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Abstract

Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal 

surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting 

intestinal epithelial cells (IECs). IgA is induced by both T cell–dependent and –independent (TI) 

pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum 

(ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. 

IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b 

cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-

producing plasma cells were observed in healthy humans with defective autophagy, who are 

known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that 

induce a barrier-protective TI IgA response.

The intestinal epithelium is continuously confronted with potentially deleterious 

environmental stimuli (1). These exposures and the underlying secretory burden of intestinal 

epithelial cells (IECs) are challenging for this cell type. Thus, endoplasmic reticulum (ER) 

stress and the accompanying unfolded protein response (UPR) are commonly observed in 

IECs under homeostasis (2) and increased in inflammatory bowel disease (IBD) (3, 4). In 

IBD, ER stress in the IEC can serve as a nidus for spontaneous microbiota-dependent ileitis. 

This can be seen in mice with an IEC-restricted deletion of the important UPR effector 

molecule X-box binding protein 1 (Xbp1ΔIEC) (3, 5). It is unknown, however, whether IEC-

associated ER stress can also elicit barrier-protective immune responses.

We observed higher numbers of immunoglobulin A–positive (IgA+) plasma cells (CD45+ 

CD3–IgA+B220–) in small-intestinal lamina propria (SI LP) and higher concentrations of 

ileal tissue IgA in Xbp1ΔIEC mice than in littermate Xbp1fl/fl controls (Fig. 1, A and B, and 

fig. S1). Secretory IgA (sIgA), which functions to protect the mucosa by coating and 

entrapping commensal and colitogenic bacteria (6) and excluding intraluminal factors from 

IEC contact (7, 8), was also increased in the lumen (Fig. 1C). This was associated with 

increased circulating IgA concentrations as early as 6 weeks of age (Fig. 1D), before the 

emergence of spontaneous inflammation in Xbp1ΔIEC mice. No other Ig isotypes were 

increased in the SI (fig. S2A) or sera (fig. S2B) of Xbp1Δ1EC mice. The increased number of 

IgA+ cells in Xbp1ΔIEC mice accumulated around SI crypts (Fig. 1, E and F), where ER 

stress (5, 9) and basal plasmacytosis, a feature of IBD (10), frequently occur.
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Xbp1 deletion in IECs results in UPR activation, including the ER-stress sensor inositol-

requiring enzyme 1 α (IRE1α) (11). Double conditional knockout mice lacking both IRE1α 
and XBP1 in IECs (Ern1/Xbp1ΔIEC) showed no increase in SI IgA+ cell numbers compared 

with Ern1/Xbp1fl/fl controls (fig. S3), indicating that IRE1α is an important mediator of the 

IgA response. We extended these observations to an inducible IEC-specific knockout of the 

ER-stress sensor glucose related protein 78 (GRP78) (12). Grp78T-ΔIEC mice exhibited a 

rapid increase in SI IgA+ plasma cells by 3 days after Grp78 deletion (Fig. 1G). Conversely, 

treatment of Xbp1ΔIEC mice with the chemical chaperone tauroursodeoxycholic acid 

(TUDCA) (13) reduced IEC ER stress (fig. S4) and prevented the IgA response in the SI LP 

(Fig. 1H) and plasma (Fig. 1I).

We next generated Igha–/–Xbp1ΔIEC mice and Igha–/–Xbp1fl/fl controls, which lack IgA. 

Consistent with previous studies (3), Xbp1ΔIEC mice developed spontaneous ileitis, which 

was unchanged under conditions of IgA deficiency (Fig. 1J). However, inflammation in 

Igha–/–Xbp1ΔIEC mice significantly extended proximally into the jejunum [Fig. 1K and fig. 

