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SUMMARY

Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of 
bacterial blight (BB) of rice, uses transcription activator-like effectors 
(TALEs) to interact with the basal transcription factor gamma subunit 
OsTFIIAγ5 (Xa5) and activates the transcription of host genes. 
However, how OsTFIIAγ1, the other OsTFIIAγ protein, functions in the 
presence of TALEs remains unclear. In this study, we show that 
OsTFIIAγ1 plays a compensatory role in the absence of Xa5. The ex-
pression of OsTFIIAγ1, which is activated by TALE PthXo7, increases 
the expression of host genes targeted by avirulent and virulent 
TALEs. Defective OsTFIIAγ1 rice lines show reduced expression of 
the TALE-targeted susceptibility (S) genes, OsSWEET11 and 
OsSWEET14, which results in increased BB resistance. Selected 
TALEs (PthXo1, AvrXa7 and AvrXa27) were evaluated for interactions 
with OsTFIIAγ1, Xa5 and xa5 (naturally occurring mutant form of 
Xa5) using biomolecular fluorescence complementation (BiFC) and 
microscale thermophoresis (MST). BiFC and MST demonstrated that 
the three TALEs bind Xa5 and OsTFIIAγ1 with a stronger affinity than 
xa5. These results provide insights into the complex roles of OsTFIIAγ1 
and OsTFIIAγ5 in TALE-mediated host gene transcription.

Keywords: bacterial blight, Oryza sativa, OsTFIIAγ1, 
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oryzae pv. oryzae.

INTRODUC TION

Bacterial plant pathogens reduce the yield of many important crops 
of global importance, including rice, tomatoes, peppers and citrus. 
Xanthomonas is a widespread bacterial genus that contains 

approximately 30 pathogenic species known to cause disease in 
over 300 plant hosts (Boch et al., 2014; Schornack et al., 2013). One 
particularly important pathogen within the genus Xanthomonas 
is X. oryzae pv. oryzae (Xoo), which causes bacterial blight (BB) 
of rice, a devastating disease in rice production areas.

Many Xanthomonas spp. cause plant disease by injecting 
transcription activator-like effectors (TALEs) directly into plant 
host cells via the Type III secretion system (T3SS) (Chen et al., 
2010; Mak et al., 2013). TALEs are then translocated to the nu-
cleus where they bind to specific promoter sequences in host 
genes, which are designated as TAL effector-binding elements 
(EBEs) (Chen et al., 2010; Mak et al., 2013). The DNA-binding 
domain of TALEs consists of repeat variable diresidues (RVDs) 
that bind to a predictable DNA recognition code in the pro-
moter of the TALE gene target (Boch et al., 2009; Moscou and 
Bogdanove, 2009). TALE-like proteins are not restricted to the 
genus Xanthomonas, as they are found in other plant patho-
gens and endosymbionts, including Ralstonia solanacearum 
and Burkholderia rhizoxinica, respectively (de Lange et al., 
2014). Apart from their EBE-binding ability, it remains unclear 
how TALEs function to promote the transcription of target genes 
cooperatively with other transcriptional factors.

Rice has developed an innate immune system to detect invad-
ing pathogens and trigger defensive responses to neutralize in-
fection. As a counter-offensive strategy, Xoo can deploy several 
different methods to interfere with the rice defence response. 
These include the use of interfering TALEs (iTALES) or truncated 
TALEs (truncTALEs), which can disrupt Xa1-mediated defences 
that are triggered by archetypal TALEs (Ji et al., 2016; Read et 
al., 2016). Futhermore, Xoo can also deploy TALEs that promote 
the transcription of susceptibility (S) genes in the SWEET gene 
family (Streubel et al., 2013; Zhou et al., 2015). SWEET proteins 
are responsible for sugar transport in rice and their production 
can foster pathogen growth (Chen, 2014; Chen et al., 2010).* Correspondence: Email: gyouchen@sjtu.edu.cn 
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In response to TALEs and other Xoo virulence strategies, 
rice has co-evolved counter-measures, such as the utilization of 
recessive resistance (R) genes for many of the S gene targets. 
These recessive R genes can result in TALE mistargeting, reduced 
TALE binding and increased plant disease resistance (Boch et al., 
2014; Hutin et al., 2015a). Three recessive R genes (xa13, xa25 
and xa41(t)) have been identified in several rice varieties and 
are the EBE-mutational alleles of OsSWEET11, OsSWEET13 
and OsSWEET14, respectively (Chu et al., 2006; Hutin et al., 
2015b; Liu et al., 2011; Yang et al., 2006; Zhou et al., 2015). 
Furthermore, some rice plants utilize a strategy that allows TALEs 
to recognize the promoters of dominantly inherited executor R 
genes, which trigger TAL effector-triggered immunity (ETI) (Boch 
et al., 2014; Zhang et al., 2015). Executor R gene products have 
been divided into two groups (Zhang et al., 2015). Members of 
group 1 function in plant development and physiology; this group 
includes BS3, an R protein from pepper that belongs to the flavin 
mono-oxygenase family (Expósito-Rodríguez et al., 2011; Romer 
et al., 2007). Group 2 contains R proteins from rice, including 
XA10, XA27 and XA23, which are activated by the cognate ef-
fectors (AvrXa10, AvrXa27 and AvrXa23) (Gu et al., 2005; Tian 
et al., 2014; Wang et al., 2015). XA10, localized to endoplasmic 
reticulum (ER), is associated with ER Ca2+ cation depletion (Tian 
et al., 2014) and shares 50% identity with XA23 (Wang et al., 
2015). In contrast, XA27-mediated resistance depends on local-
ization to the apoplast (Wu et al., 2008). Interestingly, these R 
genes have no obvious relationship with known R or S genes, 
suggesting that further complex defence responses are in play.

Several important studies have been conducted to understand 
how Xoo uses its collection of TALEs to activate plant transcrip-
tional factors and modulate plant defence. Sugio et al. (2007) 
described how the rice gene OsTFX1, which encodes a bZIP tran-
scription factor, was targeted by the TALE PthXo6 from Xoo strain 
PXO99A. In the same study, these authors also showed that PthXo7 
induces the expression of the transcription factor OsTFIIAγ1 
during rice infection by Xoo PXO99A (Sugio et al., 2007). 
Interestingly, in addition to OsTFIIAγ1, rice contains another 
gene, Xa5 (OsTFIIAγ5), that encodes the small (γ) subunit of the 
conserved general transcription factor TFIIA, which is important for 
polymerase II (Pol II)-dependent transcription (Hoiby et al., 2007; 
Jiang et al., 2006). Recently, Xa5 and TFIIAγ proteins from rice, 
citrus, pepper and tomato have been shown to interact directly 
with a transcription factor binding (TFB) region in TALEs (Huang 
et al., 2017; Yuan et al., 2016). This is consistent with the hypoth-
esis that TALEs may function as transcriptional activators by their 
involvement in the assembly of the transcription initiation complex 
at their target sites in plants (Boch and Bonas, 2010). However, in-
formation is lacking on how TALEs might specifically interact with 
the plant transcriptional machinery to modulate expression.

