
Testing models of human declarative memory at the single-
neuron level

Ueli Rutishauser1,2,3,4

1Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA

2Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA

3Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai 
Medical Center, Los Angeles, CA

4Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA

Abstract

Deciphering the mechanisms of declarative memory is a major goal of neuroscience. While much 

theoretical progress has been made, it has proven difficult to experimentally verify key predictions 

of some foundational models of memory. Recently, single-neuron recordings in human patients 

have started to provide direct experimental verification of some theories, including mnemonic 

evidence accumulation, balance-of-evidence for confidence judgments, sparse coding, contextual 

reinstatement, and the VTA-Hippocampus loop model. Here, we summarize the cell types that 

have been described in the medial temporal lobe and posterior parietal cortex, discuss their 

properties, and reflect on how these findings inform theoretical work. This body of work 

exemplifies the scientific power of a synergistic combination of modelling and human single-

neuron recordings to advance cognitive neuroscience.
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Towards a Circuit-Level Understanding of Human Declarative Memory

Declarative memories (see Glossary) of events and facts are central to human behavior and 

are part of what defines each of our individual identities [1]. Consequently, deciphering the 

mechanisms that allow humans to form, maintain, and retrieve declarative memories is a 

major topic in cognitive neuroscience. Brain mapping and lesion techniques have started to 

reveal the brain networks that are involved in declarative memory formation, maintenance, 

consolidation, and retrieval [1]. This work has highlighted the distinct roles of different brain 

Contact Author: Ueli Rutishauser, ueli.rutishauser@cshs.org. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Trends Cogn Sci. Author manuscript; available in PMC 2020 June 01.

Published in final edited form as:
Trends Cogn Sci. 2019 June ; 23(6): 510–524. doi:10.1016/j.tics.2019.03.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



areas, such as the hippocampus and other parts of the medial temporal lobe, cortical areas 

such as the posterior parietal cortex, and the basal ganglia in declarative memory. 

Theoretical work, on the other hand, has proposed both abstract cognitive and circuit-level 

mechanisms on how different types of neurons within these areas interact, and how their 

response changes as a function of learning to encode new memories (‘engrams’) [2–10]. 

Many such models make predictions that are testable using behavioral or non-invasive 

neuroimaging-based experiments, allowing for close interaction between theory and 

experiment that has been highly fruitful. Other model predictions, however, require either 

higher spatial and/or temporal resolution or high quality single-trial measurements to be 

tested directly. Due to this, it is challenging to test such predictions with non-invasive 

techniques, which have relatively low temporal and spatial resolution and typically require 

across-trial averaging. Invasive brain mapping techniques such as electrocorticography 
(ECoG) and intracranial electroencephalography (iEEG) performed in patients have 

significantly higher resolution and signal quality, an advantage that has already led to 

significant advances in our understanding of memory (see for example [11–14]). 

Nevertheless, there remain a considerable number of model predictions that are best tested at 

the level of individual neurons.

Invasive recordings in animals have provided an invaluable body of detailed knowledge of 

the circuits involved in memory at the systems, circuit, cellular, and molecular level. But, if 

our goal is to understand human memory, this animal work has to be complemented by 

human experiments at similar levels of resolution. To achieve this, invasive recordings in 

humans are critical for three reasons. First, findings from animals have to be validated in 

humans to build a bridge between humans and animal model systems and thereby establish 

the validity and limitations of the model system. Second, aspects of memory that are 

uniquely developed in humans or which cannot be practically studied in animals have to be 

investigated in humans. Third, some aspects of cognitive models of human memory can best 

be validated and refined using data recorded at the scale of individual neurons or small 

groups thereof. Here, we review what has been discovered from single-neuron recordings in 

humans (see Box 1) and illustrate how such recordings have been able to bridge between 

theory and experimentation and thereby provide new mechanistic insight into human 

memory.

Single-Trial Learning: Assessing the Hippocampus VTA/SN Loop Model

Learning theory is largely focused on repetitive learning that requires many repetitions for a 

robust memory to be formed. In contrast, consider the kind of learning that allows a human 

being to recognize an image with high accuracy that was previously only seen once as part 

of a sequence of 10’000 images, each shown once for 1s [15]. How the declarative memory 

system achieves such rapid and high-capacity learning is a key open question.

A model that has motivated much research on the underlying mechanisms is the 

Hippocampus- Ventral Tegmental Area (VTA)/Substantia nigra (SN) loop model [2, 3, 

16]. This model proposes that the rapid encoding of novel stimuli is facilitated by transient 

dopamine (DA) release that is triggered by novel stimuli (also see Box 2). Anatomically, the 

loop model (Fig. 1A) hypothesizes that, first, circuits within the hippocampus detect that a 

Rutishauser Page 2

Trends Cogn Sci. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimulus is novel. It has long been known that the hippocampus, along with upstream areas 

such as perirhinal cortex [17, 18], is crucial for detecting novelty [19]. This novelty signal, 

in turn, is thought to activate DA neurons, which then release DA in the hippocampus. DA 

release strengthens synaptic plasticity and enables late long-term potentiation (LTP) [3]. 

Among the predictions of the loop model are: First, subsets of DA neurons should be 

novelty sensitive, i.e. they should be activated by stimuli which have not been seen before. 

