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Abstract

Addiction is a worldwide public health problem and this article reviews scientific advances in 

identifying the role of neuroinflammation in the genesis, maintenance, and treatment of substance 

use disorders. With an emphasis on neuroimaging techniques, this review examines human studies 

of addiction using positron emission tomography to identify binding of translocator protein 

(TSPO), which is upregulated in reactive glial cells and activated microglia during pathological 

states. High TSPO levels have been shown in methamphetamine use but exhibits variable patterns 

in cocaine use. Alcohol and nicotine use, however, are associated with lower TSPO levels. We 

discuss how mechanistic differences at the neurotransmitter and circuit level in the neural effects 

of these agents and subsequent immune response may explain these observations. Finally, we 

review the potential of anti-inflammatory drugs, including ibudilast, minocycline, and 

pioglitazone, to ameliorate the behavioral and cognitive consequences of addiction.
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1. Introduction

Neuroinflammation has been attributed to the pathogenesis of a number of central nervous 

system (CNS) diseases (Block and Hong, 2005; Chen et al., 2016; Tansey et al., 2007), and 

although classically defined as the accumulation of mobile innate and/or adaptive immune 

cells in the tissue, there is diversity in what is considered to be inflammation in the brain, 

including gliosis, microglia activation, and the release of cytokines, chemokines, and pro-

inflammatory factors (see “Neuroinflammation in psychiatric disorders: an introductory 

primer” in this Special Issue for additional background information). Broadly, 

neuroinflammation is thought to contribute to the neural adaptations following chronic 

exposure to drugs of abuse (Lacagnina et al., 2017; Liu et al., 2016; Pocock and 

Kettenmann, 2007), as many drugs render the brain more vulnerable to inflammation and 

resultant neuropathology. There is considerable interest in the mechanism by which drug use 

interacts with inflammatory processes, contributing to brain dysfunction, impairing cognitive 

control, and consequently promoting drug-use behavior. Preclinical studies show that drug 

exposure increases the release of pro-inflammatory cytokines, and glial cells (microglia and 

astrocytes) with chemokine and cytokine receptors respond quickly to CNS injury (Pocock 

and Kettenmann, 2007). Drug-induced dysregulation of neuroimmune signaling may 

compromise neuronal function, exacerbate neurodegeneration, and increase neurotoxicity, 

which may contribute to drug-related behavior through the activation of microglia and other 

glia-mediated synaptic remodeling (Lacagnina et al., 2017; Liu et al., 2016; Pocock and 

Kettenmann, 2007). Although the neural circuits relevant to substance use disorders may be 

impaired before inflammation or drug use, drug-induced inflammation may further 

compromise brain function in individuals with substance use disorders. It is, therefore, 

important to examine the combination of insults and interactive effects of substance use and 

neuroinflammation as new therapeutic strategies are considered.

The neuroimmune response to drugs of abuse is characterized, in part, by proliferation and 

morphological and functional changes of microglia and astrocytes (Ransohoff and Brown, 

2012). Microglia are distributed throughout the brain with greatest concentrations found in 

substantia nigra, basal ganglia, and hippocampus (Lawson et al., 1990). Microglia respond 

directly to drug-induced CNS injury and are activated by stimulation of chemokine and 

cytokine receptors or by peripheral signals, potentially resulting from drug-induced damage 

to the blood brain barrier (Lacagnina et al., 2017; Loftis and Huckans, 2013). Activation of 

microglia results in a number of downstream processes including cell migration to the site of 

injury and phagocytosis (Hanisch, 2002; Otten et al., 2000), the production of pro-

inflammatory factors, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-

α), and the generation of reactive oxygen and nitrogen species that cause neuronal damage 

(Beardsley and Hauser, 2014). Astrocytes play a critical role in the uptake of synaptically-

released glutamate (Cui et al., 2014), are affected by the activity level of dopamine (DA) 

neurons (Imaizumi et al., 2008), and can shape DA neuron activity and plasticity (Jucaite et 

al., 2012). Like microglia, astrocytes produce and secrete pro-inflammatory cytokines in 

response to tissue injury or other insults (Ransohoff and Brown, 2012), including exposure 

to substances of abuse (Lawson et al., 1990). Thus, excess neurotransmitters (e.g., DA and 

glutamate) released by drug use may bind to receptors expressed on glial cells and further 
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amplify inflammatory signaling via additional release of cytokines and chemokines, 

potentially contributing to positive feedback that promotes inflammation.