However, the rice recessive gene xa5, which is a natural al-
lele of Xa5, contains a mutation in the 39th residue, in which 

the valine (V) residue is replaced with glutamine (E) (V39E) (Iyer 
and McCouch, 2004). It has been speculated that the missense 
mutation in xa5 may confer resistance by abolishing the interac-
tion between DNA-associated TALEs and the preinitiation com-
plex, which could attenuate the transcription of TALE-targeted 
genes (Schornack et al., 2006, 2013). Indeed, Yuan et al. (2016) 
reported that xa5 fails to interact with several tested TALEs. 
Furthermore, TALE-mediated induction of R or S genes is atten-
uated in the xa5 background (Gu et al., 2009; Huang et al., 
2016; Tian et al., 2014). However, there is no evidence support-
ing or negating the involvement of OsTFIIAγ1 in the assembly of 
the transcription initiation complex in rice plants.

To gain further insights into the fundamental roles of Xa5, 
xa5 and, especially, OsTFIIAγ1 in BB, we expressed avrXa7, 
pthXo1 and avrXa27 in Xoo strains PH and PE, which are 
tal-free and pthXo7-containing strains derived from PXO99A 
(Ji et al., 2016). These strains were evaluated for pathogenic-
ity in rice lines IR24 (Xa5 and OsTFIIAγ1), IRBB5 (xa5 and 
OsTFIIAγ1), TF1 (xa5 and inactive OsTFIIAγ1), DH (Xa27, 
xa5 and OsTFIIAγ1) and 78-1-5 (Xa27, Xa5 and OsTFIIAγ1). 
The interaction and affinities of Xa5, xa5 and OsTFIIAγ1 with 
avrXa7, pthXo1 and avrXa27 were also examined. The re-
sults suggest that OsTFIIAγ1 has a role in BB and compensates 
for the absence of Xa5.

RESU LT S

IRBB5-incompatible Xoo strains are unable to activate 
OsTFIIAγ1 expression

To investigate whether naturally occurring Xoo strains isolated 
from the environment have the ability to evade xa5-mediated 
resistance, we examined the virulence of 65 Xoo strains isolated 
from 13 rice-planting provinces in China. The well-characterized 
Philippine strains PXO99A and PXO86 were included for com-
parative purposes (Table S1, see Supporting Information). The 
pathogenicity of Xoo strains was assessed in two near-isogenic 
lines of rice, IR24 (Xa5) and IRBB5 (containing xa5 in the IR24 
background). Xoo strains were inoculated using a tip-cutting 
method, and the lesion length was measured at 14 days post-
inoculation (dpi) (see Experimental procedures). The 65 Chinese 
isolates of Xoo were pathogenic in IR24 rice, but were incom-
patible in xa5-containing rice IRBB5. Lesions caused by eight of 
the 65 strains in both IR24 and IRBB5 are shown (Fig. 1A). We 
observed that PXO99A was compatible and PXO86 incompatible 
in IRBB5, which is consistent with previous results (Sugio et al., 
2007). Previous work has shown that OsTFIIAγ1 expression is 
activated by the TALE PthXo7, which is present in PXO99A, but 
absent in PXO86 (Sugio et al., 2007). Therefore, we used quanti-
tative real-time reverse transcription-polymerase chain reaction 
(qRT-PCR) to examine whether the expression of OsTFIIAγ1 was 
altered during challenge with these Xoo strains. OsTFIIAγ1 
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expression was activated in IR24 rice inoculated with Xoo 
PXO99A, but not with PXO86 or the eight Chinese Xoo strains 
(Fig. 1B). These results suggest that the Chinese isolates lack 
pthXo7, which is the case with PXO86.

PXO99A caused significantly more disease in IR24 (lesion 
length, 16.3cm) than in IRBB5 (lesion length, 10.8cm) rice at 14 
dpi (Fig. 1A). The reduced disease symptoms in the IRBB5 line 
could be partially due to xa5 (mutant form of Xa5). It is also 
important to note that lesions in the PXO99A/IRBB5 interaction 
might be modulated in part by OsTFIIAγ1, which is activated by 
PthXo7 in PXO99A, but not in the other Xoo strains. To confirm 
this possibility, we compared the expression of OsTFIIAγ1 in 
IR24 and IRBB5 by qRT-PCR and RT-PCR. Xoo PXO99A induced 
the expression of OsTFIIAγ1 in IRBB5, although the expression 
level was lower than in IR24 (Fig. 1C). Intriguingly, OsTFIIAγ1 

expression in IR24 and IRBB5 seedlings was significantly lower 
than that of Xa5 (Fig. 1D) or xa5 (Fig. S1, see Supporting 
Information). Taken together, the lesion lengths caused by 
PXO99A in IRBB5 may be partially a result of the role of activated 
OsTFIIAγ1 in the presence of Xoo TALEs.

Activated OsTFIIAγ1 enhances the expression of 
TALE targets in rice

The availability of a set of PXO99A-derived strains that are lack-
ing specific tal genes (Ji et al., 2016) enabled the examination 
of potential overlapping functions for OsTFIIAγ1 and xa5 in 
rice during challenge with PthXo7 and other selected TALEs. In 
our experiments, two PXO99A-derived strains were utilized (Fig. 
S2, see Supporting Information): Xoo PH (lacks genes encoding 
known TALEs) and Xoo PE; the latter strain contains pthXo7, 

Fig. 1 Virulence (lesion length) and ostFIIaγ1 expression levels during Xanthomonas oryzae pv. oryzae (Xoo) infection in IR24 and IRBB5 rice lines. 
(A) Lesion lengths induced by Xoo PXO99A, PXO86 and eight Chinese strains (GX4, XZ44, JS-97-2, YC5, AH28, KS-153-1, KS-3–8, KS-39-4) in IR24 and IRBB5 
rice. Bacteria were inoculated by tip-cutting and lesion lengths were measured at 14 days post-inoculation (dpi). The mean lesion lengths ± standard deviation 
(SD) (n = 5) are shown. (B) ostFIIaγ1 expression in IR24 rice seedlings inoculated with different Xoo strains. The expression of ostFIIaγ1 was evaluated by 
quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) at 24h post-infiltration (hpi). (C) qRT-PCR analysis of ostFIIaγ1 expression in 
IR24 and IRBB5 rice inoculated with Xoo PXO99A and PXO86 at 24 hpi. Values in (B) and (C) represent the mean ± SD (n = 3). (D) RT-PCR analysis of ostFIIaγ1 
and Xa5 transcription in IR24 seedlings 24h after infection with PXO99A, PXO86 and water (mock control). The result shown is representative of three replicates. 
osactin was used as the reference gene in both RT-PCR and qRT-PCR.
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which activates the expression of OsTFIIAγ1 (Fig. S2C). Xoo 
PH and PE were used to overexpress pthXo1, resulting in strains 
PH(pthXo1) and PE(pthXo1), as described in Methods S1 and 
S2, Figs S2 and S3, and Table S1 (see Supporting Information).