Secondly, this novelty signal should be conditional on a novelty signal being present in the 

hippocampus. Thirdly, the novelty signal should appear first in the hippocampus, followed 

later by DA neurons. Forth, following novelty-dependent activation, transient increases of 

DA occur in the hippocampus and these increases strengthen late LTP. Fifth, the model 

makes specific hypothesis on the anatomical pathways by which hippocampal novelty 

signals reach the SNc/VTA.

Single-neuron recordings have started to provide experimental support in humans for a 

subset of the above predictions. There are two groups of relevant findings: novelty responses 

in the hippocampus and other parts of the medial temporal lobe (MTL), and novelty 

responses of DA neurons. In the MTL, a subset of neurons preferentially increase their firing 

rate only the first time a stimulus is presented [20, 21]. Comparing the response of such 

novelty-signaling neurons between the first and second time a stimulus is presented reveals a 

strong difference, supporting the notion that their response is different after a single 

exposure. This is in contrast to habituation, which leads to a gradual reduction in response 

strength of some human MTL neurons over many trials [22]. Habituation develops over tens 

of trials and responses recovers if other stimuli are shown intermittently. In contrast, 

novelty-neurons in the MTL do not respond again to the same stimulus even after long 

periods of time [20].

DA neurons in the VTA/SN are intermingled with other cell types, making it difficult to 

measure their activity with non-invasive methods. With extracellular recordings, however, it 

is possible to differentiate between different cell types due to differences in action potential 

waveforms and spike train statistics. This way, individual DA neurons in the human SN can 

be observed in patients undergoing deep brain stimulation (DBS) implantation for 

treatment of movement disorders, typically Parkinson’s disease (PD) [23–25] (see Fig. 1D). 

Note that while PD patients have dopamine cell loss, this loss typically begins in the ventral 

tier of the SNc, leaving the neurons in the dorsal tier of the SNc intact [26]. It is the dorsal 

tier that projects to the hippocampus, ventral striatum and cortex [26] and which is typically 

recorded in humans, making it suitable to investigate the DA system in human PD patients. 

Such experiments have revealed two sets of DA neuron responses with respect to novelty: 

one that increases its firing rate to novel stimuli, and one that does so for familiar stimuli 

[24, 27] (Fig. 1B–C shows the novelty type). Human DA neurons also signal aspects of 

rewards [23], but whether the same or different DA neurons respond to both reward and 

novelty remains unknown. The response properties of the novelty subtype of DA neurons are 

compatible with the loop model: their response diminishes after a single learning trial, the 

extent of response change between the first and second presentation is predictive of 

behaviorally assessed memory strength, and the latency of this novelty response is later than 

that of MTL novelty neurons [24]. Interestingly, this work also revealed a familiarity 
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subtype of DA neurons, a type of response not predicted by the loop model. These neurons 

increased their firing rate only for previously seen stimuli, a response which might have a 

role in strengthening or consolidating existing memories. Together, this data illustrates the 

extent to which the loop model has guided ongoing work and the richness of insight that can 

be obtained by such model-guided experimental work in humans.

Representations of memory content: Assessing sparse and distributed 

coding models

What are the features that are used to encode and retrieve a declarative memory? Declarative 

memory has two subsystems: semantic memory and episodic memory, which represent 

knowledge of concept/facts, and details of autobiographical events, respectively [1, 28]. A 

theoretical question that has motivated much work is the level of granularity at which 

aspects of these two kinds of memory are represented. There are two opposing views [8–10, 

29, 30]: on the one hand are models that indicate that a sparse and highly selective 

representation is optimal for fast learning [8, 9]. On the other extreme are fully distributed 

coding views [31, 32], in which only the pattern of activity across large groups of neurons 

can differentiate between different concepts and experiences. Under this second view, 

listening to a single neuron in the MTL would not be useful to make a high-level semantic 

decision such as ‘am I viewing an animal’. In between the two extremes are models that 

propose a sparse but distributed form of coding; under this view, a given neuron has high 

response sparsity (it only responds to a small subset of all possible stimuli) but there are 

many neurons that respond to the same subset of stimuli [8, 10, 33].

A second, orthogonal, question that is motived by the semantic vs. episodic memory 

subsystem view is whether the neurons encoding concepts/facts also encode aspects of 

episodic memory (such as memory strength, where, when) or whether the substrate for these 

two aspects of declarative memory are separate. Lesion studies indicate that they can be 

separate in the case of remote memories: whereas patients with hippocampal lesions are 

unable to form both episodic and semantic memories, they can retrieve remote but not recent 

semantic memories [34].