A number of animal studies have established a link between neuroinflammation and drug 

exposure (Lacagnina et al., 2017; Loftis and Huckans, 2013), and it is important that work in 

humans expand on preclinical work to extend the clinical relevance and address the greater 

complexity of human drug use. The following review will, therefore, focus on findings from 

human neuroimaging studies of addiction, with an emphasis on positron emission 

tomography (PET). Although astrocytes are the most abundant type of glial cell in the brain 

and are affected by substances of abuse (Bull et al., 2015; Cao et al., 2016), there are no 

techniques to directly quantify astrocyte activation in humans in vivo. Currently, in vivo 

quantification of glial activation is only available to examine ligand binding of the 18-kDa 

translocator protein (TSPO), a protein formerly known as the peripheral benzodiazepine 

receptor and primarily located on the outer membrane of mitochondria. Within the CNS, a 

variety of cells are capable of expressing TSPO; however, the pattern of expression appears 

to differ between normal and injured CNS (Cosenza-Nashat et al., 2009). Second generation 

radiotracers such as [18F]FEDAA1106, [11C]PBR28, [11C]DPA-713, and [18F]DPA-714 

now provide better specific binding ratios (Imaizumi et al., 2008) and higher test-retest, 

intra-individual reproducibility (Jucaite et al., 2012) compared with first generation [11C]

(R)-PK11195. A number of clinical studies show changes in TSPO binding with [11C] 

PBR28 (Hannestad, 2012), and more studies have begun investigating TSPO levels in 

addictions, specifically alcohol, nicotine, methamphetamine, and cocaine use disorders. As 

clinical and preclinical studies have demonstrated a link between immunological cells in 

blood and activated microglia (Kanegawa et al., 2016), this review will highlight the work 

conducted using PET as an index for neuroinflammation and also examine relevant work 

with magnetic resonance imaging linking brain function to peripheral markers of 

inflammation in substance use disorders. The review includes the limitations of PET 

imaging as an index of neuroinflammation and concludes with a brief summary of 

therapeutic strategies that may help target and treat the combination of insults and interactive 

effects of substance abuse and neuroinflammation.

2. Methamphetamine

Methamphetamine exposure impairs mitochondrial energetic metabolism, which enhances 

susceptibility to oxidative stress, proapoptosis, and neuroinflammation (Shin et al., 2018), 

including release of inflammatory cytokines and microglial activation (Banerjee et al., 2010; 

Clark et al., 2013; Goncalves et al., 2008; LaVoie et al., 2004; Loftis et al., 2011; Loftis and 

Janowsky, 2014; Mahajan et al., 2008; Silverstein et al., 2011; Wisor et al., 2011). 

Methamphetamine-induced DA and glutamate release also contribute to neuroinflammation. 

Excess DA autoxidizes to form toxic quinones, and quinone cycling results in oxidative 

stress, mitochondrial dysfunction, and damage to presynaptic membranes due to the 

production of superoxide radicals and hydrogen peroxide (Shah et al., 2012). Monoamine 

oxidase also oxidizes DA to form reactive oxygen species leading to cell damage and death 

through an increase in hydrogen peroxide, which interacts with metal ions to form toxic 

hydroxyl radicals (Ransohoff and Brown, 2012). In addition, excess prefrontal glutamate 

release by methamphetamine activates metabotropic glutamate receptors subtype 5 
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(mGluR5), which promotes the release of nuclear transcription factors (e.g., nuclear factor 

kappa light chain enhancer of activated B cells (NF-κB)) through intracellular signaling 

pathways (AKT/P13K) (Shah et al., 2012). Translocation of the transcription factors to the 

nucleus promotes the expression of proinflammatory cytokines (Ojaniemi et al., 2003; Shah 

et al., 2012).

Neuroimaging studies provide further evidence for methamphetamine-induced 

neuroinflammation. Magnetic resonance spectroscopy studies to assess metabolic alterations 

linked to immune cell activity show reductions in the ratio of creatine plus phosphocreatine 

(Cr + PCr)/choline-containing compound (Cho) and in the concentration of N-

acetylaspartate (NAA) in individuals with a history of methamphetamine use (Ernst et al., 

2000; Sekine et al., 2002). These markers are also correlated with years of 

methamphetamine use and severity of psychiatric symptoms (Ernst et al., 2000; Sekine et 

al., 2002), suggesting that neurotoxicity increases as a function of methamphetamine 

exposure. Individuals with a history of methamphetamine use (average duration of use: 6.8 

years) also exhibit greater microglial activation indexed by [11C](R)-PK11195 PET in 

midbrain, striatum, orbitofrontal and insular cortex (Sekine et al., 2008), and lower levels of 

microglial activation are associated with greater duration of abstinence (average duration of 

abstinence: 1.8 years). This study, however, used the time activity curve of healthy controls 

as an input function, and the effect of differing plasma curves between methamphetamine 

and controls could lead to inaccurate assessment of regional TSPO binding using 

compartmental models (see Limitations section).