Xoo PH, PE, PH(pthXo1) and PE(pthXo1) were used to 
inoculate IR24 and IRBB5 rice. Lesion lengths in IR24 inoculated 
with PH(pthXo1) and PE(pthXo1) were significantly longer 
than those induced in IRBB5 rice (Fig. 2A,B). Xoo PE(pthXo1), 
which encodes endogenous pthXo7 combined with introduced 
pthXo1, resulted in more severe BB lesions than PH(pthXo1) 
in both IR24 and IRBB5 rice (Fig. 2A,B). Furthermore, the expres-
sion of the S gene OsSWEET11, which encodes a sucrose trans-
porter targeted by PthXo1, was significantly higher in IR24 than 
IRBB5 (xa5 rice) (Fig. 2C). Xoo PE(pthXo1) induced higher lev-
els of OsSWEET11 than Xoo PH(pthXo1) in IR24 and IRBB5 
(Fig. 2C). These findings suggest that Xa5 in IR24 rice may foster 
PthXo1-activated expression of the S gene OsSWEET11, which 
is attenuated by xa5 in IRBB5. In summary, we propose that the 

activation of OsTFIIAγ1 by PthXo7, which is suggested by Fig. 
S2C, leads to enhanced expression of OsSWEET11.

To further investigate the interplay between OsTFIIAγ1, TALEs 
and R/S gene targets, we introduced avrXa7 into Xoo PE and 
PH (Fig. S3; Table S1). The TALE AvrXa7 is a major virulence 
factor in Xoo that activates the expression of OsSWEET14, 
another known S gene in rice (Antony et al., 2010). Xoo PE 
and PH strains containing avrXa7 were inoculated to IR24 and 
IRBB5 rice, and lesions were observed at 14 dpi. BB lesions in 
IR24 rice inoculated with Xoo PH(avrXa7) were 6cm in length 
and dramatically shorter than those caused by PE(avrXa7); 
however, the lesion lengths in IRBB5 rice were less than 2cm 
(Fig. 3A,B). OsSWEET14 expression in rice was correlated with 
lesion length, e.g. higher levels of OsSWEET14 transcription 
were observed in IR24 rice inoculated with Xoo PE(avrXa7) 
than PH(avrXa7) (Fig. 3C). We also noticed significantly higher 
expression of OsSWEET14 in IRBB5 rice inoculated with Xoo 
PE(avrXa7) than PH(avrXa7) (Fig. 3C), suggesting that the 

Fig. 2 Effects of ostFIIaγ1 on PthXo1-induced lesion length and PthXo1-activated osSWeet11 expression. Disease phenotypes (A) and lesion lengths 
(B) in IR24 and IRBB5 rice inoculated with Xanthomonas oryzae pv. oryzae (Xoo) PH, PE, PH(pthXo1) and PE(pthXo1). Five rice leaves were inoculated 
by tip-cutting; lesions were measured at 14 days post-inoculation (dpi). One representative lesion of five is shown in (A). The mean values ± standard deviation 
(SD) (n = 5) are shown in (B). (C) osSWeet11 expression in IR24 and IRBB5 inoculated with Xoo PH, PE, PH(pthXo1) and PE(pthXo1). The expression 
of osSWeet11 was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) at 24h post-infiltration (hpi). The mean 
values ± SD (n = 3) are shown. Experiments were repeated three times with similar results and a representative result is shown. Significant differences were 
detected using Student's t-test at P < 0.05. [Colour figure can be viewed at wileyonlinelibrary.com]
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endogenous copy of pthXo7 in Xoo PE may contribute to the 
enhanced OsSWEET14 expression that is activated by AvrXa7, 
perhaps via OsTFIIAγ1.

We also investigated how an executor R gene contributes 
to BB resistance when OsTFIIAγ1 is induced. For these ex-
periments, we transferred avrXa27, which is the activator of 
Xa27 (Gu et al., 2005), into PH and PE strains (Fig. S3). Xoo 
strains PE, PH, PE(avrXa27) and PH(avrXa27) were then in-
filtrated into rice using needleless syringes. The three rice lines 
selected were 78-1-5 (containing Xa27, Xa5 and OsTFIIAγ1) 
(Hu et al., 2007), DH (Xa27, xa5 and OsTFIIAγ1) (Gu et al., 
2009) and IRBB5 (xa5 and OsTFIIAγ1). Xoo strains contain-
ing avrXa27, e.g. PH(avrXa27), PE(avrXa27) and PXO99A, 
triggered a typical hypersensitive response (HR) in 78-1-5 rice; 
however, IRBB5 rice exhibited a water-soaked, compatible in-
teraction in response to all strains (Fig. 4A). Surprisingly, the 
HR in DH rice (xa5/Xa27/γ1) was not as robust as in 78-1-5 
rice (Xa5/Xa27/γ1), although PE(avrXa27) did promote an 
obvious HR in DH rice (Fig. 4A,B). The findings suggest poten-
tial interplay between Xa5 and OsTFIIAγ1 in 78-1-5 rice that 

fosters resistance and promotes HR that is mediated by the 
AvrXa27–XA27 interaction.

To build on these observations, we evaluated Xa27 expres-
sion in 78-1-5 and DH rice lines at 24h after infiltration with these 
bacterial strains. qRT-PCR indicated that Xa27 expression was 
two- to three-fold higher in 78-1-5 rice (Xa5/Xa27/γ1) than 
DH rice (xa5/Xa27/γ1) when inoculated with PH(avrXa27), 
PE(avrXa27) and PXO99A (Fig. 4B). The highest Xa27 ex-
pression levels were observed in 78-1-5 rice inoculated with 
PE(avrXa27) (Fig. 4B). These results suggest that Xa5 and 
OsTFIIAγ1 in 78-1-5 rice promote XA27-mediated resistance; 
however, this resistance is attenuated in DH rice, potentially 
as a result of the absence of Xa5. We also observed elevated 
OsTFIIAγ1 expression in all three rice lines inoculated with 
Xoo PE, PE(avrXa27) and PXO99A (Fig. 4C); these three strains 
all encode a functional copy of pthXo7, a known activator of 
OsTFIIAγ1 expression.