Compatible with the theoretical prediction of sparse but distributed coding, single-neuron 

recordings in humans reveal that concepts and facts are encoded in a sparse and invariant 

manner by single MTL neurons [35–39]. The response of these neurons is highly selective 

(sparse) but at the same time invariant: a given neuron only responds to a small subset of all 

tested stimuli, but the subset it responds to is closely related (i.e. all images of animals). At 

the same time, the code is distributed because there are many neurons with the same or 

highly similar selectivity [38]. Such neurons have become known as ‘category’ or ‘concept’ 

cells (Fig. 2A–C shows examples), respectively. Alternatively, the same two types of 

neurons are also commonly referred to as gnostic units and grandmother cells, respectively 

[40]. Here, were refer to this group of neurons as ‘visually selective’ (VS) cells. VS cells are 

reproducible across tasks, recording techniques, and laboratories [35–39, 41–43] (see [41] 

for a review) and their responses are abstract and multimodal. For example, a cell tuned for a 

particular individual responds to a variety of images showing the person, the written name of 
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that person as well as to auditory input saying the individual’s name [44] (Fig. 2B). In 

addition to sensory input, VS cells can be activated by thought (including free recall and 

maintenance in working memory) [39, 45–48]. Also, for identical visual input, the response 

of VS cells varies as a function of whether the stimulus entered conscious awareness [42, 49, 

50] and if so is indicative of subjective decisions made about the stimulus [51, 52]. These 

properties of VS cells are also properties of declarative memories, supporting the view that 

VS cells are part of the representation of such memories. VS cell responses are plastic: they 

are more likely to represent concepts of personal relevance [53, 54] and can change their 

tuning by associative pairing [55]. Together, this data motivates the hypothesis that VS cells 

in the human MTL represent sparse, abstract, and selective features of declarative memories, 

a view compatible with the sparse but distributed coding model. In contrast, this data is not 

compatible with fully distributed coding models. One hypothesis motivated by this data is 

that VS cells represent semantic memories, and thereby constitute an integral part of an 

engram [56].

A second type of response in the human MTL that has been characterized are memory 
selective (MS) cells. The activity of MS cells correlates with aspects of episodic memory 

and their activity exhibits single-trial plasticity [20] because their response is conditional on 

whether a stimulus has been seen before. Two types of MS cells (Fig. 2D) have been 

described [20, 21, 57, 58]: one that increases its firing only for novel stimuli, and one that 

increases its firing only for previously seen stimuli (similar cells exist in macaque perirhinal 

cortex [17]). The magnitude of MS cell activity in response to a previously seen stimulus is 

indicative of memory strength, with stronger memories resulting in larger changes both 

during recognition memory [58] and spatial cued recall tasks [59]. The firing rate of MS, 

but not VS, cells is indicative of the subjective confidence of recognition memory decisions. 

This constitutes a remarkably trial-by-trial correlation with the declarative aspect of episodic 

memories with only one type of cell [58]. Jointly, this indicates that MS cells represent 

aspects of episodic memory. Similar to VS cells, the code formed by MS cells is sparse and 

highly invariant, with the large majority of MS cells not also qualifying as VS cells [58]. 

Notably, MS cells respond later than VS cells, with an average response latency that is 

~180ms longer relative to that of VS cells (a delay attributed to the theta oscillation by 

hippocampal models [5]). Together, this data shows that VS and MS cells in the human 

MTL together form an orthogonal code in both feature space and time. This result supports a 

sequential model of declarative memory, in which high-level sensory categorization first 

leads to reactivation of related concepts in semantic memory, followed by recognition 

whether the currently experienced stimulus has been seen before or not, and if so recall of 

related attributes and reinstatement of context.

What aspect of the highly sparse and abstract responses of VS and MS cells in the human 

MTL are computed locally and which are inherited from upstream areas such as perirhinal 

or inferotemporal cortex? One important insight on this question comes from analysis of 

response latencies of individual neurons relative to stimulus onset. The response latencies of 

VS cells (which respond earlier than the MS cells) in the human amygdala, hippocampus, 

and entorhinal cortex are ~300–400ms [35, 58, 60], a delay that is considerably longer than 

in higher visual areas and which would be too slow for many perceptual processes [61] (but 
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see [62] for an argument that the MTL in addition also has a critical role in visual 

perception). Also, the latencies of VS cells are inversely proportional to selectivity, with 

more selective responses occurring later [35]. Intriguingly, VS cells recorded in 

parahippocampal cortex are less selective and respond about 100ms earlier than those in 

entorhinal cortex, hippocampus, and amygdala, indicating that as information propagates 

through the MTL, responses become more and more selective and sparse. In macaques, 

perirhinal cortex neurons and the BOLD-fMRI signal differentiate familiar from novel 

stimuli, suggesting that they encode mnemonic aspects of the stimuli shown rather than their 

physical attributes [17, 63]. Also, selective perirhinal lesions impair recognition memory 

[64], indicating that the perirhinal cortex might be the first anatomical area downstream to 

high level sensory areas in which responses become contingent on experience [65]. 

However, its exact contribution to declarative memory remains unclear [18, 66, 67]. To our 

knowledge, no single-neuron responses have been performed in human perirhinal cortex, 

leaving their latency, novelty-selectivity, and sensitivity to explicit declaration of memories 

unknown. Such recordings will be critical to determine what specific transformations in both 

selectivity and latency signals undergo as they propagate from perirhinal cortex into the 

hippocampal system.