S5, histology score and hematoxylin and eosin (H&E), respectively], suggesting that IEC 

ER stress–induced IgA+ plasma cells protect from inflammation. Like humans with selective 

IgA deficiency (14), Igha–/– mice exhibited a compensatory increase of LP IgM+ plasma cell 

numbers that was further increased with IEC ER stress (Igha–/–Xbp1ΔIEC, Fig. 1L). We thus 

generated B cell–deficient Xbp1ΔIEC mice (μMT Xbp1ΔIEC), which lack intestinal LP 

plasma cells [IgA immunohisto-chemistry (IHC) images shown in fig. S6]. These animals 

showed no significant worsening of inflammation in either the jejunum or ileum compared 

with Igha–/–Xbp1ΔIEC controls (Fig. 1K and fig. S5, histology scores and H&E, 

respectively), indicating that in mice, compensatory IgM did not contribute to protection. 

This was likely due to its relatively low concentrations compared with those of IgA (fig. S7), 

a reduced ability of IgM to bind several typical IgA targets (15), and/or differences in 

secretory IgM (sIgM) function in mice compared with that in humans (16). Furthermore, the 

increased numbers of IgA+ plasma cells in Xbp1ΔIEC mice were not due to increased 

concentrations of interleukin-10 (IL-10), which can be produced by B cells (17). SI tissue 

from μMT Xbp1ΔIEC and Xbp1ΔIEC mice or Xbp1ΔIEC mice crossed with an IL-10–green 

fluorescent protein (GFP) reporter line (Vert-X) exhibited similar concentrations of IL-10 

(fig. S8A) and/or frequencies of reporter+ LP B cells (fig. S8B) compared with those of their 

respective littermate controls.

We examined if luminal IgA secretion was required for the protective role observed by 

generating polymeric immunoglobulin receptor (Pigr) and Xbp1 double-deficient mice 

(Pigr–/– Xbp1ΔIEC), which are unable to transport IgA and IgM across the IEC (18). Pigr–/–

Xbp1ΔIEC mice showed an increase of LP IgA+ plasma cells similar to Xbp1ΔIEC animals 

(Fig. 1, M and N) but still developed severe inflammation of the proximal SI (Fig. 1O and 

fig. S5, histology scores and H&E, respectively). This phenocopied Igha–/– Xbp1ΔIEC and 

μMT Xbp1ΔIEC animals and indicated a protective role for sIgA in this model. Although 

Xbp1ΔIEC animals exhibited increased IgA coating of fecal bacteria compared with Xbp1fl/fl 

controls (Fig. 1P), IgA-SEQ (6) revealed no major differences between Xbp1ΔIEC and 

Xbp1fl/fl mice in the taxa-specific coating of commensal bacteria with IgA, suggesting a 

specific IgA-targeted microbe was not responsible (fig. S9).
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Intestinal IgA+ plasma cells can differentiate via T cell–dependent (TD) and T cell–

independent (TI) pathways (19,20). Although we observed a small increase in germinal 

center B cells (B220+ CD19+CD95+GL7+) in Peyer’s patches (PP) of Xbp1ΔIEC mice 

compared with that in PP of Xbp1fl/fl controls (Fig. 2A), TD pathways were not involved in 

the IgA induction. First, T follicular helper (TFH) cell percentages (CD3+CD4+ ICOS
+PD-1hiCXCL5hi) (7) in the PP and mesenteric lymph nodes (MLN) of Xbp1ΔIEC mice were 

similar to those in Xbp1fl/fl controls (Fig. 2B). Second, T cell receptor β–deficient TCRβ–/–

Xbp1ΔIEC mice exhibited increased SI LP IgA+ plasma cell numbers (Fig. 2C) without 

changes in LP γδ5 T cells (fig. S10) compared with TCRβ–/–Xbp1fl/fl controls. Finally, PP-

deficient (PPdef) Xbp1ΔIEC mice (21) continued to exhibit increased SI LP IgA+ plasma cells 

(Fig. 2D) without proximal extension of SI inflammation (fig. S11) compared with 

PPdefXbp1fl/fl littermate controls.

By contrast, we observed increased percentages and numbers of B1b (CD5–CD19+CD23–

CD43+), but not B1a (CD5+CD19+CD23–CD43+), cells in the peritoneal cavities of 

Xbp1ΔIEC mice compared with those in Xbp1fl/fl littermate controls (Fig. 2, E and F). B1 

cells associated with TI pathways emerge and migrate from there to the intestine, giving rise 

to polyreactive IgA-producing plasma cells in the SI (19, 22, 23). As this suggested a 

transmissible factor, we conducted parabiosis experiments in which CD45.1+ wild-type 

(WT) mice were joined to CD45.2+ Xbp1ΔIEC mice or Xbp1fl/fl controls (Fig. 2G). Three 

weeks after parabiosis, we observed ~50% chimerism of blood T and B cells (Fig. 2H). 