The results presented above (Figs 2‒4) lead us to speculate 
that OsTFIIAγ1 may partially compensate for the attenuated re-
sponse to TALEs in xa5 rice (e.g. IRBB5 and DH). This hypothesis 

Fig. 3 Effect of ostFIIaγ1 on AvrXa7-induced lesion length and AvrXa7-activated osSWeet14 expression. Disease phenotypes (A) and lesion length 
(B) in rice lines inoculated with Xanthomonas oryzae pv. oryzae (Xoo) PH, PE, PH(avrXa7) and PE(avrXa7). Five leaves were inoculated; lesions were 
measured at 14 days post-inoculation (dpi). One representative lesion of five is shown in (A). The mean values ± standard deviation (SD) (n = 5) are shown in 
(B). (C) osSWeet14 expression in IR24 and IRBB5 inoculated with Xoo PH, PE, PH(avrXa7) and PE(avrXa7). The expression of osSWeet14 was evaluated 
by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) at 24h post-infiltration (hpi). The mean values ± SD (n = 3) are shown. 
Experiments were repeated three times with similar results and one representative result is shown. Significant differences were identified using Student's t-test at 
P < 0.05. [Colour figure can be viewed at wileyonlinelibrary.com]
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is based on several observations. First, Xoo PE, which contains 
an endogenous copy of pthXo7, activates OsTFIIAγ1 expres-
sion in IRBB5 (xa5) rice (Fig. S2C). Second, Xoo PE containing 
the three introduced TALEs (pthXo1, avrXa7 and avrXa27) in-
duces higher levels of target gene expression (e.g OsSWEET11, 
OsSWEET14 and Xa27) than Xoo PH (Figs 2‒4). Finally, in 
xa5 rice (IRBB5, DH), TALE target gene expression is lower than 
in Xa5 lines (IR24, 78-1-5) (Figs 2‒4). However, we observed a 
modest increase in target gene expression in IRBB5 and DH rice 
inoculated with Xoo strains containing endogenous pthXo7, 
and this was correlated with an increase in OsTFIIAγ1 expres-
sion. Based on these observations, our next experiments were 
designed to determine whether OsTFIIAγ1 compensates for 
xa5, potentially by interacting with individual TALEs.

OsTFIIAγ1-inactive rice plants are more resistant 
to BB

To directly test the hypothesis that OsTFIIAγ1 can compensate 
for the absence of Xa5, we constructed rice lines containing de-
fective forms of OsTFIIAγ1. This was accomplished by editing 

OsTFIIAγ1 in IRBB5 using Clustered regularly interspaced short 
palin dromic repeats and CRISPR-associated protein 9 (CRISPR/
Cas9) technology (Zhou et al., 2014). Although the sequences 
of xa5 and OsTFIIAγ1 are similar, we designed a single-guide 
RNA (sgRNA) sequence that specifically binds OsTFIIAγ1 (Fig. 
S4A,B, see Supporting Information). We generated 12 edited 
rice lines, and sequence analysis showed that they were ge-
netically modified and homozygous (Fig. S4C). Two of these rice 
lines, designated TF1–2 and TF1–5, both had single nucleotide 
insertions (Fig. S4D) in OsTFIIAγ1 and were used in further 
studies.

To confirm that OsTFIIAγ1 was defective and not expressed 
as a functional protein in the TF1–2 and TF1–5 rice lines, the 
expression of the protein products was investigated. For these 
experiments, OsTFIIAγ1 and its defective derivatives, TF-2 
and TF-5, were cloned in a yellow fluorescent protein (YFP) ex-
pression vector in which only functional proteins generate the 
fluorescence signal (Table S1). These YFP constructs were tran-
siently expressed in Nicotiana benthamiana as described 
in Methods S3 (see Supporting Information). The OsTFIIAγ1::YFP 

Fig. 4 Effect of ostFIIaγ1 on Xa27-mediated resistance and Xa27 expression. (A) Phenotypes in rice lines 78-1-5, DH and IRBB5 infiltrated with 
Xanthomonas oryzae pv. oryzae (Xoo) strains PH, PE, PH(avrXa27), PE(avrXa27) and PXO99A. Each bacterial strain was infiltrated into three leaves with 
inoculated areas per leaf. One representative photograph was taken at 4 days post-inoculation (dpi). (B) Quantification of the hypersensitive response (HR) in (A). 
Values represent the mean size of the grey (necrotic) regions ± standard deviation (SD) (n = 3). (C) Xa27 expression in rice lines 78-1-5 and DH inoculated with 
Xoo strains PH, PE, PH(avrXa27), PE(avrXa27) and PXO99A. The expression of Xa27 was evaluated by quantitative real-time reverse transcription-polymerase 
chain reaction (qRT-PCR) at 24h post-infiltration (hpi). (D) OstFIIaγ1 expression levels in rice lines 78-1-5, DH and IRBB5 infiltrated with Xoo strains PH, PE, 
PH(avrXa27), PE(avrXa27) and PXO99A. The expression of OstFIIaγ1 was evaluated by qRT-PCR at 24 hpi. Values in (C) and (D) represent the mean ± SD 
(n = 3). Experiments were repeated three times with similar results, and one representative result is shown. Significant differences were detected using Student's 
t-test at P < 0.05. [Colour figure can be viewed at wileyonlinelibrary.com]
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fusion was clearly localized to the plasma membrane and nu-
clei; however, YFP was not expressed in tobacco transformed 
with TF-2::YFP or TF-5::YFP, which indicates that these modified 
forms of OsTFIIAγ1 were not expressed as functional proteins 
(Fig. S4E).

The impact of defective OsTFIIAγ1 on Xoo–rice interac-
tions was investigated by inoculating PXO99A, PH(pthXo1) 
and PE(pthXo1) strains to TF1 rice lines and IRBB5 using the 
tip-cutting method. Lesions in TF1 lines inoculated with wild-
type PXO99A were significantly smaller than those in IRBB5 rice 
(Fig. 5A,B). Interestingly, both PH(pthXo1) and PE(pthXo1) 

strains induced more severe symptoms in IRBB5 than in TF1 lines 
(Fig. 5A,B). No obvious differences in disease symptoms or lesion 
lengths were observed in TF1 lines inoculated with PH(pthXo1) 
or PE(pthXo1) strains.