A recent study shows that increased peripheral IL-6 levels in individuals with a history of 

methamphetamine use are positively correlated with greater resting-state functional 

connectivity between the nucleus accumbens, amygdala, and hippocampus but inversely 

correlated with connectivity between the dorsolateral prefrontal cortex and striatum (Kohno 

et al., 2018). This is consistent with reports that methamphetamine use is associated with 

stronger functional connectivity within DA terminal regions, including striatum and limbic 

structures (Dean et al., 2014; Kohno et al., 2014; Kohno et al., 2016). As peripheral markers 

of immune activation are associated with impaired cognition (Loftis et al., 2011) and with 

abnormalities in prefrontal and striatal function (Felger et al., 2016), neuroinflammation 

may promote mesocorticolimbic and cognitive deficits commonly seen in methamphetamine 

use disorder. To the extent that DA plays a role in reward processing and executive function, 

it is possible that neuroinflammation promotes addiction-related brain and behavioral 

deficits (Dean et al., 2012; London et al., 2015) through altered activity of the 

mesocorticolimbic DA system. Consistent with this notion, activation of DA D1 and D2 

receptors on microglia promotes migration (Farber et al., 2005), and microglial activation 

precedes the methamphetamine-induced degeneration of DA terminals in the striatum 

(Thomas et al., 2004; LaVoie et al., 2004). Moreover, individuals with methamphetamine 

use disorder consistently show low DA D2 receptor availability, which, in turn, is negatively 

related to mesolimbic functional connectivity (Kohno et al., 2016). These studies provide 

compelling evidence that methamphetamine exposure leads to activation of 

neuroinflammatory pathways in regions where individuals with a history of 

methamphetamine use consistently show deficits in gray matter volume and brain function 

(London et al., 2015).

Kohno et al. Page 4

Pharmacol Biochem Behav. Author manuscript; available in PMC 2020 April 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Results from postmortem studies suggest that methamphetamine use enhances oxidative 

stress. One study assessed 4-hydroxynonenal and malondialdehyde (produced from lipid 

peroxidation), as markers of oxidative stress in postmortem brain of adults with and without 

prior methamphetamine exposure. For 4-hydroxynonenal, 50% of those in the 

methamphetamine group had levels above the upper limits of the control group range, and a 

dose-response analysis showed that the high-dose methamphetamine group had higher 

concentrations of 4-hydroxynonenal and malondialdehyde in striatum, cerebral cortex, and 

cerebellar cortex (Fitzmaurice et al., 2006). Postmortem results of methamphetamine-

induced gliosis, however, are conflicting. Two studies examining gliosis assessed with 

histopathological analysis did not detect methamphetamine-induced gliosis (Moszczynska et 

al., 2004; Wilson et al., 1996), whereas another study using quantitative analysis of 

microglia and astrocyte markers found a marked increase of microglial markers in striatum 

in individuals with a history of methamphetamine use compared to controls (Kitamura et al., 

2010). Differences among studies could be attributed to factors including age, genetic 

heterogeneity, sex, comorbidities, amount and duration of drug exposure, cause of death, and 

postmortem interval (Gomez-Nicola and Boche, 2015), as well as the qualitative and 

quantitative analysis methods. Interestingly, a postmortem study of individuals with a history 

of cocaine use found a marked increase (108%) in the number of activated microglia cells in 

the midbrain (Little et al., 2009). In the following section, similarities and differences in 

other markers of immune system signaling between cocaine and methamphetamine use are 

discussed.

3. Cocaine

Cocaine also increases dopaminergic and glutamatergic signaling; subsequent DA and 

glutamate stimulation of immune cells likely facilitates an inflammatory response like that 

induced by methamphetamine. Chronic cocaine use is associated with an increase in IL-6 

(Ersche et al., 2014; Fox et al., 2012; Levandowski et al., 2016; Moreira et al., 2016) and 

also with a reduction in circulating levels of the anti-inflammatory/immunoregulatory factor, 

IL-10, and an increase in the ratio of pro-inflammatory to anti-inflammatory markers 

(Moreira et al., 2016). Acute cocaine exposure, however, seems to have an opposite effect 

and reduces levels of IL-6 (Halpern et al., 2003; Irwin et al., 2007). Whether a reduction in 

IL-6 is an anti-inflammatory response to acute cocaine use or a pro-inflammatory response 

is unclear, as regenerative or inflammatory processes of IL-6 are dependent on trans-

signaling or classic signaling, respectively (Scheller et al., 2011). Variability between the 

response to acute exposure or chronic use may explain mixed results in pro- and anti-

inflammatory responses and may contribute to differences seen in levels of TSPO.