Retrieving existing Memories: Assessing the Reinstatement of Temporal 

Context Model

What allows the episodic memory system to differentiate similar memories that happened at 

different points of time and to selectively retrieve temporal clusters of memories? While 

temporal clustering of retrieval is ubiquitous [68, 69], the aspect of memory search that give 

rise to this effect remain poorly understood. A class of theoretical models for studying these 

questions are temporal context models (TCM) [70–73]. TCMs propose that neural activity in 

a subset of cells drifts as time progresses, leading to identical stimuli perceived at different 

times being accompanied by different neuronal states. This contextual information is then 

combined with sensory information and encoded into memory. Within this framework, 

successful retrieval of a memory results in re-instatement of the neuronal state at the time of 

encoding (“contextual reinstatement”). As a result, a ‘jump back in time’ or ‘mental time 

travel’ occurs, which is a defining feature of episodic memory [74]. As part of reinstatement, 

the context serves as a cue to then retrieve other associated attributes of a memory, a process 

leading to the subjective impression of ‘recollecting’ [74]. Similarly, the reinstated context 

serves as a cue to recall other nearby memories, thereby explaining effects of temporal 

encoding order on recall [70–72]. A second prediction of TCM is that strong memories, 

which result in recollection, are accompanied by reinstatement, whereas weaker memories 

are not. This is because the former is associated with a ‘jump back in time’ [75], a feature of 

reinstatement sensitive to MTL damage [76]. Intracranial recordings have revealed direct 

evidence for these predictions of TCM.

Neural activity in the MTL drifts slowly over both short (seconds)- and long (minutes) 

timescales at both the single-neuron [77, 78] and field potential level [79, 80]. This effect is 

visible as auto-correlation of activity at the single-neuron level over minutes [77, 78]. This 

temporal drift was not restricted to neurons which do not respond to sensory inputs because 
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it is also visible in neurons that are visually tuned [77]. This data shows that items which are 

seen at similar periods of time will be accompanied by more similar neural activity, thereby 

resulting in a more similar memory representation.

The neural state at encoding is reinstated, that is the patterns of activity during encoding and 

retrieval of the same item are similar. Reinstatement is visible at the single-neuron level in 

several areas of the temporal lobe, including the hippocampus, amygdala, and middle 

temporal gyrus (MTG) [77, 78, 81] (Fig. 2E–G). What remains poorly understood is what 

information is reinstated – is it specifically temporal context or rather other internal or 

external features? One notable exception is spatially tuned cells, which reveal specific 

reinstatement of spatial location [82], indicating that reinstatement can be specific. 

Remarkably, reinstatement is sufficiently powerful to be visible at the aggregate field 

potential [79, 80] and blood-oxygen level dependent (BOLD) functional magnetic 

resonance imaging (fMRI) [83] level. Reinstatement of activity has been seen both during 

recall (cued [80, 81] and free [79] recall) as well as recognition memory [77, 78]. In the 

former, such reinstatement occurs 0–2s before a subject indicates recall of an item [80, 81], 

whereas in the later reinstatement occurs following stimulus onset. Third, the extent of 

reinstatement is related to the quality of memory retrieval: it is predictive of whether cued 

recall occurs correctly or incorrectly [81] (Fig. 2E) and whether an item is recognized with 

high or low confidence [77].

In the case of recognition memory, the same items are shown during both encoding and 

recognition, making it necessary to disambiguate between activity representing stimulus-

specific sensory input from reinstated activity. However, the reinstated context changes only 

gradually, and should thereby still be similar to different encoded items which were shown 

closely (in time) before or after the recognized item. Indeed, both forward-and backward 

contiguity effects are visible at the single-neuron level [77] in recognition memory (Fig. 2F–

G). Uniquely, in recognition memory tasks, recency effects can be differentiated from 

contiguity effects [57]. Using this approach, it has been shown that contiguity effects (due to 

reinstatement) are present at the single-neuron level in the absence of recency effects [77]. 

While forward-and backward contiguity effects remain to be shown during cued or free 

recall at the single-neuron level, field potential studies show robust reinstatement during 

recall as well [79, 80]. Together, there is thus evidence at the single-neuron level for several 

predictions of TCMs, making them excellent candidates for continued theoretical study. Of 

note, TCM models in addition also make predictions that relate to the process and 

experience of recollection and memory search during free recall. While important, here our 

focus is only on the aspects of TCM that have been studied in the context of recognition 

memory.

Converting Memories into Decisions: Assessing the Mnemonic Evidence 

Accumulation Model

Many of the decisions we make in daily life depend on previous experience. Take, for 

example, deciding whether a person you see on the bus is the same person you met last night 

at a party. This decision relies on memory retrieval, the integration of different kinds of 

Rutishauser Page 7

Trends Cogn Sci. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information, and meta-cognitive processes to assess certainty. A model that encapsulates one 

point of view of how the nervous system makes decisions is the drift diffusion model (DDM) 

[84]. The DDM proposes that leaky integrators [85] accumulate evidence in favor of all 

possible choices and that the action for a particular choice is initiated once the total 

accumulated evidence for a choice exceeds a threshold (Fig. 3A). While the DDM was 

originally developed for memory-based decisions [86], much of the experimental work so 

far has focused on perceptual decisions. In particular, individual neurons have been found in 

macaques [87–89] and rodents [90] whose firing rate reflects integrated sensory evidence 

and predicts choices [84]. This discovery has led to an unprecedented mechanistic 

understanding of perceptual decision making. It remains unknown whether a similar 

mechanism is at work for declarative memory-based decisions and if so, whether the same or 

different neurons support this process.