Our results (Figs 2‒4) suggest a complex interplay between 
OsTFIIAγ1 and the rice S genes encoded by OsSWEET11 and 
OsSWEET14. Thus, we examined the expression of these S 
genes in IRBB5 and TF1 rice inoculated with Xoo PXO99A, 
PH(avrXa7) and PE(avrXa7). Xoo PXO99A contains an en-
dogenous copy of pthXo1, which activates OsSWEET11. 
When Xoo PXO99A was used as inoculum, the expression of 

Fig. 5 Disease phenotypes and S gene levels in IRBB5 (wild-type ostFIIaγ1), tF1-2 and tF1-5 rice (defective ostFIIaγ1). Disease phenotypes (A) and lesion 
lengths (B) in tF1-2, tF1-5 and IRBB5 rice at 14 days post-inoculation (dpi) with Xanthomonas oryzae pv. oryzae (Xoo) PH(pthXo1), PE(pthXo1) and 
PXO99A. A typical lesion (n = 4) is shown in (A); mean values ± standard deviation (SD) (n = 4) are shown in (B). (C) osSWeet11 expression levels in IRBB5, 
tF1–2 and tF1–5 rice at 24h post-infiltration (hpi) with Xoo PH and PXO99A. (D) osSWeet14 expression in IRBB5, tF1–2 and tF1–5 rice inoculated with 
Xoo PH, PE, PH(avrXa7) and PE(avrXa7). Abbreviations: γ1, wild-type ostFIIaγ1; Δγ1, mutated ostFIIaγ1. Values in (C) and (D) represent the mean ± SD 
(n = 3), and significant differences were detected using Student's t-test at P < 0.05. One representative result of three biological replicates is shown. [Colour figure 
can be viewed at wileyonlinelibrary.com]
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OsSWEET11 was significantly lower in TF1 lines relative to 
IRBB5 rice (Fig. 5C). Thus, the defective OsTFIIAγ1 in TF1 
lines had a direct, negative impact on expression of the S 
gene, OsSWEET11, and this was correlated with reduced vir-
ulence (Fig. 5A,B). We also evaluated OsSWEET14 expression 
in IRBB5 and TF1 rice inoculated with PH and PE containing 
avrXa7, which specifically activates this S gene. OsSWEET14 
expression was significantly lower in TF1 lines inoculated with 
PH(avrXa7) and PE(avrXa7) than in IRBB5 rice (Fig. 5D). This 
is further evidence that the defective copy of OsTFIIAγ1 com-
promises the virulence of Xoo in the TF1 lines. Collectively, 
these results indicate that OsTFIIAγ1 promotes TALE-mediated 
S gene transcription, and this function is more apparent in xa5 
rice lines, such as IRBB5.

Xoo GX4 containing pthXo7 in trans causes disease 
in IRBB5 rice

OsTFIIAγ1 is activated by PthXo7 (Sugio et al., 2007) and 
can compensate for the absence of Xa5 in IRBB5 rice (Fig. 5C); 
thus, we speculated that the expression of pthXo7 in a Xoo 
strain lacking this gene might result in disease when inoculated 
to IRBB5 rice. Xoo GX4 was chosen for these experiments; this 
strain was non-pathogenic when inoculated to IRBB5 rice (Fig. 
1A) and did not induce OsTFIIAγ1 expression (Fig. 1B). Xoo 
GX4 was transformed with pHZWpthXo7 and the overproduction 

of PthXo7 was verified by immunoblotting (Fig. S3B). Xoo GX4 
and GX4(pthXo7) were then inoculated to IR24 (Xa5/γ1), 
IRBB5 (xa5/γ1) and TF1-2 (xa5/Δγ1). There was no obvious dif-
ference in lesion length or symptoms in IR24 rice inoculated with 
Xoo GX4 or GX4(pthXo7) (Fig. 6). Wild-type Xoo GX4 did 
not cause disease in IRBB5 rice; however, Xoo GX4(pthXo7) 
gained the ability to induce small lesions (∼4.5cm) in IRBB5 (Fig. 
6A,B). Intriguingly, both Xoo GX4 and GX4(pthXo7) were 
non-pathogenic in TF1 rice (Fig. 6A,B), which lacks a functional 
copy of OsTFIIAγ1. These results suggest that the activation 
of OsTFIIAγ1 by PthXo7 contributes to lesion development in 
the IRBB5/GX4(pthXo7) interaction; we also speculate that 
OsTFIIAγ1 partially compensates for the lack of Xa5 in IRBB5 
rice.

TALEs interact with OsTFIIAγ, Xa5 and xa5 with 
different affinities

Bioinformatics analysis of OsTFIIAγ1, Xa5 and xa5 indicated that 
OsTFIIAγ1 shares the 39th valine residue with Xa5, but not with 
xa5 (Fig. S4A). Given that Xa5 interacts with several character-
ized TALEs (Yuan et al., 2016) and is highly similar to OsTFIIAγ1, 
we speculate that OsTFIIAγ1 also associates with a variety of 
TALEs. To address this hypothesis, we investigated the direct in-
teraction of OsTFIIAγ1, Xa5 and xa5 with PthXo1, AvrXa7 and 
AvrXa27 using bimolecular fluorescence complementation (BiFC). 

Fig. 6 Disease symptoms in IR24, IRBB5 and tF1 rice lines inoculated with Xanthomonas oryzae pv. oryzae (Xoo) GX4 and GX4(pthXo7). Symptoms (A) 
and lesion lengths (B) at 14 days post-inoculation (dpi) are shown. One representative leaf (n = 4) is shown in (A). Mean values ± standard deviation (SD) (n = 4) 
are shown in (B). One representative result from three biological repeats with similar results is shown. Abbreviations: γ1, ostFIIaγ1; Δγ1, mutated ostFIIaγ1. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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For these experiments, OsTFIIAγ1, Xa5 and xa5 were fused with 
YN (N-terminus of YFP), and PthXo1, AvrXa7 and AvrXa27 were 
fused with YC (C-terminus of YFP), as detailed in Methods S3 
and Table S1. Agrobacterium-mediated transformation was 
used to introduce these constructs into N. benthamiana for 
transient expression and BiFC.

The co-expression of Xa5::YN with the three YC-tagged TALEs 
resulted in a fluorescent signal, indicating that PthXo1::YC, 
AvrXa27::YC and AvrXa7::YC form a complex with Xa5 in 
plant nuclei (Fig. 7A, see arrows). Similarly, the co-expres-
sion of OsTFIIAγ1::YN (γ1::YN) with PthXo1::YC, AvrXa27::YC 
or AvrXa7::YC also resulted in fluorescent plant nuclei (Fig. 
7A), which further supports the interaction of OsTFIIAγ1 with 
TALEs. However, the co-expression of xa5::YN with PthXo1::YC, 
AvrXa27::YC or AvrXa7::YC resulted in weaker fluorescence rela-
tive to Xa5::YN and OsTFIIAγ1::YN (Fig. 7A). These results sug-
gest that xa5 also associates with TALEs, but the affinity is much 
lower than that observed for Xa5 and OsTFIIAγ1.