Consistent with their tissue-resident phenotype, peritoneal B1 cells exhibited ~20% 

chimerism (Fig. 2H). The peritoneal B1 cell compartments of WT CD45.1 mice showed 

increased numbers of CD45.1+ B1b cells in animals joined to CD45.2+ Xbp1ΔIEC mice 

compared with those joined to CD45.2+ Xbp1fl/fl controls (Fig. 2I and gating strategy in fig. 

S12). There were also more CD45.1+IgA+ plasma cells in the SI LP of CD45.2+ Xbp1ΔIEC 

mice than in that of CD45.2+ Xbp1fl/fl controls, which lacked ER stress in their intestinal 

epithelium (Fig. 2J). By contrast, CD45.1+IgA+ plasma cells in the LP of CD45.1+ animals 

were not increased (Fig. 2K). Notably, there were no significant changes in SI Tnfsf13 
(April), Tnfsf13b (Baff), Ccl25, Ccl28, and Cxcl13 expression (fig. S13A) or thymic stromal 

lymphopoietin protein levels (fig. S13B), which have been implicated in TI IgA class 

switching and/or plasma-cell recruitment (24).

Germ-free (GF) Xbp1ΔIEC mice, compared with GF Xbp1fl/fl controls, also exhibited 

increased numbers of SI IgA+ plasma cells (Fig. 3, A and B), basal plasmacytosis (Fig. 3B), 

higher frequencies and numbers of peritoneal B1b cells (Fig. 3, C and D), and an increased 

proportion of IgA+ cells within the SI LP B1b-like cell compartment (CD5–CD19+CD43+) 

(Fig. 3E). They also showed heightened IEC ER stress (fig. S14, A to C) without 

spontaneous enteritis (5) and few SI epithelial apoptotic events compared with specific 

pathogen–free (SPF) Xbp1ΔIEC mice (fig. S14D). GF Xbp1ΔIEC mouse colons also showed 

increased numbers of IgA+ plasma cells (fig. S15A) and higher concentrations of tissue IgA 

(fig. S15B) than colons of littermate controls. However, colonic IgA+ plasma cell numbers 

and IgA tissue concentrations in SPF Xbp1ΔIEC and Xbp1fl/fl mice were similar (fig. S15, A 

and B), suggesting that high levels of TD IgA production in the colon mask the TI ER 

stress–induced IgA response under SPF conditions (25).
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Thus, the increase in IgA+ plasma cells was not restricted to the SI nor dependent on 

apoptosis, microbiota, or a proinflammatory milieu but, rather, was due to IEC ER stress–

driven recruitment of TI peritoneal B1b cells. Indeed, although single-cell RNA sequencing 

of the peritoneal lavage of GF Xbp1ΔIEC mice and Xbp1fl/fl controls identified 

heterogeneous populations of peritoneal myeloid, B cell, and T cell subsets (Fig. 3, F to H, 

and fig. S16, A and B), the only peritoneal cell type demonstrating a major expansion in the 

context of IEC ER stress was a cluster containing a B1b-like transcriptional signature 

(cluster 2; Fig. 3, F to H, and fig. S16, A and B). Flow cytometry confirmed the absence of 

peritoneal myeloid or T cell alterations (fig. S17) or changes in SI LP myeloid cell 

populations (fig. S18). Peritoneal B1b cells from GF Xbp1ΔIEC mice were also 

transcriptionally distinct. Differential expression (Fig. 3I) and gene set enrichment analysis 

(GSEA; Fig. 3J) of purified B1b cells from GF Xbp1ΔIEC mice showed the up-regulation of 

genes involved in protein biosynthesis, oxidative phosphorylation, and Myc signaling–which 

is critical for B cell activation (26)–compared with B1b cells of GF littermate controls. By 

contrast, cell adhesion gene sets were down-regulated in line with the increased ability of 

these B1b cells to egress from the peritoneal cavity and home to ER-stressed SI epithelium 

(Fig. 3J).