Postmortem tissue of individuals with a history of cocaine use show a significant increase in 

activated microglia compared to controls (Little et al., 2009), while there are no significant 

quantifiable differences in TSPO levels indexed with [11C]PBR28 PET between individuals 

with prior cocaine use and controls (Narendran et al., 2014). Like IL-6, activation of 

microglia may also depend on patterns of use, as participants in the PET study were 

approximately two weeks abstinent from cocaine, while post mortem tissue were collected 

from individuals with recent use.
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Although it is expected that cocaine and methamphetamine would affect microglia in similar 

ways, differences between cocaine and methamphetamine on DA kinetics have been shown 

in both human and animals studies, which can manifest in differences in neuroinflammation. 

In animals, the levels of DA are higher after administration of methamphetamine than after 

cocaine. Higher levels of intrasynaptic DA and slower clearance of methamphetamine 

compared to cocaine contributes to the longer behavioral effects, oxidative stress, and 

damage to the dopaminergic system (Koob, 1998). Amphetamines and methamphetamine 

have longer half-lives compared to that of cocaine, where the duration of action for cocaine 

is approximately 1–3 h, while the half-life of amphetamines and methamphetamine are 

approximately 8–13 h (Harris et al., 2003; Jufer et al., 2000). In non-human primates, 

[11C]cocaine and [11C]d-methamphetamine show differences in brain distribution, kinetics, 

and clearance rates. Not only does [11C]d-methamphetamine peak more slowly than 

[11C]cocaine, but it also clears more slowly than cocaine, and its distribution extends beyond 

the striatum to cortical brain regions (Fowler et al., 2007). Similarly, in humans, cocaine is 

concentrated only in the striatum and its uptake and clearance are faster than that of 

methamphetamine (Fowler et al., 2008).

While differences in DA kinetics and signaling are factors that may explain differences in 

patterns of microglial activation in methamphetamine and cocaine use disorder, 

methodological variability among the studies needs to be noted. Differences in radioligand 

and analysis methods could contribute to mixed results along with the heterogeneity of 

genotypes conferring binding affinity. Another important factor is glutamate 

neurotransmission and both cocaine and methamphetamine use are associated with an 

increase in glutamate release and down regulation of glutamate transporters (Kalivas, 2007). 

Inflammatory cytokines similarly increase glucose metabolism (Haroon et al., 2014) and 

extrasynaptic levels of glutamate by decreasing glutamate transporters (Tilleux and 

Hermans, 2007) and increasing astrocytic glutamate release (Ida et al., 2008). As excess of 

glutamate promotes the transcription of inflammatory cytokines and activates microglia 

(Ojaniemi et al., 2003; Shah et al., 2012), more work is necessary to examine the effects of 

these stimulants on glutamate signaling and the effects on the neural immune response. In 

addition, future studies controlling for the heterogeneity in recent exposure to stimulant 

drugs when investigating activated microglia and markers of inflammation are needed.

4. Alcohol

Alcohol exposure is associated with neurotoxicity, activation of microglia, and release of 

cytokines and inflammatory mediators; these phenomena are now being recognized as 

contributing factors to alcohol use disorder pathology (Henriques et al., 2018; Mayfield et 

al., 2013; Pascual et al., 2017; Vetreno et al., 2014). Much of the work showing elevated pro-

inflammatory but reduced anti-inflammatory signaling come from preclinical studies of 

alcohol administration (Henriques et al., 2018).

Three human PET studies, using [11C]PBR28, show lower TSPO levels in individuals with 

alcohol dependence (Hillmer et al., 2017; Kalk et al., 2017; Kim et al., 2018) and an inverse 

relationship between TSPO binding and number of drinks per day and alcohol dependence 

severity (Hillmer et al., 2017). In contrast, a PET study in non-human primates, using 
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[18F]DPA-714, shows a significant increase in TSPO binding during ethanol exposure, 

which remains elevated for 7–12 months (Saba et al., 2017). Using PET with [11C]PBR28, a 

study in rats found no differences in TSPO binding between alcohol dependent and non-

dependent rats (Kim et al., 2018). Although one human study recruited well-matched 

controls in age, sex, and cigarette use (Hillmer et al., 2017), it is possible that other drug use 

history (e.g., marijuana) and environmental factors could contribute to differences between 

human and animal studies of alcohol-induced activation of microglia. Alternatively, 

endogenous TSPO ligands such as cholesterol could be a factor in PBR28 binding as 

genotypes that affect PBR28 binding also affect the cholesterol-binding domain of TSPO 

(Kim et al., 2018). Another possible explanation is that chronic alcohol use may attenuate 

the activation of microglia through gamma-aminobutyric acid (GABA)-mediated inhibition 

of cytokines. Activation of microglia increases the expression of GABA receptors, and 

GABAB receptor agonists reduce IL-6-mediated activation of microglia (Kuhn et al., 2004; 

Pocock and Kettenmann, 2007). The neuromodulatory effects of chronic alcohol use on 

GABA release may also induce anti-inflammatory processes, as acute alcohol exposure can 

increase IL-10 which results in pre- and post-synaptic regulation of GABA transmission 

(Suryanarayanan et al., 2016).