To gain more information about the binding affinities of Xa5, 
xa5 and OsTFIIAγ1 and the three TALEs (PthXo1, AvrXa7 and 
AvrXa27), we used microscale thermophoresis (MST). Sixteen 
different concentrations of the purified TALE proteins (PthXo1, 
AvrXa7 and AvrXa27) were mixed with labelled OsTFIIAγ1, 
Xa5 and xa5, and subjected to MST (Fig. S5, see Supporting 
Information). When Xa5 and OsTFIIAγ1 were combined with 
PthXo1, AvrXa7 or AvrXa27, the Kd values were relatively small 
(less than 1 μm; Fig. 7B), indicating strong affinity for the TALEs. 
Although xa5 interacted with the three TALES, the Kd values 
were much higher (2.3–4.0 μm), indicating reduced affinity for 
the TALEs relative to Xa5 and OsTFIIAγ1 (Fig. 7B). Taken to-
gether, these results indicate that OsTFIIAγ1 and Xa5 strongly 
interact with PthXo1, AvrXa7 and AvrXa27 in vitro. Conversely, 
the interaction of these TALEs and xa5 is much weaker than ob-
served with Xa5 and OsTFIIAγ1.

DISCUSSION

A prerequisite for Pol II-dependent transcription in eukaryotes is 
the recruitment of general transcription factors, e.g. TFIIA, TFIIB, 
TFIID, TFIIE, TFIIF and TFIIH, to the core promoter region of the 
target gene. This process begins with the recruitment of TFIIA 
and TFIID (Buratowski et al., 1989; Thomas and Chiang, 2006). 
TFIIA generally serves as a bridge between the TATA-box binding 
protein and lobe B of TFIID, which facilitates TFIID binding to the 
TATA-box (Louder et al., 2016). In Arabidopsis, TFIIA is composed 
of two subunits: the large subunit TFIIAαβ and the small subunit 
TFIIAγ (Li et al., 1999). Yuan et al. (2016) have recently demon-
strated a role for TFIIAγ5 (OsTFIIAγ5, Xa5) in the Xoo–rice inter-
action. In their model, TALEs secreted by Xoo interact with Xa5 
to facilitate activation of host susceptibility genes. It is also im-
portant to mention that xa5, a naturally occurring mutant allele 

of Xa5, confers a level of resistance to Xoo, which is presumably 
due to the reduced interaction between TALEs and the Pol II initia-
tion complex when xa5 is present (Schornack et al., 2006, 2013).

In the current study, we examined the role of OsTFIIAγ1 in 
TALE-mediated interactions. Sugio et al. (2007) have previously 
demonstrated that the TALE PthXo7 activates the expression of 
OsTFIIAγ1, which suggests a complex interplay between multi-
ple transcriptional factors and TALEs, which can foster or impede 
the transcription of target R/S genes. In this study, we showed 
that the activation of OsTFIIAγ1 increased the TALE-induced ex-
pression of target genes, especially in xa5-containing rice (Figs 
2C, 3C and 4C); thus, OsTFIIAγ1 plays a compensatory role in 
the absence of Xa5. It is important to note that the basal level of 
OsTFIIAγ1 expression is much lower than that of Xa5 in both 
seedlings and adult rice plants, regardless of pathogen infection 
(Figs 1D and S1). This observation is consistent with previous re-
search (Iyer and McCouch, 2004) and supports the assumption 
that Xoo evolved or recruited PthXo7 to increase the transcrip-
tion of OsTFIIAγ1, which can then promote TALE-targeted R/S 
gene expression when Xa5 is mutated to xa5. Furthermore, our 
results showed that Xoo PE, which encodes pthXo7, induced 
a higher expression of target genes than Xoo PH when both 
strains contained the same set of introduced TALEs (Figs 2C and 
3C). Taken together, these findings support the contention that 
the increased expression of OsTFIIAγ1 via PthXo7 can partially 
compensate for the attenuated expression of TALE-targeted R/S 
genes in xa5 rice.

TALEs bind the EBEs of target genes near the TATA-box, 
which generally activates transcription (Grau et al., 2013). Our 
findings indicate that TALEs interact with TFIIAγ subunits (Fig. 7) 
and form a complex with specific plant transcription factors. 
These TALE-containing transcriptional complexes presumably 
promote target gene expression in planta. Recently, Yuan et 
al. (2016) used a yeast two-hybrid system, and reported that 
15 tested TALEs isolated from Xoo PXO99A interact with Xa5, 
but only PthXo1, Tal7a and Tal8a of the 15 TALEs interact with 
xa5. Interestingly, OsTFIIAγ1 did not interact with full-length or 
truncated PthXo1 or the TFB site of 14 other Xoo TALEs (Yuan et 
al., 2016). As a result of the existence of a full set of transcrip-
tion factors (Poss et al., 2013) and the self-activating ability of 
TALEs in yeast, the yeast two-hybrid system may not be the most 
robust system to test interactions between full-length TALEs 
and OsTFIIAγ proteins. Thus, we used BiFC and MST assays to 
detect interactions in planta and in vitro, respectively. Both 
BiFC and MST indicated that three TALEs (PthXo1, AvrXa7 and 
AvrXa27) interacted with Xa5, xa5 and OsTFIIAγ1; however, the 
affinities of the three TALEs were significantly higher with Xa5 
and OsTFIIAγ1 than with xa5 (Figs 7 and S5).