Based on prior work on perceptual decision making in macaques [87–89], connectivity 

analysis for areas that receive hippocampal output, lesion studies, and neuroimaging, one 

candidate area in humans that has emerged for where mnemonic evidence-integrating 

neurons might be located is the left posterior parietal cortex (PPC) [91, 92] (Fig. 3B; see 

[91–93] for detailed reviews). In recognition memory, different parts of PPC exhibit 

differences in BOLD signal activation between new vs. old, recollected vs. recognized, or 

high vs. low confidence items [91, 92]. Scalp EEG source localization similarly indicates 

that PPC is the source of an ERP that differentiates between new and old items [94]. PPC 

lesions largely do not reduce recognition accuracy (but see [95]), but rather manifest as 

impoverished autobiographical recall, reduced likelihood of recollection, and reduced 

confidence. Thus, while information is present, PPC lesions lead to an inability to properly 

access this information for further processing – a kind of ‘memory neglect’ [93]. While it 

remains unclear what specifically the PPC contributes to memory retrieval, a hypothesis is 

that a key contribution is the accumulation of mnemonic evidence [91, 96].

Invasive recordings from human PPC [97–99] provide insight into this prediction. ECoG 

recordings from left PPC [97] reveal a striking functional heterogeneity when comparing 

response patterns of high-gamma band power (HGP) between different parts of the PPC 

(Fig. 3B). In the intraparietal sulcus (IPS), HGP was higher for old compared to new items, 

whereas in the superior parietal lobule (SPL), HGP power was higher for new compared to 

old items. The time course of the signal relative to stimulus onset also varied between the 

two areas: HGP first differentiated between new and old stimuli in SPL (200–300ms), with 

signals in IPS differentiating only later (300–700ms). Aligned to button-press, signals in IPS 

differentiated between old and new stimuli up to ~200ms before button press, but not later. 

In light of the mnemonic integration framework, this data suggests that neurons in IPS 

integrate evidence for old, but not new, stimuli, and once a threshold is reached a motor 

action is initiated.

Single-neuron recordings in the IPS [100] of two human subjects participating in a brain-

machine interface clinical trial provide further evidence for a role of the PPC in memory 

retrieval [98]. Within a small 4×4 mm patch of PPC, two types of neurons with signals 

relevant for memory retrieval were found: memory-selective (MS) and confidence-selective 

(CS) neurons (Fig. 3D). There were two types of MS neurons: one that increased its firing 
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rate for familiar stimuli, and one that increased its firing rate for novel stimuli (below 

referred to as the preferred stimulus). This firing rate increase was graded with memory 

strength as measured by the reported confidence (Fig. 3C–D). Notably, this modulation by 

confidence was restricted to the preferred stimulus of the MS cell, with the activity during 

non-preferred trials not modulated. CS cells, on the other hand, increased their firing rate 

either for high-or low confidence retrieval decisions regardless of whether the stimulus has 

been seen before. In contrast to recordings during the same task in the MTL [58], there was 

no evidence in PPC for neurons carrying information about stimulus identity. Rather, both 

CS and MS neurons signaled non-stimulus specific mnemonic information. Errors trial 

analysis further revealed that these neurons carried choice signals (Fig. 3E). The recorded 

neurons started to differentiate between the two choices well before the motor response but 

significantly later than the latency at which the MS signal is available in the MTL [58, 97, 

99, 100]. This result reveals a single-neuron candidate for mnemonic integrators in human 

cortex.

Although neurons in PPC are remarkably heterogeneous [98], BOLD-fMRI and ECoG 

studies [97] show that novelty, memory strength, or recollection is indicated by the average 

activity across large subareas of PPC [99]. This raises the important question of how 

heterogenous signals at the single-neuron level can give rise to such differences on a larger 

scale. One limitation is that the recordings discussed here were performed at the border 

between SPL and the supramarginal gyrus (SMG), making it possible that a transition area 

exists between the two. A critical open question is how declarative-memory based 

information is accessed by neurons in PPC. One putative mechanism is that PPC neurons 

transiently coordinate their activity with hippocampal theta oscillations when integrating 

hippocampal information but testing this prediction will require simultaneous recordings. 

While such recordings have not yet been performed, it is known that during autobiographical 

recall, theta-oscillations transiently synchronize between PPC and MTL [101].

Meta-Cognitive Confidence Judgments: Assessing the Balance of Evidence 

Model

The assessment of confidence is a hallmark of declarative memory. Theoretical work has 

advanced several potential ways by which confidence judgments might be made [102–105]. 

One class of models is the balance of evidence model (BEM) [105], which is an extension of 

the evidence accumulation model [106] (Fig. 3F). In the case of two possible choices (i.e. 

old or new), the BEM consists of two integrators that each accumulate evidence. The 

“balance of evidence” is the absolute difference between the two accumulated evidence 

values and is proportional to the confidence. Importantly, the two decisions (the actual 

choice and the confidence) are made at the same time using the same mechanisms. This 

contrasts with other models, in which the two decisions are made sequentially [107]. The 

BEM makes specific predictions about the underlying neural correlates (Fig. 3F). These 

include: there are separate neurons that integrate evidence only for old or new stimuli, the 

neurons that supply the evidence as well as the neurons that integrate the evidence are 

modulated by underlying memory strength for only their preferred stimuli (i.e. new or old), 

and the RT, accuracy, and confidence is proportional to the balance of evidence. The latter 
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prediction implies that confidence is influenced by the accumulated evidence for both the 

winning and the losing choice.