Chronic and binge models of alcohol exposure provide evidence for alcohol-induced 

neurotoxicity, which is mediated by innate immunomodulatory responses, such as activation 

of glial cells, cytokine production, and the neuronal Toll-like receptor 4 (TLR4) response 

(Crews et al., 2017). Repeated alcohol-mediated neurotoxic insults may compromise the 

innate immune response or result in complex compensatory and neuroadaptive processes 

that limit neuroinflammation. Individual differences such as age and sex, however, are 

important factors in the neuroimmune response (Pascual et al., 2017; Wilhelm et al., 2017), 

and more studies are needed to better identify the mechanisms by which alcohol use affects 

immune signaling.

5. Nicotine

Cigarette smoke is associated with both immunosuppressive and immunostimulatory 

components (Sopori, 2002; Sopori and Kozak, 1998). It is, however, difficult to dissociate 

the effects of nicotine from those of constituents in tobacco. Cigarette smoking promotes 

activation of epithelial and immune cells that release pro-inflammatory factors and promote 

the recruitment of neutrophils, macrophages, T cells, and dendritic cells (Savage et al., 1991; 

Sopori, 2002; Sopori and Kozak, 1998). Nicotine, in contrast, is thought to be a significant 

contributor to the inhibition of the antibody response and the immunosuppressive effects of 

chronic smoking (Geng et al., 1995; Geng et al., 1996). Animal studies show that smoking 

can increase reactive oxygen species and decrease levels of antioxidants (Savage et al., 1991; 

Sopori, 2002; Sopori and Kozak, 1998). Increases in inflammatory markers associated with 

cigarette smoking are also shown to be dose-dependent and related to smoking intensity and 

time since smoking cessation (Sopori, 2002).

Whether from nicotine or cigarette smoke, neuroimaging studies provide evidence for 

neuroadaptations in individuals who smoke cigarettes. Smokers, compared to non-smokers, 

show gray-matter abnormalities throughout the brain (Franklin et al., 2014; Morales et al., 
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2014; Morales et al., 2012), differences in functional connectivity in prefrontal executive 

control regions (Fedota and Stein, 2015; Lerman et al., 2014), and an upregulation of 

nicotinic acetylcholine receptors (Brody et al., 2013; Sabbagh et al., 2002). A recent PET 

study using [11C]DAA-1106 found less TSPO binding in smokers compared to non-smokers 

(Brody et al., 2017). As activation of nicotinic acetylcholine receptors result in 

immunosupressive properties (Guan et al., 2015; Kalra et al., 2004; Wang et al., 2003), the 

results may highlight an antiinflammatory effect of cigarette smoking. Evidence points to 

nicotinic acetylcholine alpha 7 receptor subunits in mediating nicotine-induced suppression 

of neuroinflammation (Wang et al., 2003) through the inhibition of microglial activation and 

subsequent pro-inflammatory cytokine release (Guan et al., 2015). As individuals who 

smoke have lower levels of TSPO, which are inversely correlated with the number of 

cigarettes smoked per day (Brody et al., 2017), the data are in line with the literature 

suggesting neuroprotective properties of nicotine and the idea that the anti-inflammatory 

responses of nicotine may be responsible for the decreased incidence in neurological 

diseases seen in individuals who smoke cigarettes (Birtwistle and Hall, 1996; James and 

Nordberg, 1995; Newhouse et al., 1997).

6. Cannabinoids

Despite considerable interest in the neural effects of cannabis (also known as marijuana), 

there have been no published PET studies of microglial activation in individuals who use 

cannabis. There are several reports, however, on the neuroprotective properties of 

cannabinoids, components of the cannabis plant. Acute exposure to cannabinoids [e.g., 

delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN)] can lower 

cellular immune responses, inhibit production of inflammatory cytokines and chemokines, 

reduce excitotoxicity, and decrease neuronal cell damage (Jean-Gilles et al., 2010; McCoy, 

2016; Schwaeble and Constantinescu, 2010; Tanasescu and Constantinescu, 2010). Repeated 

exposure to cannabinoids also has immunomodulatory effects. One study found that 

individuals with HIV who use cannabis have lower levels of peripheral blood CD16+ 

monocytes, an index of immune activation, than individuals with HIV who do not use 

cannabis (Rizzo et al., 2018). Cannabinoid receptor agonists reduce beta-amyloid-induced 

activation of microglia in Alzheimer’s disease models and reduce the onset and severity of 

autoimmune characteristics of multiple sclerosis in animal models, along with reductions of 

inflammation (Pacher and Kunos, 2013; Zhang et al., 2009; Martín-Moreno et al., 2012). 