To better describe our observations and the potential roles of 
Xa5, xa5 and OsTFIIAγ1 in the activation of TALE-targeted (R or 
S) genes, we present a model based on previous reports and the 
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Fig. 7 Interaction of Xa5, xa5 and OsTFIIAγ1 with PthXo1, AvrXa27 and AvrXa7 using biomolecular fluorescence complementation (BiFC) and microscale 
thermophoresis (MST). (A) BiFC visualization of the interaction between YN-tagged TALEs and YC-tagged OsTFIIAγ subunits in tobacco leaves. The fluorescence 
in the yellow fluorescent protein (YFP) panels occurred when YN-labelled TALES interacted with YC-labelled OsTFIIAγ subunits (see arrows). Controls included 
nicotiana benthamiana transformed with empty YN vector and YC-tagged TALEs, and empty YC vector and YN-tagged OsTFIIAγ. Nuclei were stained by 
4′,6-diamidino-2-phenylindole (DAPI). Bars represent 20 μm. (B) Binding affinity of TALEs (PthXo1, AvrXa7 and AvrXa27) and labelled Xa5, xa5 and OsTFIIAγ1 
as measured by MST. OsTFIIAγ subunits were labelled with the amine-reactive, red fluorescent dye NT-647 and mixed with 16 different concentrations of 
purified TALEs (Fig. S5, see Supporting Information). The affinity of the nine interactions is represented by the dissociation constant (Kd). Values represent the 
means ± standard deviation (SD) (n = 3). Experiments were repeated twice with similar results. [Colour figure can be viewed at wileyonlinelibrary.com]
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findings in our study (Fig. 8). In Xa5 rice, the expression of Xa5 
is much higher than OsTFIIAγ1, which enables TALEs to func-
tion as transcription binding proteins (TBPs) in avirulent (Avr) or 
virulent (Vir) forms. The TALEs form a transcription complex to-
gether with Xa5 and other rice transcription factors, and this ac-
tivates R or S gene expression, leading to disease resistance (Fig. 
8A) or susceptibility (Fig. 8B). However, in xa5 rice, the reduced 
association of TALEs with xa5 results in a less effective transcrip-
tion complex, leading to the suppression of TALE-targeted gene 
expression. In this scenario, the BB resistance mediated by avir-
ulent TALEs is neutralized (Fig. 8C) or the susceptibility mediated 
by virulent TALEs is suppressed and results in passive resistance 
(Fig. 8D), which is consistent with previous reports (Gu et al., 
2009; Huang et al., 2016). An exception to this part of the model 
is the virulence of the PH(pthXo1) strain, which causes BB in 
xa5 rice and OsTFIIAγ1-defective rice lines (TF1-2 and TF1-
5) (Fig. 5). It should be noted that the PH(pthXo1) lesions are 
much smaller than those caused by PE(pthXo1) (Fig. 5A,B). The 
reason for this may be the weak affinity of xa5 with PthXo1 (Fig. 
7), which is consistent with the findings reported by Yuan et 
al. (2016), who showed that xa5 interacts with PthXo1. Thus, 
PthXo1-containing Xoo strains retain virulence and are compat-
ible with xa5 rice.

To overcome xa5-mediated resistance, Xoo strains, such as 
PXO99A, use PthXo7 to increase the transcription of OsTFIIAγ1 
(Fig. 1C). Furthermore, it is important to mention that the affin-
ities of OsTFIIAγ1 and Xa5 with the three tested TALE proteins 
were similar and much higher than the affinity of TALEs for xa5 
(Fig. 7). Thus, we speculate that the binding of OsTFIIAγ1 can 
cause the formation of a transcriptional complex that facilitates 
TALE-activated target gene expression. It is important to con-
sider the elevated copy number of OsTFIIAγ1 that occurs when 
transcription is enhanced by PthXo7. In this scenario, OsTFIIAγ1 
can play a compensatory role for Xa5 in the xa5 background, 
and this leads to R or S gene expression and some level of re-
sistance (Fig. 8E) or susceptibility (Fig. 8F). In some cases, an R 
rice line may show elevated resistance to the pathogen carrying 
the cognate avirulent TALE (Fig. 8E). Conversely, an S rice line 
may show enhanced susceptibility to Xoo strains harbouring the 
associated virulent TALE (Fig. 8F). An example of the complex in-
terplay between transcription factors can also be observed with 
Xoo GX4, which activates transcription of OsSWEET14 (Fig. 
S6, see Supporting Information) and is avirulent (incompatible) 
in xa5 rice (Fig. 6). However, Xoo GX4(pthXo7) was able to 
induce some disease symptoms in xa5 rice. Future studies are 
underway to clarify the association of TALEs with Xa5, xa5 an-
dOsTFIIAγ1, and how TALEs specifically activate R or S gene 
expression.

In this study, we also generated an inactive form of 
OsTFIIAγ1 in xa5 rice using CRISPR/Cas9 technology (Fig. 4). 
The genetically modified TF1 rice lines retained resistance to 

GX4 (lacks pthXo7) and enhanced resistance to PXO99A and 
GX4(pthXo7) (Figs 5 and 6). These results suggest that TF1 
lines will be valuable in future efforts to evade Xoo and reduce 
BB symptoms in rice breeding programmes.

Fig. 8 Theoretical model showing how OsTFIIAγ subunits (Xa5, OsTFIIAγ1 
and xa5) modulate transcription activator-like effector (TALE)-activated 
host gene transcription and disease development. (A, B) Avirulent (Avr) 
and virulent (Vir) TALEs associate with Xa5 to form a transcription factor 
complex for the initiation of the expression of r (A) or S (B) genes. Through 
interaction with TALEs, the low expression level of OsTFIIAγ1 makes it 
play a minor role in the activation of r or S genes. (C, D) Rice lines are 
homozygous for xa5. The weaker affinity of the xa5–TALE association 
facilitates OsTFIIAγ1 binding (green hexagons); however, the relatively 
low level of OsTFIIAγ1 prevents TALE-mediated r or S gene activation and 
leads to neutralized (C) or passive (D) resistance. (E, F) The elevated copy 
number of OsTFIIAγ1 when transcription is enhanced by PthXo7 (not shown). 
In this scenario, OsTFIIAγ1 plays a compensatory role for Xa5 in the xa5 
background, and this leads to r or S gene expression and an enhanced 
level of resistance (E) or susceptibility (F). Arrows with a single dash (  ) 
indicate transcriptional inhibition and failure to express the target r or S 
gene. Arrows with multiple dashes (  ) indicate elevated transcription, 
which results in an enhanced level of resistance or susceptibility. 
Abbreviations: Avr, avirulent TALE; EBE, effector-binding element; Pol II, 
polymerase II; Vir, virulent TALE; γ1, OsTFIIAγ1. [Colour figure can be viewed 
at wileyonlinelibrary.com]
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E XPE RIM E NTA L PROC E DU RES

Bacterial strains, plasmids and plant materials

The bacterial strains and plasmids used in this study are listed 
in Table S1. Escherichia coli strains were cultivated in Luria–
Bertani medium at 37°C (Chong, 2001). Xanthomonas strains 
were cultured in nutrient broth (NB) or NB amended with agar at 
28°C (Li et al., 2011). Agrobacterium was cultured in Luria–
Bertani medium containing rifampicin at 28°C. Antibiotics were 
used at the following final concentrations: ampicillin, 100 μg/
mL; rifampicin, 75 μg/mL; kanamycin, 25 μg/mL; spectinomycin, 
50 μg/mL.