Taking advantage of the increased circulating IgA concentrations present in GF Xbp1ΔIEC 

mice compared with those in GF Xbp1fl/fl mice (Fig. 3K), we functionally confirmed the B1 

origin of the IgA response by showing that the IgA derived from these animals efficiently 

coated fecal microbiota obtained from μMT mice lacking immunoglobulins (Fig. 3L) and 

exhibited broad reactivity to endogenous and exogenous antigens (Fig. 3M) as expected (23, 

25). Furthermore, analysis of variable-region usage and CDR3 clono-type sequences from 

the proximal and distal intestinal segments of GF animals demonstrated the existence of a 

similar IgA+ cell polyclonal repertoire (fig. S19, A to C) containing a limited CDR3 region 

mutational load (fig. S19D) regardless of genotype.

Lastly, mice with a conditional deletion of autophagy related 16-like 1 in IECs 

(Atg16l1ΔIEC) exhibit SI IEC ER stress without histopathologic signs of inflammation (5, 

11). These animals exhibited increased numbers of SI LP IgA+ cells (Fig. 4A) and a specific 

increase in peritoneal B1b cells (Fig. 4B). Similarly, SI biopsies of healthy human subjects 

homozygous for the hypomorphic ATG16L1T300A variant, who are known to exhibit 

increased ER stress (27), showed higher numbers of LP IgA+ cells than both non-carriers 

and heterozygous subjects (Fig. 4C).

Thus, the secretion of IgA into the lumen and resultant innate-like polyreactive responses 

protect ER-stressed mucosa in a pathway under the control of IEC ER stress. This occurs 

independently of either microbes or inflammation, making it a self-contained, host-derived 

response. This response is TI, peritoneal B1b cell–derived, and under the control of an 

unknown transmissible factor that emerges from ER stress in the IEC and is communicated 

to the peritoneal cavity, revealing a tight link between these two anatomic sites. In the 

absence of IgA or its secretion, spontaneous enteritis emerges. We propose that this 

homeostatic function of epithelial ER stress is a beneficial “eustress” response that is 

functionally opposed to its well-described involvement in proinflammatory pathways.
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Fig. 1. Intestinal epithelial ER stress induces a protective IgA response.
(A) Absolute counts of SI LP IgA+ plasma cells in Xbp1ΔlEC mice and Xbp1fl/fl controls at 

10 weeks of age (n = 7 or 8). (B) Ileal tissue IgA normalized by total soluble tissue protein 

(n = 8 to 10). (C) IgA concentration in SI washes (n = 6 to 10). (D) Circulating IgA 

concentration (n = 6 to 10 for each age). (E and F) Representative IHC images (E) and 

quantification (F) of LP IgA+ cells (brown) along ≥50 ileal crypt-villus axes (n = 6 or 7). 

Magnified area in (E) depicts basal plasmacytosis. (G) Representative IHC images and 

quantification of SI LP IgA+ cells (red) in Grp78T-ΔIEC mice and Grp78fl/fl controls after 3 
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days of tamoxifen treatment (n = 4). (H and I) Absolute counts of SI LP IgA+ plasma cells 

(H) and circulating IgA concentrations (I) of the indicated genotypes, treated with either 

TUDCA (2 mg/ml) in the drinking water or plain water (control) for two weeks (n = 7 or 8). 

(J and K) Enteritis scores of ileal (J) and jejunal (K) sections of indicated genotypes (n = 4 

to 26). (L) Representative plots, frequencies, and absolute counts of SI LP IgM+ plasma 

cells (gated on CD45+CD3– lymphocytes) of the indicated genotypes (n = 3 to 14). (M to O) 

Absolute flow cytometric counts of SI LP IgA+ plasma cells (M), representative IHC images 

and quantification of IgA+ cells in ileal sections (N), and enteritis scores (O) of Pigr–/–

Xbp1ΔIEC mice and Pigr–/–Xbp1fl/fl controls (n = 9 to 18). (P) Frequencies of IgA-coated 

fecal bacteria from the indicated genotypes, as determined by flow cytometry (n = 2 to 20). 