Resting microglia lack cannabinoid 2 (CB2) receptors; however, there is a significant 

increase in CB2 receptor expression on microglia on diseased tissues or in culture (Stella, 

2009), suggesting that the anti-inflammatory effects of cannabinoids may be mediated by 

CB2 receptors. The effect of cannabinoids in lowering excitotoxicity and inhibiting the 

release of pro-inflammatory mediators has important implications in pathological 

inflammatory conditions, especially substance addiction where co-use is common.

While most evidence supports an anti-inflammatory effect of cannabis, there are reports 

consistent with pro-inflammatory effects. Individuals with cannabis use disorder show 

increases in plasma pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) compared 

to individuals with no history of cannabis use (Bayazit et al., 2017). Neuroinflammatory 

responses to cannabis may depend on age at initiation of use. Adult female Sprague-Dawley 
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rats treated with THC in adolescence (postnatal days 35–45) exhibit a persistent 

neuroinflammatory state within the prefrontal cortex, including up-regulation of CB2 

receptors on microglia cells, increased expression of TNF-α and other pro-inflammatory 

factors, and a reduction in IL-10 levels. Interestingly, this neuroinflammatory phenotype is 

attenuated by the antiinflammatory drug, ibudilast when administered during THC treatment 

(Zamberletti et al., 2015).

The effect of cannabis on inflammatory mediators has important implications in pathological 

inflammatory conditions, especially addiction, where co-use is common. As evidence 

supports both pro- and anti-inflammatory responses to cannabis, it is critical for future 

studies to disentangle the independent effect of cannabis and the interactive effect with other 

drugs of abuse on immune signaling.

7. Implications for treatment

Methamphetamine, cocaine and, under some circumstances, alcohol evoke a neuro-

inflammatory response. Thus, interventions aimed at reducing inflammation may serve as a 

useful adjunct to behavioral treatments for substance use disorders. Several potential anti-

inflammatory pharmacotherapies that have been or are currently being tested in human 

clinical trials are summarized in Table 1.

Ibudilast (3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), an anti-inflammatory non-

selective phosphodiesterase inhibitor, has neuroprotective and immunomodulatory properties 

and has shown therapeutic benefit for neuroinflammatory conditions (Burnouf and Pruniaux, 

2002), including addictions (Ray et al., 2014). The compound suppresses the production of 

nitric oxide, reactive oxygen species, IL-1β, IL-6, and TNF-α and enhances the production 

of anti-inflammatory markers, including nerve growth factor, glia-derived neurotrophic 

factor, and neurotrophin-4 in activated microglia (Mizuno et al., 2004; Suzumura et al., 

1999). Similarly, ibudilast attenuates alcohol drinking in animal models (Bell et al., 2015) 

and humans (Ray et al., 2017) and reduces methamphetamine-induced locomotor activity 

and stress-induced methamphetamine reinstatement (Beardsley et al., 2010). In a recent 

human study, ibudilast reduced methamphetamine use and craving for methamphetamine 

(Worley et al., 2016).

Minocycline (7-dimethylamino-6-dimethyl-6-deoxytetracycline) is a second-generation 

antibiotic that is a semi-synthetic tetracycline analogue and is approved by the US Food and 

Drug Administration (FDA) for the treatment of some sexually transmitted diseases, 

rheumatoid arthritis, and acne (Garrido-Mesa et al., 2013). Similar to ibudilast, minocycline 

shows potential as a neuroprotective and anti-inflammatory agent, independent of its 

antibiotic properties (Garrido-Mesa et al., 2013). Minocycline inhibits microglial p38 

mitogen-activated protein kinase and pro-inflammatory cytokine production, but it has no 

known phosphodiesterase activity (Garrido-Mesa et al., 2013). In animal models, 

minocycline extinguishes morphine- and methamphetamine-induced conditioned place 

preference and blocks drug-induced reinstatement (Arezoomandan and Haghparast, 2016; 

Attarzadeh-Yazdi et al., 2014; Fujita et al., 2012). Furthermore, minocycline reduces 

methamphetamine self-administration (Snider et al., 2013) and methamphetamine-induced 
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release of DA (Fujita et al., 2012; Hashimoto et al., 2013; Zhang et al., 2006), suggesting 

that minocycline can attenuate the reward effects of methamphetamine and reduce relapse. 