Support for some of the BEM’s predictions have been found in both macaques [87] as well 

as humans [58, 98] at the single-neuron level. First, during declarative memory-based 

decisions, putative neurons that integrate evidence in PPC [98] or that supply input to the 

integration process in MTL [58] are modulated by evidence strength as reported by 

subjective confidence (Fig. 3G–H). This modulation is only apparent for the preferred, but 

not the non-preferred stimulus. MS cells in the MTL and memory-choice cells in the PPC 

thus represent signals at the input and output stages of decision making that correlate with 

confidence as predicted by the BEM model. Second, estimating the balance of evidence in 

individual trials from the firing rate of MS neurons reveals that the balance of evidence 

correlates well with RT, accuracy, and declared confidence. Together, this data thus reveals a 

remarkable predictive power of the theoretical quantity of balance of evidence [58], 

indicating that the BEM model has good explanatory power and can bridge experiment and 

theory. Note that these experiments make excellent use of the unique ability of humans to 

declare their confidence in a decision, thereby allowing a direct (albeit subjective) 

assessment of memory strength.

Concluding remarks

In this review, we summarized what invasive recordings at the single-neuron level in humans 

have revealed about the mechanism of human declarative memory. Our emphasis was on 

illustrating the power of this approach by demonstrating how it has enabled direct testing of 

predictions made by five models of relevance for declarative memory: the 

hippocampus/VTA loop model, the sparse coding model, the contextual reinstatement 

model, the evidence accumulation model, and the balance of evidence model (see Table 1 for 

a summary). While there are of course many other important models, here we focus on this 

subset because together they provide a good perspective of the power of the overall 

approach. In each case, the combination of human behavior and simultaneous single-neuron 

recordings has revealed critical new insights into different aspects of human memory. 

Jointly, this data now allows us to synthesize a view of the processing elements and the 

information flow among these processing elements in the human brain during memory 

encoding and retrieval (Fig. 4, Key Figure) and to tentatively map aspect of this circuitry to 

specific kinds of neurons in particular brain areas (of course this abstract model is far from 

being an actual implementable circuit). While here the focus was specifically on declarative 

memory, a similar combination of model-driven analysis of intracranial recordings has 

started to provide essential new insights into other human cognitive processes. While still in 

its early stage, this powerful approach has a bright future and we anticipate much exciting 

future work of this kind that will push ahead our understanding of human cognition in ways 

not possible with other experimental approaches (see Outstanding Questions).
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Glossary

Blood oxygen level-dependent signal (BOLD)
measure indirect measure of neural activity acquired using fMRI.

Confidence judgment
A subjective assessment of the likelihood that a given decision was correct or not, typically 

assessed on a 3 to 10-point scale ranging from “guessing” to “very confident”.

Contiguity effect
Temporal clustering of retrieval at the behavioral (the item retrieved next is most likely the 

one studied right before or after the previously retrieved item) and neuronal (reinstated 

context is most similar to that present close in time to the retrieved item) level.

Declarative memory
Memories that can be brought into conscious awareness and that can be described and 

assessed verbally. Includes memories for past events (episodic) and facts (semantic 

memory).

Deep Brain Stimulation (DBS)
A clinical treatment for movement disorders that is also sometimes used to treat psychiatric 

disorders. Applies high-frequency extracellular stimulation, which is thought to inhibit 

neural activity in the target area.

Dopamine (DA)
A neuromodulator important for memory (see Box 2).

Electrocorticogram (ECoG)
refers to recordings performed with subdural strip or grid electrodes that do not penetrate the 

brain.

Engram
The physical substrate of a specific memory.

Episodic memory
Memories of personally experienced events.

Intracranial electroencephalography (iEEG)
We use the term iEEG to refer to recordings with low-impedance macro electrodes along the 

shaft of depth electrodes deep inside the brain (see Box 1).

Leaky integrator
An integrator with a decay rate such that inputs that rely further back in time have less 

influence on the current value than more recent inputs

Memory selective cells (MS cells)

Rutishauser Page 11

Trends Cogn Sci. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells that respond differently as a function of whether a stimulus is novel (never seen before) 

or familiar (seen before at least once).

Recognition memory
The ability to identify a previously seen stimulus as familiar.

Semantic memory
Memories of concepts and facts about the world.

Substantia nigra (SN)
A part of the midbrain that contains cell bodies of dopamine neurons.

Ventral tegmental area (VTA)
A part of the midbrain that contains cell bodies of dopamine neurons.

Visually selective cells (VS cells)
Summary term that includes all variants of category-and concept cells.
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Box 1.

Clinical procedures are a gold mine for cognitive neuroscience at the 
single-neuron level.