B6 indicates a C57BL/6J background. Scale bars indicate 100 μm (low magnification) or 20 

μmm [magnified view in (E)]. Symbols represent individual animals. Bars represent 

arithmetic means [(B), (D), (F), (G), (N), and (P)], medians [(J), (K), and (O)], or geometric 

means [(A), (C), (H), (L), and (M)]. Error bars indicate SEM. Data are representative of 

three [(A) and (B)] independent experiments or were compiled from two (M) or three [(L) 

and (P)] experiments. P values were calculated by unpaired Student’s t test [(A) to (D), (F), 

(G), (L) to (N), and (P)], Kruskal-Wallis test with Dunn’s post-test [(J) and (K)], Mann-

Whitney U rank sum test (O), or two-way analysis of variance (ANOVA) with Fisher’s least-

significant difference (LSD) method and two-stage step-up method of Benjamini, Krieger, 

and Yekutieli to control the false discovery rate [(H) and (I)]. *P<0.05; **P <0.01; ***P 
<0.001; ns, not significant.
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Fig. 2. ER stress–induced IgA is PP- and T cell–independent and involves recruitment of 
peritoneal B1b cells by a transmissible factor.
(A) Representative plots and percentages of germinal center (GC) B cells (gated on CD19+ 

lymphocytes) in MLN and PP of Xbp1ΔIEC mice and Xbp1fl/fl controls (n = 4 to 7). (B) 

Representative plots and percentages of MLN and PP TFH cells (gated on CD3+CD4+ 

lymphocytes, n = 4 to 6). (C) Absolute counts of SI LP IgA+ plasma cells (PCs) in TCRβ–/–

Xbp1ΔIEC mice and TCRβ–/–Xbp1fl/fl controls (n = 8 or 9). (D) Absolute counts of SI LP 

IgA+ plasma cells in PP-deficient Xbp1ΔIEC mice and Xbp1fl/fl controls (n = 6 to 8). (E and 
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F) Representative plots, percentages, and absolute counts of peritoneal B1a and B1b cells in 

Xbp1ΔIEC mice and Xbp1fl/fl controls (n = 5 to 7). FSC, forward scatter. (G) Schematic 

representation of the parabiosis experiment (n = 7 or 8 pairs per genotype). (H) Frequencies 

of CD45.1+ circulating lymphocytes and CD45.1+ peritoneal B1 cells 3 weeks after 

parabiotic surgery. The dotted line indicates 50% chimerism. (I) Absolute numbers of 

CD45.1+ B1b cells in peritoneal cavities of CD45.1 animals conjoined with either Xbp1fl/fl 

or Xbp1ΔIEC mice. (J and K) Absolute numbers of SI LP CD45.1+IgA+ plasma cells in 

parabiotic Xbp1fl/fl and Xbp1ΔIEC mice (J) and in CD45.1 parabionts conjoined with either 

Xbp1fl/fl or Xbp1ΔIEC mice (K). Symbols represent individual animals. Bars represent 

arithmetic means [(A), (B), (E), and (H)] or geometric means [(C), (D), (F), and (I) to (K)]. 

Data are representative of three experiments [(E) and (F)] or were pooled from two 

experiments [(C), (D), and (G) to (K)]. P values were calculated by unpaired Student’s t test. 

*P <0.05; **P <0.01; ***P <0.001; ns, not significant.
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Fig. 3. Epithelial ER stress–derived IgA is microbiota- and inflammationindependent and 
polyreactive in nature.
(A) Absolute counts of SI LP IgA+ plasma cells in GF Xbp1ΔIEC mice and Xbp1fl/fl controls 

(n = 7 or 8). (B) Representative immunofluorescence images and quantification of LP IgA+ 

cells (green) along ≥50 ileal crypt-villus axes (n = 3 to 6). Nuclei are counterstained with 4′,

6-diamidino-2-phenylindole (DAPI) (blue). Arrows indicate basal plasmacytosis. Scale bar, 