Minocycline also holds promise in attenuating the effects of cocaine and alcohol, where 

minocycline treatment prevents the development of cocaine sensitization (Chen et al., 2009) 

and reduces ethanol intake in male and female mice using a free choice voluntary drinking 

model (Agrawal et al., 2011). In humans, minocycline reduces the subjective effects of 

amphetamine in healthy controls (Sofuoglu et al., 2011) and attenuates cigarette craving in 

individuals with nicotine dependence (Sofuoglu et al., 2009).

Peroxisome proliferator-activated receptor (PPAR) agonists are also under investigation as 

pharmacotherapeutic strategies for substance use disorders. PPARs function as transcription 

factors that regulate the expression of genes that are involved in lipid and glucose 

metabolism and inflammation (Daynes and Jones, 2002). There are two subtypes of PPARs 

that have been studied in substance use, PPAR-α and PPAR-γ (Le Foll et al., 2013). PPAR-

γ activation has anti-inflammatory effects that involve inhibiting the expression of cytokines 

(IL-1β, IL-6, and TNF-α), the production of inducible nitric oxide, and the expression of 

matrix metalloproteinase 9 and macrophage scavenger receptor 1 on monocytes, 

macrophages, and epithelial cells (Daynes and Jones, 2002; Delerive et al., 2001; Kielian 

and Drew, 2003; Willson et al., 2000). As PPAR-γ are highly expressed in brain regions 

associated with the development and maintenance of addictive behaviors, such as the 

nucleus accumbens, dorsal striatum, ventral tegmental area, and hippocampus, many studies 

have examined how PPAR-γ agonists affect drug-seeking behavior.

Repeated administration of methamphetamine in mice is associated with an increase in 

PPAR-γ activity and protein levels in the nucleus accumbens (Maeda et al., 2007). 

Pioglitazone and ciglitazone, PPAR-γ agonists (thiazolidinediones), both reduce behavioral 

sensitization to methamphetamine during the withdrawal period (Maeda et al., 2007). In 

human cocaine use disorder, a 12-week treatment of pioglitazone reduced craving for 

cocaine and increased white-matter integrity in the corpus callosum and thalamic radiation 

(Schmitz et al., 2017). Similarly, a three-week treatment of pioglitazone reduced cigarette 

craving in heavy smokers; however, pioglitazone was not effective in reducing the 

reinforcing effects of cigarettes or in reducing smoking-cue reactivity (Jones et al., 2017). 

There are currently no published reports on the effect of PPAR-γ agonists in humans with 

alcohol use disorder; however, one study has shown a link between PPAR genotypes (single 

nucleotide polymorphisms in PPAR-α and PPAR-γ) with alcohol withdrawal and alcohol 

dependence (Blednov et al., 2015). In preclinical studies, PPAR-γ agonist treatment is 

effective in reducing alcohol use, where activation of PPAR-γ with pioglitazone and 

rosiglitazone selectively reduce alcohol drinking in rats—an effect blocked by pretreatment 

with GW9662, a selective PPAR-γ antagonist (Stopponi et al., 2013; Stopponi et al., 2011). 

Preclinical data suggest that pioglitazone and other PPAR-γ agonists are promising 

candidates in attenuating drug-seeking behavior and craving, but more research in humans 

with substance use disorders is required to evaluate the effects of PPAR agonists in 

individuals with substance use disorders.

PET measures of glial activation could be used to clarify whether the mechanism by which 

these pharmacotherapies affect addictive behaviors is mediated by their anti-inflammatory 
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effects. To our knowledge, however, there are no published studies that examine the effect of 

these agents on microglial activation in addiction. Reports of any animal or human PET 

studies of anti-inflammatory drugs are sparse. Minocycline decreases binding of [11C](R)-

PK11195 in zymosan-treated female rats (Converse et al., 2011), but PET has not been used 

to test either ibudilast or thiazolidinediones effects on microglial activation. Clearly, there is 

a critical need for clinical trials that leverage PET neuroimaging to measure the effect of 

anti-inflammatory agents on microglial activation in addiction.

7.1. Limitations

Although the improvements of second generation radiotracers have promoted more studies 

to investigate TSPO binding as an index for activated microglia in a number of psychiatric 

disorders, the method is not without limitations. TSPO is upregulated on activated microglia 

and greater TSPO binding is thought to represent a biomarker of neuroinflammation. Studies 

have shown that [11C]PBR28 provides accurate estimates of TSPO densities and high levels 

of specific binding; such that, > 95% of brain uptake represented specific binding to TSPO 

in rhesus monkeys (Imaizumi et al., 2008). This fraction, however, is lower in humans and 

genotype dependent (Owen et al., 2014), which may account for mixed results across 

species. The multicellular expression of TSPO, however, would suggest that TSPO binding 

with PET imaging may not solely reflect the activation of microglial cells and may represent 

a broader inflammatory process (Lavisse et al., 2012). In addition, TSPO immunoreactivity 

is present in various CNS cell types, including microglia, astrocytes, and vascular 

endothelial cells (Notter et al., 2018). The partial volume effect from endothelial cells can be 

accounted for by including an additional blood to endothelial compartment in the standard 

two-tissue compartmental model, which results in stronger correlations between binding and 

mRNA TSPO expression than the standard two-compartment model (Rizzo et al., 2014). A 

recent paper examining TSPO binding in schizophrenia suggests that TSPO binding may 

reflect an anti-inflammatory response that limits acute inflammation, whereas a 

downregulation may represent a chronic low-grade inflammatory state (Notter et al., 2018). 