In a limited number of circumstances, the activity of single neurons in awake behaving 

humans performing cognitive tasks can be recorded [109]. There are three separate 

clinical scenarios where such work has been performed. First, patients with drug-resistant 

focal epilepsy undergoing monitoring with depth electrodes [109, 110]. Recordings are 

performed during the 1–3 week-long stay of such patients in an epilepsy monitoring unit 

[111] (see Figure I). Second, patients undergoing awake brain surgery for implantation of 

a deep brain stimulation (DBS) device for treatment of the symptoms of movements 

disorders [23, 24] or psychiatric indications such as depression or OCD [112, 113]. 

Third, patients participating in brain machine interface trials with invasive electrodes, 

such as the Utah array [100].

Each of these approaches provides access to a different set of brain areas with different 

constraints. The strength of recording in epilepsy patients is the ability to perform 

experiments in the relative comfort of the hospital room, performing experiments for 

several days, execution of relatively complex behavioral manipulations, and simultaneous 

recording of neurons from different brain areas. Limitations include restriction in 

accessible brain areas due to microwires exiting at the tip, inability to move electrodes, 

and caveats posed by the underlying seizure disorder. The strength of recording intra-

operatively is ability to move the electrode to search for neurons and the ability to record 

anywhere along the track, which often includes areas not accessible in other settings such 

as the basal ganglia and striatum. Challenges of this approach include limited experiment 

time, impaired behavior due to after-effects of anesthesia and inability to perform 

complex behavioral procedures. The strength of Utah-array recordings is the ability to 

record large numbers of neurons from a small 4×4 mm patch of cortex for long periods of 

time during complex behavior. Limitations include inability to access areas not on the 

cortical surface and inability to move electrodes.

Notable, across the approaches described above many cortical and subcortical brain areas 

that are of interest to models of memory can be accessed, including hippocampus, 

amygdala, DA neurons in the SN, PPC, and the frontal lobe. Indeed, single-neuron data 

that informs our understanding of human memory has already been obtained from all 

three clinical scenarios described (as summarized in this review), illustrating the power of 

utilizing several clinical scenarios to investigate the same scientific question.

Rutishauser Page 19

Trends Cogn Sci. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure I (place inside Box 1): Electrodes and recordings of single-neuron recordings in 
humans.
(A) Hybrid Depth electrode that is frequently used for recordings in epilepsy patients. 

Adapted from [114]. (B) Utah array. (C) Example raw recording (0.3–3kHz bandpass 

filtered) and two isolated clusters on a microwire of the kind shown in (A). Adapted from 

[111].
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Box 2.

The role of dopamine in declarative memory.

Does dopamine have a role in the formation of hippocampal-dependent memories? 

Whilecomparatively little studied in comparison to its role in reward, substantial evidence 

suggests that it does. First, the extent of DA neuron activity during viewing of novel 

stimuli correlates with the likelihood that the stimuli will later be remembered. This was 

originally shown using BOLD-fMRI with ROIs located in areas that contain, among 

others, DA neurons [115]. But since the BOLD signal is not cell-type selective, it is 

possible that the changes in BOLD signal observed were not due to changes in DA 

neuron activity. However, direct recordings from human DA neurons in the SN reveal that 

DA neurons increase their firing rate in response to novel stimuli and that the degree of 

this activation is indicative of whether the stimulus will later be remembered or forgotten 

[24]. Similarly, in macaques, DA neurons are activated by novel stimuli [116]. However, 

to our knowledge, DA neuron activation and its relationship to behavior has not been 

tested in a hippocampal-dependent memory tasks in macaques. Second, blocking or 

otherwise interfering with DA receptors in the hippocampus impairs declarative memory 

encoding [117, 118] and modulates synaptic plasticity as assessed by LTP/LTD [3]. 

Thirdly, genetic studies in humans show that polymorphisms in dopamine-related genes 

explain variance in declarative memory ability and/or results in differential activation 

measured by BOLD fMRI or EEG [119]. Together, this data suggests that dopamine 

release is critical for encoding new declarative memories. What remains poorly 

understood, however, is what activates dopamine neurons in a novelty-dependent manner. 

How this occurs is what the hippocampus-VTA/SN loop model is concerned with (see 

main text). A critical experiment that remains to be done is to directly measure levels of 

dopamine in the human hippocampus at a fast time scale to assess how transient the 

changes in dopamine are after exposure to novel stimuli and whether the increase in 

dopamine is selectively target anatomically or to different cell types. Among the potential 

approaches to pursue this question are fast micro dialysis and cyclic voltammetry, both of 

which have been utilized in humans for otherpurposes [110, 120].
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Figure 1: The Lisman Hippocampus VTA/SN loop model and novelty signaling human DA 
neurons.
(A) Schematic of interactions and flow of novelty signals within the hippocampus-VTA/SN 

loop. Adopted from [2, 3, 108]. (B-D) Novelty signaling human DA neurons. (B) Example 

neuron that increases its firing when a stimulus is novel (blue) and decreases when the same 

stimulus is shown again (red). (C) Population summary. Novelty-sensitive DA neurons 

change their firing rate between the first (left) and second (middle) time the same image is 

seen in a continuous recognition memory task. Each dot is one neuron. (D) Analysis of 

extracellular waveforms of neurons recorded in the human SN indicates a population of 

wide-and narrow waveform neurons, which are putatively dopaminergic and GABAergic, 

respectively. Note that the novelty-signaling neurons (blue) had wide waveforms. (B-D) 

adjusted from [24]. Abbreviations: SN – substantia nigra, VTA – ventral tegmental area, 

PPTg - pedunculopontine tegmental nucleus.
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Figure 2: Sparse and selective coding of declarative memory content and reinstatement by single 
neurons.
(A-C) Example of visually selective neurons. (A) Two visually selective neurons, one 

responding to many different images showing clothes (top, from hippocampus) and one only 

responding to a single image of a food item (bottom, from amygdala). Adapted from [43]. 

