?1:25 using tandem MS using
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standard materials in combination with orthogonal techniques under identical analytical
conditions.

CONCLUSIONS

Despite the existence of computational annotation algorithms, a large number of features
observed in untargeted metabolomics profiling still remain unannotated. More than 80% of
molecules included in spectral databases readily dissociate into multiple fragments at low
collision energy8, which implies that a considerable fraction of those features corresponds to
in-source fragments. Here, we present a strategy to annotate in-source fragments via
comparison with METLIN’s experimental low energy MS/MS spectra. We demonstrated
that the combined use of adduct and in-source annotation allowed uncovering a larger
number of neutral masses compared to adduct annotation alone. More importantly, MISA
enabled the annotation of neutral masses even when adducts were not observed. At the same
time, MISA enabled a robust putative metabolite annotation based on low energy spectral
comparison, These annotations can be used to reduce the number of possible metabolite
candidates that can be attributed to a feature.

Overall, the presented strategy performs a complementary annotation layer by leveraging the
information from experimental low energy spectra in METLIN, currently covering more
than 200,000 molecules, This strategy allows in-source fragments to be annotated,
increasing in turn metabolite annotation confidence. Ultimately, our autonomous strategy
contributes to streamlining feature annotation and identification in untargeted metabolomics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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In &, the dissociation pathway of methionine at low collision energy is illustrated, which
shows how multiple fragments can be observed as in-source fragments. In b, MS! features
obtained after XCMS Online processing are matched against low energy MS/MS spectra (0
and 10 eV) from METLIN. This fragment comparison enables the annotation of these in-
source features as in-source fragments (ISF) or e.g., protonated/deprotonaded or other ion
adduct species, and it provides with a putative identity of the feature based on low energy

fragmentation.
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NAME SCORE MATCH v ADDUCT
Creatine 3/9 100% [M+H]
3-Guanidinoprop... 3/16 42% [M+H]
Indolelactic ac... ISF

Fig. 2.
Screenshot of MISA’s output. For a given feature selected by the user in the XCMS Online

results table, MISA will output all putative identities. In this example, this feature could be
attributed to the protonated species (M+H) of creatine or 3-guanidinopropanoate, since three
of their in-source fragments have been observed. The score (match score) and the match
(match factor) are two scores computer by MISA used to assess the likelihood of that feature
stemming from the metabolite reported by MISA. It could be that this features is in fact an
in-source fragment of another molecule, in this case it could be an in-source fragment (ISF)
of indolelactic acid. This means that there is another feature in the dataset that has been
annotated by MISA as the protonated species of indolelactic acid and this feature has been
annotated as its in-source fragment.
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Ar%ong all features associated to identified molecules (datasets 1 and 2), panel a exhibits the
number of neutral masses that were annotated by CAMERA (due to the detection of adducts
or common losses), and by MISA (due to in-source annotation). Panel b shows the total
number features stemming from the identified metabolites (including adducts, common
losses and specific ISF) that were annotated by CAMERA, MISA and in total (both
methods). Panel ¢ shows the number of putative identifications retrieved based on accurate
mass search and based on in-source fragment matching; of note, for both methods, only
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metabolites in METLIN with experimental data were considered. Panels d,e show the
overlap between the number of protonated/deprotonated species annotated due to the
detection of formed adducts and ISF, in positive and negative mode, respectively, for dataset
3. In f,g the amount of specific fragments and common losses in positive and negative mode
is shown, as percentage of all detected ISF.
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Examples of spectral similarity between MS? pseudo-spectra (black) and low energy
MS/MS spectra extracted from METLIN (color, negatively rotated), for eight metabolites.
Protonated ion/precursor (*) together with MS/MS collision energy (CE) are noted. Low
energy MS/MS spectra at 5 eV were calculated by fragment intensity interpolation between

0and 10 eV.
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Fig. 5.
For a given feature, three putative identities, glutamic acid, acetylserine and 3-

methylaspartic acid are reported by MISA based on in-source fragment matching. As their
chemical structures are similar, they share common fragments (a). Despite being glutamic
acid the correct identity (b), false positives might be also reported (c, d). The match factor
(MF) can be used to asses spectral similarity.
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