100 μm. (C and D) Frequencies (percentage of CD19+CD23–CD43+ cells) (C) and absolute 

flow cytometric counts of peritoneal B1a and B1b cells (D) (n = 7 or 8). (E) Representative 
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plots (gated on CD5–CD19+CD43+ lymphocytes) and frequencies of IgA+ B1b-derived cells 

in SI LP of GF Xbp1ΔIEC mice and GF Xbp1fl/fl controls (n = 7 or 8). (F) t-Distributed 

stochastic neighbor embedding (t-SNE) plot depicting unsupervised clustering of single-cell 

transcriptomes (n = 11,104 cells) from peritoneal lavages of Xbp1ΔIEC mice and Xbp1fl/fl 

controls (aligned datasets). Numbers and colors indicate clusters. (G) Expression levels of 

canonical markers for macrophages (Csf1r), B cells (Cd79a), T cells (Cd3e), and peritoneal 

dendritic cells (Cd209a) in t-SNE plot. (H)t-SNE plot as in (F) with cells colored by 

genotype. Bar graph depicts the number of cells within each cluster by genotype. (I) Volcano 

plot showing log2-transformed fold-change (log2FC) of gene expression in B1b cells from 

GF Xbp1ΔIEC mice compared with that in B1b cells from GF Xbp1fl/fl controls (n = 5 to 7). 

Differentially expressed genes [log2FC ≥ 1 or ≤ –1; false discovery rate (FDR) < 0.05] are 

highlighted in blue. FDR values that are <10–5 are plotted at 10–5 (triangles). (J) GSEA 

enrichment plots for selected gene sets. GO, gene ontology gene sets; HM, hallmark gene 

sets; OXPHOS, oxidative phosphorylation; NES, normalized enrichment score. (K) 

Circulating IgA concentrations in GF Xbp1ΔIEC mice and Xbp1fl/fl controls (n = 12 or 13). 

(L) Representative plots (gated on SYBRhi events) and frequencies of IgA coating on fecal 

bacteria from μMT mice that were incubated with sera from GF Xbp1ΔIEC mice or Xbp1fl/fl 

controls (n = 4 or 5). (M) Polyreactivity enzyme-linked immune-sorbent assay optical 

density at 650 nm (OD650) values of serum IgA from GF Xbp1ΔIEC mice or Xbp1fl/fl 

controls (n = 5 or 6) against the indicated antigens. LPS, lipopolysaccharide; KLH, keyhole 

limpet hemocyanin; dsDNA, double-stranded DNA. Symbols or lines represent individual 

animals. Bars represent arithmetic means [(B), (C), and (E)] or geometric means [(A), (D), 

and (K)]. Data are representative of at least two independent experiments [(B) to (D), (L), 

and (M)] or were pooled from two experiments [(A), (E), and (K)]. P values were calculated 

by unpaired Student’s t test. *P <0.05; **P < 0.01; ***P <0.001; ns, not significant.
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Fig. 4. Defective ATG16L1-dependent autophagy results in a peritoneal B1b response in mice 
and IgA induction in both mice and humans.
(A) Representative IHC images and quantification of LP IgA+ cells (brown) along ≥50 ileal 

crypt-villus axes of Atg16l1ΔIEC mice and Atg16l1fl/fl controls (n = 8). (B) Absolute counts 

of peritoneal B1a and B1b cells in Atg16l1ΔIEC mice and Atg16l1fl/fl controls (n = 7 to 12). 

(C) Representative IHC images and quantification of IgA+ cells (brown) in ileal biopsies of 

healthy human subjects, shown by ATG16L1 genotype as indicated by AA, AG, and GG (n 
= 8 to 16). Scale bars, 100 μm. HPF, high-power field. Symbols represent individual animals 

or human subjects. Bars represent arithmetic means [(A) and (C)] or geometric means (B). 

Data in (B) were pooled from two experiments. P values were calculated by unpaired 

Student’s t test [(A) and (B)] or one-way ANOVA with Holm-Šídák test (C). *P < 0.05; ns, 

not significant.
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