Indica rice IRBB5 (harbouring xa5) and IR24 were obtained 
from the International Rice Research Institute. DH, the rice line 
containing the two homozygous resistance genes Xa27 and 
xa5, was kindly provided by Zhongchao Yin (Gu et al., 2009). 
Rice line 78-1-5, containing Xa27, was obtained from Chaozu 
He (Hu et al., 2007). All rice plants were grown at 28°C in 
a glasshouse at Shanghai Jiao Tong University with a 12-h 
photoperiod.

Plant infection and HR assays

HR assays were carried out as described previously (Hopkins 
et al., 1992). Briefly, three to five leaves of 3-week-old rice 
plants were infiltrated with bacterial suspensions [optical 
density at 600nm (OD600) = 0.6] using a needleless syringe. 
The quantification of HR was analysed by measuring the grey, 
necrotic regions in leaf tissue using Fiji software (Schindelin 
et al., 2012; Sekulska-Nalewajko et al., 2016). For measure-
ment of lesion lengths, three to five leaves from 6–8-week-
old rice plants were inoculated with bacterial suspensions 
(OD600 = 0.6) using a tip-cutting method (Kauffman et al., 
1973). Both disease and HR assays were performed at least 
three times, and Student's t-test was used for significance 
(P < 0.05).

RNA extraction and gene expression analysis

At 24h post-infiltration (hpi), leaves of inoculated rice seedlings 
were selected and frozen in liquid nitrogen. For RNA extraction, 
frozen samples were pulverized, suspended in 1ml of RNAiso Plus 
(Takara, Dalian, China) and precipitated with isopropanol. RNA 
(1 μg) was then added for cDNA synthesis using EasyScript® One 
Step gDNA Removal and cDNA Synthesis Supermix (TransGen, 
Beijing, China). Synthesized cDNA (20 μL) was diluted to 100 μL 
and used for qRT-PCR employing TransStart® Tip Green qPCR 
SuperMix (TransGen). qRT-PCR was performed using an ABI 
7500 quantitative PCR system. Fold change in gene expression 
was measured using the 2–△△Ct method (Livak and Schmittgen, 
2001). The primer sequences are provided in Table S2 (see 
Supporting Information).

Modification of IRBB5 rice line using the CRISPR/
Cas9 system

IRBB5 rice was genetically modified using CRISPR/Cas9 technol-
ogy as described previously (Zhou et al., 2014). Briefly, the sgRNA 
targeted a 20-bp region (5′-GACCATGTCGTCCAGCGTGT-3′, 
minus strand) in the first exon of OsTFIIAγ1; this sequence 
was driven by the rice U6.2 promoter. The sgRNA and Cas9 
constructs were transferred into IRBB5 callus cells using 
Agrobacterium-mediated transformation (Hiei et al., 1994), 
which was a service by Wuhan Biorun Bio-Tech Co. Ltd., Wuhan, 
China. Genomic DNA was isolated from leaves of transgenic rice 
using the Cetyltrimethyl Ammonium Bromide method (Zhou 
et al., 2014). Genomic DNA was employed for PCR amplifica-
tion of the OsTFIIAγ1 region using the primer pair TFIIAγ1-YN-
F(XbaI)/TFIIAγ1-test-R (Table S2). The resulting amplicons were 
cloned into the pMD18-T vector (Takara) using the TA cloning 
method; clones with confirmed inserts were then sequenced.

BiFC experiments

For BiFC experiments, Xa5, xa5 and OsTFIIAγ1 were ampli-
fied using the primer pairs Xa5-YN-F(XbaI)/Xa5-YN-R(SmaI) 
and TFIIAγ1-YN-F(XbaI)/TFIIAγ1-YN-R(SmaI). Xa5, xa5 and 
OsTFIIAγ1 were inserted into the N-terminus of the YFP (YN) 
vector using XbaI and SmaI (see Methods S3), resulting in 
Xa5::YN, xa5::YN and OsTFIIAγ1::YN, respectively.

BiFC assays were performed as described previously with minor 
modifications (Walter et al., 2004). Briefly, Agrobacterium 
GV3101 strains containing YN and YC constructs were cul-
tured to OD600 = 1.5, harvested by centrifugation and resus-
pended in inducing buffer (10mm MgCl2, 0.2mm acetosyringone 
and 200 mm 2-(4-Morpholino) ethanesulfonic acid (MES), pH 
5.6) to OD600 = 1.0. Buffer-supplemented Agrobacterium 
strains containing the YN constructs (Xa5::YN, xa5::YN and 
OsTFIIAγ1::YN) and YC constructs (pthXo1::YC, avrXa7::YC and 
avrXa27::YC) were mixed in a ratio of 1 : 1 and incubated at 25°C 
for 1h. Controls included N. benthamiana transformed with 
empty YN vector and YC-tagged TALE, and empty YC vector and  
YN-tagged OsTFIIAγ. The induced Agrobacterium mixtures 
were infiltrated into N. benthamiana leaves for transient 
 expression. At 48 hpi, fluorescence was imaged with a confocal 
laser fluorescence microscope and 4′,6-diamidino-2-phenylindole 
(DAPI, 100 μg/mL) was used for nuclei staining.

MST experiments

To assess interactions between TALEs and OsTFIIAγ subunits, 
MST was performed as described previously (Cai et al., 2017; 
Wienken et al., 2010). His-tagged TALEs and OsTFIIAγ subu-
nits were purified from the pET30a constructs (Methods S4, 
see Supporting Information) with Ni-NTA His-Bind resin. The 
purified protein buffer was exchanged for MST buffer [50mm 



2260  W. MA etal .

Molecular Plant Pathology (2018) ©  2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY  
BRIT ISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD

Tris-HCl (pH 7.8) with 150mm NaCl, 10mm MgCl2 and 0.05% 
Tween-20], and protein concentrations were determined using 
the Bradford method. OsTFIIAγ proteins were labelled with the 
amine-reactive, red fluorescent dye NT-647 using the Monolith 
NT.115 Protein Labeling Kit as recommended by the manufac-
turer (NanoTemper Technologies, Germany), and then eluted 
with MST buffer. Sixteen different concentrations of TALE pro-
teins starting from 10 μm were made by two-fold serial dilutions. 
Different concentrations of TALEs were mixed with 1 μm labelled 
OsTFIIAγ proteins in a 1 : 1 (v/v) ratio. After a 10-min incuba-
tion at room temperature, the samples were loaded into silica 
capillaries. Measurements were performed at 25°C using 35% 
LED power and 80% IR laser power. MST was performed with 
a Monolith NT.115T (NanoTemper Technologies), and data were 
analysed using NTAnalysis v. 1.5.41.
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