(B) Example of a highly invariant multimodal concept neuron that responds to images and 

written and spoken name of an experimenter, but not many other images (only examples are 

shown). Adapted from [44]. (C) Visually selective category neuron. Trials are ordered by 

visual category from which the images are chosen (all images shown are different). Stimulus 

on/offset is shown with dashed lines or a grey box (C). (D) Example memory-selective 

neuron. Note that the images shown during novel (green) and familiar (red) trials are the 

same Stimulus on/offset is shown with a grey box. Adapted from [57]. (E) Contextual 

reinstatement during free recall by middle temporal gyrus neurons. Adapted from [81]. (F-

G) Contextual reinstatement by VS neurons during recognition memory. Adapted from [77].
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Figure 3: Mnemonic evidence accumulation model and memory-choice cells.
(A) Mnemonic evidence accumulation as a race process, with the choice made as the 

integrator (EV) that first reaches a preset threshold. (B) Anatomy of the PPC. Star marks the 

recording location for the data shown in (C-E). Adapted from [99]. (C) Example PPC neuron 

that increases its firing rate for a “new” decision in a graded manner modulated by 

confidence. Top shows the response of this neuron in individual trials, bottom the average 

response of this neuron. (D) Population summary of memory-sensitive neurons in the PPC 

reveal that some neurons signal the confidence of the decision (green), whereas others only 

signal the new vs. old decision (red). (E) Group PSTH of memory-choice cells in PPC, 

grouped according to their preferred stimulus (new or old). The preference is defined 

according to ground truth. Note that during errors, neurons increase their firing rate for their 

non-preferred stimulus, indicating that they signal choices regardless of whether they are 

correct or not. Adapted from [98]. (F) The balance of evidence model. Note that this model 

integrates the difference (new-old or old-new), which is not the same due to rectification. 

(G-H) Cumulative firing rate of MS neurons, shown separately for high (G) and low (H) 

confidence trials. The balance of evidence ΔEV scales as a function of confidence. Adapted 

from [58].
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Figure 4 (Key Figure): Summary of functional cell types and their putative interactions during 
recognition memory encoding and retrieval.
Summarized are four cell types (filled colored circles): visually selective (VS) cells, memory 

selective (MS) cells, novelty-sensitive dopamine neurons, and choice neurons. There are two 

types of MS cells: Novelty and familiarity selective (NS and FS). Arrows indicate direction 

of information flow, but do not indicate monosynaptic connections. Anatomical areas are 

indicated in dashed boxes. The theoretical concepts/models (gray boxes) discussed are: i) the 

Hippocampus-VTA/SN loop model, which proposes that hippocampal novelty signals excite 

dopamine neurons in the VTA/SN, which in turn release dopamine in the hippocampus, 

which leads to long-lasting plasticity. ii) the sparse coding memory model, which suggests 

that distinct neurons encode semantic and episodic aspects of declarative memories in a 

sparse but distributed manner. iii) the temporal context model, which suggests that the neural 

state present at encoding is re-instated at retrieval. iv) mnemonic accumulation, which 

suggests that neurons exist that integrate memory signals to make choices. v) the balance-of-

evidence model, which describes how the difference between two mnemonic integrators can 

be used to make metacognitive confidence judgments about memories. Jointly, the body of 

single-neuron experiments discussed provides evidence for key aspects predicted by these 

models, including novelty cells that exhibit rapid single-trial learning, representations of 

memory strength that predict subjective confidence judgments, sparse coding of semantic 

memories, reinstatement of neural state by VS cells during retrieval, and representations of 

memory-based choices that are putative mnemonic accumulators.
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Table 1.

Models of memory, their predictions and related human intracranial studies.

Model class Key predictions Related studies

Hippocampus VTA/SN loop model Dopamine neurons respond to novel stimuli, this novelty response is 
indicative of memory formation success, and exhibits single-trial 
learning.

[24, 27]

Sparse and separate encoding of semantic and 
episodic aspects of declarative memories

Highly visually selective cells (response sparsity), separate neurons 
encoding whether a stimulus has been seen before or not and other 
episodic aspects,

[35–39, 58]

Temporal context model, contextual 
reinstatement

Jump-back in time during retrieval, slowly drifting neural state, 
recollection/high confidence recognition predicted by reinstatement

[77, 78, 81] [79, 80]

Mnemonic evidence accumulation Separate accumulators for “new” and “old” decisions. Accumulator 
output signal is modulated by memory strength. Accumulators 
predict choices rather than ground truth.

[97, 98]

Balance-of-evidence for metacognitive/
confidence judgments

Magnitude of difference between the separate integrators for “new” 
and “old” choices is proportional to confidence, whereas the sign of 
the difference is indicative of the choice. Both decisions can be 
made at the same point of time.

[58]
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