In light of the findings from the alcohol and nicotine studies, this notion would be consistent 

with the animal literature that drugs of abuse contribute to neuroinflammation. Although 

contrary to the increase in TSPO binding in individuals with a history methamphetamine use 

(Sekine et al., 2008), the increase in TSPO binding in methamphetamine use disorder has 

not been re-examined with second generation radiotracers. In addition, this study used the 

time-activity curve of healthy controls as a reference-tissue input function rather than using 

an arterial input function, which makes the assumption that groups are similar in uptake and 

specific binding. Future studies of methamphetamine use disorder and second generation 

TSPO tracers that use an arterial input function or if applicable, a cerebellar reference 

region, as recently used in Alzheimer’s disease (Lyoo et al., 2015), are needed. Although 

PET imaging allows for an in vivo quantitative assessment of TSPO in humans, the use of in 

vivo imaging techniques depends upon careful validation with preclinical studies, well-

controlled postmortem evaluations, and other measurements to assess rigor, specificity, and 

sensitivity. Further, altered TSPO binding is not equivalent to altered microglia activation 

exclusively; complementary measures of inflammation are recommended (Notter et al., 

2018).
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8. Conclusions

Pathological neural activity induced by drugs of abuse contribute to an immune response, 

however the interactions and interplay between drug-induced neurotransmitter release and 

multiple receptor subtypes on microglia remains unclear. As excess glutamate promotes the 

transcription of inflammatory cytokines and activates microglia (Ojaniemi et al., 2003; Shah 

et al., 2012), drugs promoting glutamatergic neurotransmission may enhance excitotoxicity 

and further induce neuroinflammatory processes. Neuroprotective effects of some drugs 

suggest neural adaptive mechanisms to limit neuroinflammation through up-regulation of 

receptors and the inhibition of microglia activation. Neuroimmune responses through IL-6 

and TNF-α inhibition is associated with activation of nicotinic acetylcholine or GABA 

receptors. This is consistent with human PET investigations of neuroinflammation, where 

alcohol and nicotine use disorders are associated with lower levels of TSPO than controls, 

with opposite effects for methamphetamine use disorder.

It is important to consider the effects of polydrug use and the possible amplification or 

attenuation of the neurotoxic cascade. Nicotine and marijuana use are ubiquitous in 

substance use disorders and both drugs need to be controlled for in future studies. This is 

especially true with the mixed results seen in studies of stimulant use. Although the 

differential effects of methamphetamine and cocaine on TSPO binding are unexpected and 

could be attributed to differences in DA kinetics and toxicity, radiotracer affinities, 

methodological analysis techniques or genotype imbalances, carefully controlled studies of 

polysubstance use are warranted. Studies of addiction have not well-characterized or 

controlled for marijuana use or other polydrug use in the context of neuroinflammation, and 

establishing this link would help better clarify the long term impact of drugs of abuse on the 

immune response.

8.1. Future directions and treatments to reduce inflammation

Use of anti-inflammatory drugs is a promising avenue for the treatment of substance use 

disorders (Table 1); however, it is yet to be determined whether ibudilast, minocycline, or 

pioglitazone attenuate human drug use behavior through a reduction in neuroinflammation. 

Non-pharmacologic forms of treatment may also attenuate drug-induced neurotoxicity, and 

one study shows that 12 weeks of aerobic exercise significantly reduces serum methane 

dicarboxylic aldehyde (oxidative stress marker), and improves cognitive processing speed in 

individuals with a history of methamphetamine dependence (Zhang et al., 2018). Another 

study in adults with methamphetamine dependence shows an increase in DA D2 receptor 

availability after an eight-week exercise program (Robertson et al., 2016). Whether these 

effects are independent of reversing drug-induced toxicity, these data suggest that exercise 

can contribute to healing drug-induced neural deficits. More work using neuroimaging is 

necessary to understand the mechanism by which anti-inflammatory drugs or aerobic 

exercise can affect and improve neural immune signaling pathways, thereby ameliorating 

drug-induced adaptations and adverse behavioral consequences of drug abuse.
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